Trigonometric Functions

Get insights from 128 questions on Trigonometric Functions, answered by students, alumni, and experts. You may also ask and answer any question you like about Trigonometric Functions

Follow Ask Question
128

Questions

0

Discussions

4

Active Users

0

Followers

New answer posted

a month ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

 x,y(0,π)

cos x + cos y – cos (x + y) = 32

2cosx+y2.cosxy2(2cos2x+y21)=32

2cos2x+y22cosxy2.cosx+y2+12=0

As,

x,y(0,π)

π2<xy2<π2

sinxy2=0xy2=0x=y

then equation : cos x + cos y – cos (x + y) = 32

cosx=2±444=12

x=y=π3sinx+cosy=32+12=3+12

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

s i n 7 x = c o s 7 x = 1 , x [ 0 , 4 π ]            

will satisfy for sin x = 1, cos x = 0

x = π 2 & 5 π 2 .              

or, cos x = 1, sin x = 0

x = 0, 2π, 4π              total 5 solutions

New answer posted

a month ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

The parabola : ( x 1 2 ) 2 = y 3 4  

-> y = x2 – x + 1 . (i)

P ( 1 2 , 7 4 )                

N P : y = x 2 + 2 . . . . . . . . . ( i i )                

(i) & (ii) -> Q (2, 3)

P Q 2 = 1 2 5 1 6                

New answer posted

a month ago

0 Follower 2 Views

R
Raj Pandey

Contributor-Level 9

q = 18° Þ 2q + 3q = 90° Þ sin 3q = 1 – sin 2q Þ cos q Þ cosq (4 sin2 q + 2sinq - 1) = 0

? c o s θ 0 4 s i n 2 θ + 2 s i n θ 1 = 0 c o s e c 2 1 8 ° 2 c o s e c 1 8 ° 4 = 0

? x2 – 2x – 4 = 0

New answer posted

a month ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

( s i n 1 x ) 2 ( c o s 1 x ) 2 = a , 0 < x < 1           

( s i n 1 x + c o s 1 x ) ( s i n 1 x c o s 1 x ) = a

2 c o s 1 x = π 2 2 a π . . . . . . . . . . ( i )    

Let c o s 1 x = θ t h e n x = c o s θ

So, 2 x 2 1 = 2 c o s 2 θ 1 = c o s 2 θ . . . . . . . . . . ( i i )

Now, 2 θ = 2 c o s 1 x = π 2 2 a π f r o m ( i )

So, cos 2θ = cos ( π 2 2 a π ) = s i n 2 a π

New answer posted

a month ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

sin4θ + cos4θ - sinθ cosθ = 0

( s i n 2 θ + c o s 2 θ ) 2 2 s i n 2 θ c o s 2 θ s i n θ c o s θ = 0

( 2 s i n θ c o s θ ) 2 2 2 s i n θ c o s θ 2 + 1 = 0               

s i n 2 2 θ + s i n 2 θ 2 = 0              

sin 2θ = 1 .(i)

a s θ [ 0 , 4 π ] s o 2 θ [ 0 , 8 π ]              

( i ) 2 θ = π 2 , 5 π 2 , 9 π 2 , 1 8 π 2

Hence 8 s π = 5 6

New answer posted

a month ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

In Δ B C D , t a n ? = x a + b . . . . . . . . ( i )  

In Δ A P C , t a n ( θ + ? ) = x b . . . . . . . . . . ( i i )  

Now tan θ = tan ( θ + ? ? )  

= t a n ( θ + ? ) t a n ? 1 + t a n ( θ + ? ) t a n ?  

given , t a n θ = 1 2 s o a x b ( a + b ) + x 2 = 1 2  

-> x2 – 2ax + b (a + b) = 0

 

New answer posted

a month ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

s i n A s i n B = s i n ( A C ) s i n ( C B )

sin A sin C cos B – sin A cos C sin B = sin B sin A cos C – sin B cos A sin C

2 sin A sin B cos C = sin A sin C cos B + sin B sin C cos A

By sine rule s i n A a = s i n B b = s i n C c = k

2 . a k . b k . ( a 2 + b 2 c 2 ) 2 a b = a k . c k . ( c 2 + a 2 b 2 ) 2 a c + b k . c k . ( b 2 + c 2 a 2 ) 2 b c

b 2 , c 2 , a 2 a r e i n A . P .

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

  t a n 1 1 2 r 2 = t a n 1 2 1 + ( 4 r 2 1 )             

  = t a n 1 ( 2 r + 1 ) ( 2 r 1 ) 1 + ( 2 r + 1 ) ( 2 r 1 )

r = 1 5 0 [ t a n 1 ( 2 r + 1 ) t a n 1 ( 2 r 1 ) ]

= t a n 1 1 0 1 t a n 1 1 = t a n 1 1 0 0 1 0 2

t a n P = 1 0 0 1 0 2 = 5 0 5 1             

 

New answer posted

2 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

l=limnx12n (1112n+1122n+1132n+.....+112n12n)

Let 2n = t and if n  then t 

l=limnx1t (r=1t=111+rt)

= [2x12]01=2

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.