Limits and Derivatives

Get insights from 93 questions on Limits and Derivatives, answered by students, alumni, and experts. You may also ask and answer any question you like about Limits and Derivatives

Follow Ask Question
93

Questions

0

Discussions

4

Active Users

0

Followers

New answer posted

4 months ago

0 Follower 5 Views

A
alok kumar singh

Contributor-Level 10

38. Given, f(x)=xn+axn1+a2xn2+?+an1x+an.

We know that,

ddx(xx)=nxx1

So,

f(x)=ddxxx+ddxaxx1+ddxa2xx2+?+ddx ax1x+ddxax=nxn1+a(n1)xn2+a2(n2)xn3+?+an1+0.

(?daxdx=adx dxand dadx=0whereaisconstant

New answer posted

4 months ago

0 Follower 6 Views

A
alok kumar singh

Contributor-Level 10

37. 

Given f(x)=x100100+x9999+?+x22+x+1

limh0(x+h)100x100100h+limh0(x+h)99x9999h++limx0(x+h)2x22h +limx0x+limx01

=100x99100+99x9899+?+2x2+0+1

=x99+x98+?+x+1

At x=0,

f(X)  =1.

and at x=1,

f(1)=199+198++12+1+1

=100 * 1

=100 *f(0)

Hence, f(1)=100f(0)

New answer posted

4 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

36. (i) x327 (ii) (x -1)(x-2)

(iii) 1x2 (iv) x+1x1

A.4.(i) Given, f(x)=x327.

So, f(x)=limh0f(x+h)f(x)h

=limh0[(x+h)327][x327]h

=limh0x3+h3+3xh(x+h)27x3+27h

=limh0h(h2+3x(x+h))h

=limh0h2+3x(x+h)

=0+3 x(x+ 0)

=3x2

(ii) Given, f(x) =(x-1)(x-2)

=x2- 3x+2

So, f(x)=limh0f(x+h)f(x)h

limh0[(x+h)23(x+h)+2][x23x+2]h

limh0x2+h2+2xh3x3h+2x2+3x2h

limh0h(h+2x3)h

=limh0h+2x3

= 2x – 3.

(iii) Given, f(x)= 1x2

So, f(x)=limh0f(x+h)f(x)h

=limh01(x+h)21x2h

=limh0x2(x+h)2(x+h)2x2h

=limh0x2x2h22xhhx2(x+h)2 

=limh0h(h2x)hx2(x+h)2

=limh0h2xx2(x+h)2

=02xx2(x+0)2

=2xx4

=2x3

(iv) Given, f(x)= x+1x1

f(x)=limh0f(x+h)f(x)h

=limh01h[fx+h+1x+h1x+1x1]

=limh01h[(x+h+1)(x1)(x+1)(x+h1)(x+h1)(x1)]

=limh01h[x2x+hxh+x1x2hx+xxh+1(x1)(x+h1)]

=limh01h[2h(x1)(x+h1)]

=limh02(x1)(x+h1)

=2(x1)(x1)=2(x1)2

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

35. Given, f (x)= 99x, f   (100)=?

So, f (100)= h0f (100+h)f (100)h

=limh099 (100+h)99 (100)h

=limh099*100+99*h99*100h

=limh099hh

=limh099

=99

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

34. Given, f (x)=x, f   (1)=?

We have,

f (1)=limh0f (1+h)f (1)h

 =limh01+h1h

=limh0hh

=limh01

=1

New answer posted

4 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

33. Given, f (x)=x2- 2 ., f (10)=?

We have,  

f (10)=limh0f (10+h)f (10)h

=limh0 [ (10+h)22] [1022]h

limh0102+h2+20h2102+2h

limh0h (h+20)h

limh0h+20

=20

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

32. Given, f (x) = {mx2+n,x<0nx+m,0x1nx3+m,x>1.

For limx0f(x)lim,x0f(x)=limx0+f(x)

limx0(mx2+n)=limx0+(mx3+m)

n = m

So, limx0f(x) exist for n = m.

Again, limx1f(x)=limx1nx+m=n+m.

limx1+f(x)=limx1+nx3+m=n+m

So, limx1f(x)=limx1+f(x)=limx1f(x)=n+m, Thus, limx1f(x) exist for any integral value of m and n.

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

31. Given, limx1f (x)2x21=π

limx1f (x)2limx1x21=π

limx1 [f (x)2]=πlimx1 (x21)

limx1f (x)limx12=π (121)

limx1f (x)2=0.

limx1f (x)=2

New answer posted

4 months ago

0 Follower 8 Views

A
alok kumar singh

Contributor-Level 10

30. Given, f(x)={|x|+1,x<00,x=0|x|1,x>0limxaf(x)=?

As | x | = {x,x<0x,x>0

We can rewrite f (x) = {x+1,x<00,x=0x1,x>0.

Case 1: when a<0,

limxaf(x)=limxa(x+1)=a+1

So, limxaf(x) = exist such that a< 0

Case II when a> 0,

limxaf(x)=limxa(x1)=a1

So, limxaf(x) exist such that a>0.

Case III when a = 0.

L.H.L = limxaf(x)=limxa(x+1)=limx0(x+1)=1

R.H.L = limxa+f(x)=limxa+(x1)=limx0+(x1)=1

Thus, limxaf(x)limxa+f(x)

So, limxaf(x) does not exist at a = 0.

New answer posted

4 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

28. Given, f (x) =  {a+bx, x<14, x=1bax, x>1

Since we need limx1f (x) we need,

LHL =

limx1f (x)=limx1 (a+bx) = a + b * 1 = a + b

and RHL =

limx1+f (x)=limx1+ (bax) = b - a * 1 = b - a

Given,  limx1f (x)=f (1): we have the following equations

a + b = 4 ____ (1)

b - a = 4 ____ (2)

Adding (1) and (2) we get,

2b = 8

b = 4

Putting b = 4 in (1) we get

a + 4 = 4

a = 0

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.