Trigonometric Functions
Get insights from 128 questions on Trigonometric Functions, answered by students, alumni, and experts. You may also ask and answer any question you like about Trigonometric Functions
Follow Ask QuestionQuestions
Discussions
Active Users
Followers
New question posted
3 weeks agoNew answer posted
3 weeks agoContributor-Level 10
tanx + tan (x+π/3) + tan (x-π/3) = 3
tanx + (tanx+√3)/ (1-√3tanx) + (tanx-√3)/ (1+√3tanx) = 3
tanx + (8tanx)/ (1-3tan²x) = 3
(tanx (1-3tan²x) + 8tanx)/ (1-3tan²x) = 3
(3 (3tanx – tan³x)/ (1-3tan²x) = 3
⇒ 3tan3x = 3
tan3x = 1
New answer posted
3 weeks agoContributor-Level 10
tan α = 1/x, tan β = 2/x, tan γ = 3/x
Now α + β + γ = 180°
⇒ tan α + tan β + tan γ = tan α tan β tan γ
1/x + 2/x + 3/x = (123)/ (xxx)
⇒ x² = 1
New question posted
3 weeks agoNew answer posted
3 weeks agoContributor-Level 10
f (x) = x√ (1 – x²)
∴ 1 - x² ≥ 0
⇒ x ∈ [-1, 1]
Put x = cos θ
⇒ f (θ) = cos θ|sin θ|
If sin θ > 0, f (θ) = sin θ cos θ
= (sin 2θ)/2, f (θ) ∈ [-1/2, 1/2]
if sin θ < 0, f () = sin cos
= - (sin 2θ)/2, f (θ) ∈ [-1/2, 1/2]
New answer posted
3 weeks agoContributor-Level 10
2x=tan (π/9)+tan (7π/18)
=sin (π/9+7π/18) / cos (π/9)cos (7π/18)
=sin (π/2) / cos (π/9)cos (7π/18)
=1 / cos (π/9)cos (7π/18)
=1 / cos (π/9)sin (π/2−7π/18)
=1 / cos (π/9)sin (π/9)
⇒x=1 / 2cos (π/9)sin (π/9)
=1 / sin (2π/9)=cosec (2π/9)
Again 2y=tan (π/9)+tan (5π/18)
⇒2y=sin (π/9+5π/18) / cos (π/9)cos (5π/18)
=sin (7π/18) / sin (π/2−π/9)sin (π/2−5π/18)
=sin (7π/18) / sin (7π/18)sin (4π/18) = cosec (2π/9)
⇒|x−2y|=0
New answer posted
3 weeks agoContributor-Level 10
α=max {2? sin³?2? cos³? }
=max {2? sin³? 2? cos³? }=2¹?
β=min {2? sin³?2? cos³? }=2? ¹?
α¹/? +β¹/? = b/8
⇒4+1/4 = b/8
⇒17/4 = b/8 ⇒ b=-34
Again α¹/? β¹/? =c/8
⇒4*1/4 = c/8
⇒c=8
⇒c−b=8+34=42
New answer posted
a month agoThe number of roots of the equation, (81)sin²? + (81)cos²? = 30 in the interval [0, π] is equal to :
Contributor-Level 9
(81)^sin²x + (81)^cos²x = 30.
(81)^sin²x + (81)^ (1-sin²x) = 30.
Let y = 81^sin²x.
y + 81/y = 30
y² - 30y + 81 = 0
(y - 3) (y - 27) = 0
⇒ y = 3 or y = 27.
Either 81^sin²x = 3 ⇒ 3^ (4sin²x) = 3¹ ⇒ sin²x = 1/4 ⇒ sin x = ±1/2. x = π/6, 5π/6.
OR, 81^sin²x = 27 ⇒ 3^ (4sin²x) = 3³ ⇒ sin²x = 3/4 ⇒ sin x = ±√3/2. x = π/3, 2π/3.
(as 0 ≤ x ≤ π)
Total possible solutions = 4.
New answer posted
a month agoContributor-Level 10
y = √ (2cos²α / (sinα cosα) + 1/sin²α)
y = √ (2cotα + cosec²α)
y = √ (2cotα + 1 + cot²α) = √ (1 + cotα)²) = |1 + cotα|.
Given α is in a range where 1+cotα is negative, y = -1 - cotα.
dy/dα = - (-cosec²α) = cosec²α.
At α = 5π/6, dy/dα = cosec² (5π/6) = (1/sin (5π/6)² = (1/ (1/2)² = 2² = 4.
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers