Trigonometric Functions

Get insights from 128 questions on Trigonometric Functions, answered by students, alumni, and experts. You may also ask and answer any question you like about Trigonometric Functions

Follow Ask Question
128

Questions

0

Discussions

4

Active Users

0

Followers

New answer posted

4 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

61. Kindly go through the solution

New answer posted

4 months ago

0 Follower 4 Views

P
Payal Gupta

Contributor-Level 10

60. Kindly go through the solution

New question posted

4 months ago

0 Follower 2 Views

New answer posted

4 months ago

0 Follower 6 Views

P
Payal Gupta

Contributor-Level 10

59. We have, tan x= 43 , x in IInd quadrant.

Since, π2<x<π

π4<x2<π2

sin x2 , cos x2 , tan x2 are all positive.

Now, sec2x = 1 + tan2x = 1 + (43)2 = 1 + 169 = 9+169 = 259

secx = ±53

cosx = ±35 .

cosx = 35 as x is in IInd quadrant.

Now, 2 sin2. = 1 cosx.    [cos 2x = 1 2 sin2x.]

2 sin2 x2 = 1 (35)

2 sin2 x2 =  1 +355+35 = 85 .

sin2 x2 = 82*5 = 45.

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

58. L.H.S = sin 3x + sin 2x - sin x

= sin 3x - sin x + sin 2x.

= 2 cos 3x+x2 . sin 3xx2 + sin 2x [?sinAsinB=2cosA+B2sinAB2]

= 2 cos 4x2 sin 2x2 + sin 2x.

= 2 cos 2x sin x + 2 sin xcosx        [ ? sin 2x = 2sin xcosx]

= 2 sin x [cos 2x + cosx]

= 2 sin x [2cos2x+x2cos2xx2] [?cosA+cosB=2cosA+B2cosAB2]

= 2 sin x [2.cos3x2cosx2]

= 4 sin xcos x2 . cos 3x2 = R.H.S.

New answer posted

4 months ago

0 Follower 5 Views

P
Payal Gupta

Contributor-Level 10

57. L.H.S. = (sin7x+sin5x)+ (sin9x+sin3x) (cos7x+cos5x)+ (cos9x+cos3x).

Using sin A + sin B = 2 sin A+B2 cos AB2

cos A + cos B = 2 cos A+B2 cos AB2.

New answer posted

4 months ago

0 Follower 4 Views

P
Payal Gupta

Contributor-Level 10

56. L.H.S = sin x + sin 3x + sin 5x + sin 7x.

= (sin x + sin 7x) + (sin 3x + sin 5x)

Using,

sin A + sin B = 2 sin A+B2 cos AB2.

L.H.S. = 2. Sin x+7x2 cos x7x2 + 2 sin 3x+5x2 cos 3x5x2

= 2 sin 8x2 cos (6x2) + 2 sin 8x2 cos (2x2)

= 2 sin 4x cos 3x + 2 sin 4x cosx.[ ? cos (-x) = cosx]

= 2 sin 4x[cos 3x + cosx]

Using cos A + cos B = 2 cos A + B2 cos AB2.

So, L.H.S. = 2 sin 4x [2·cos3x+x2cos3xx2].

= 2 sin 4x [2·cos4x2·cos2x2]

= 4 sin 4x. cos 2x cosx = R.H.S.

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

55. L.H.S = (cos x-cos y)2 + (sin x- sin y)2

[2sinx+y2sinxy2]2+ [2cosx+y2sinxy2]2

= 4 sin2 (x+y2) sin2 (xy2) + 4 cos2 (x+y2) sin2 (xy2)

= 4 sin2 (xy2)  [sin2 (x+y2)+cos2 (x+y2)]

= 4 sin2 (xy2) . [ ? sin2∅ + cos2∅= 1]

= R.H.S.

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

54. L.H.S. = (cos x + cos y)2 + (sin x- sin y)2

Using,

cos A + cos B = 2 cos A+B2 cos A−B2

sin A - sin B = 2 cos A+B2 sin AB2.

L.H.S. = [2cosx+y2cosxy2]2+[2cosx+y2sinxy2]2 .

= 4. cos2 (x+y2) cos2 (xy2) . + 4 cos2 (x+y2) sin2 (xy2) .

= 4 cos2(x+y2) [cos2(xy2)+sin2(xy2)]

= 4 cos2(x+y2) [ ? cos2θ+ sin2qθ  = 1].

= R.H.S.

New answer posted

4 months ago

0 Follower 9 Views

P
Payal Gupta

Contributor-Level 10

53. L.H.S = (sin 3x + sin x) + sin x + (cos 3x - cosx) cosx.

Using

Sin A + sin B = 2 sin A+B2 cos A−B2

cos A - cos B = -2 sin A+B2 sin A−B2 .

L.H.S. =  (2sin3x+x2cos3xx2) sin x +  (2sin3x+x2sin3xx2) cosx

= 2 sin 4x2 cos 2x2 sin x -2 sin 4x2 sin 2x2 cosx.

= 2 sin 2xcosx sin x -2 sin 2x sin xcosx

= 0 = R.H.S.

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.