Class 11th

Get insights from 8k questions on Class 11th, answered by students, alumni, and experts. You may also ask and answer any question you like about Class 11th

Follow Ask Question
8k

Questions

0

Discussions

38

Active Users

0

Followers

New question posted

2 months ago

0 Follower 6 Views

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

The Kjeldahl method is not applicable for nitrogen estimation in:

Compounds containing nitrogen in a nitro group.

Compounds containing an Azo group.

Pyridine.

New answer posted

2 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Initial mean of 25 observations is 40.
X? = (Σx? )/25 = 40 => Σx? = 25 * 40 = 1000.

A teacher of age 60 retires.
The new sum of ages for the remaining 24 people is 1000 - 60 = 940.

A new teacher of age x joins.
The new sum for 25 people is 940 + x.
The new mean is 39.
(940 + x) / 25 = 39
940 + x = 39 * 25 = 975
x = 975 - 940 = 35.
The new teacher's age is 35.

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

Sucralose: Artificial sweetener

Glyceryl ester of stearic acid: The document incorrectly identifies this as "Sodium stearate which is synthetic detergent". Sodium stearate is a soap, not a synthetic detergent.

Sodium benzoate: Food preservative

Bithionol: Antiseptic

New answer posted

2 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

f (x) = ∫ (5x? + 7x? ) / (x² + 1 + 2x? ) dx seems to have a typo in the denominator. Based on the solution, the denominator is (x? + 1/x? + 2)² or similar. Let's follow the solution's steps.
It seems the denominator is (x? (2 + 1/x? + 1/x? )² = x¹? (2 + 1/x? + 1/x? )².
f (x) = ∫ (5x? + 7x? ) / (x¹? (2 + 1/x? + 1/x? )²) dx

The solution simplifies the integrand to:
f (x) = ∫ (5/x? + 7/x? ) / (2 + 1/x? + 1/x? )² dx

Let t = 2 + 1/x? + 1/x?
dt = (-5/x? - 7/x? ) dx = - (5/x? + 7/x? ) dx.

The integral becomes:
f (x) = ∫ -dt / t² = 1/t + C.
f (x) = 1 / (2 + 1/x? + 1/x? ) + C.

Given f (0)=0, this form has a division by zero. Let's re-ex

...more

New answer posted

2 months ago

0 Follower 4 Views

R
Raj Pandey

Contributor-Level 9

Please consider the following Image

 

New answer posted

2 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

Given the equation y = 3 + 1/ (4 + 1/y).
y - 3 = 1 / (4y+1)/y)
y - 3 = y / (4y+1)
(y-3) (4y+1) = y
4y² + y - 12y - 3 = y
4y² - 11y - 3 = y
4y² - 12y - 3 = 0

Using the quadratic formula to solve for y:
y = [-b ± √ (b²-4ac)] / 2a
y = [12 ± √ (-12)² - 4*4* (-3)] / (2*4)
y = [12 ± √ (144 + 48)] / 8
y = [12 ± √192] / 8 = [12 ± 8√3] / 8 = 3/2 ± √3.
y = 1.5 ± √3.

Since y > 0 (from the structure of the equation), both solutions are positive. The solution selects y = 1.5 + √3.

New answer posted

2 months ago

0 Follower 6 Views

V
Vishal Baghel

Contributor-Level 10

Evaluate the limit:
L = lim (x→0) [sin? ¹ (x) - tan? ¹ (x)] / 3x³

Using Taylor series expansions around x=0:
sin? ¹ (x) = x + x³/6 + O (x? )
tan? ¹ (x) = x - x³/3 + O (x? )

L = lim (x→0) [ (x + x³/6) - (x - x³/3) ] / 3x³
L = lim (x→0) [ x³/6 + x³/3 ] / 3x³
L = lim (x→0) [ (1/6 + 1/3)x³ ] / 3x³
L = (1/2) / 3 = 1/6

The solution shows 3L = 1/2, which is correct. And 6L = 1, also correct.
The final line 6L+1=2 implies 6L=1, confirming the result.

New answer posted

2 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

Given the determinant:
| α β γ |
| β γ α | = 0
| γ α β |

The expansion of this determinant is - (α³ + β³ + γ³ - 3αβγ) = 0.
This implies (α+β+γ) (α²+β²+γ²-αβ-βγ-γα) = 0.

From a cubic equation x³ + ax² + bx + c = 0 with roots α, β, γ:
α+β+γ = -a
αβ+βγ+γα = b
αβγ = -c

Substituting into the determinant condition:
(-a) ( (α+β+γ)² - 3 (αβ+βγ+γα) ) = 0
(-a) ( (-a)² - 3b ) = 0
-a (a² - 3b) = 0
a (a² - 3b) = 0

This implies a=0 or a²=3b. If a≠0, then a²=3b, so a²/b = 3.

New answer posted

2 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Given the family of parabolas y² = 4a (x+a).
Differentiate with respect to x:
2y (dy/dx) = 4a
a = (y/2) (dy/dx)

Substitute a back into the original equation:
y² = 4 * (y/2) (dy/dx) * [x + (y/2) (dy/dx)]
y² = 2y (dy/dx) * [x + (y/2) (dy/dx)]
y = 2 (dy/dx) * [x + (y/2) (dy/dx)]
y = 2x (dy/dx) + y (dy/dx)²
y (dy/dx)² + 2x (dy/dx) - y = 0

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 679k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.