Quantitative Aptitude Prep Tips for MBA
Get insights from 250 questions on Quantitative Aptitude Prep Tips for MBA, answered by students, alumni, and experts. You may also ask and answer any question you like about Quantitative Aptitude Prep Tips for MBA
Follow Ask QuestionQuestions
Discussions
Active Users
Followers
New answer posted
a month agoContributor-Level 10
Let h = height of the container,
Given, h = 2r
Volume v = πr2h = πr2 (2r) = 2πr3
Absolute error = (1.02)3 * 2πr3 − 2πr3 * 13
= 2πr3 [ (1.02)2 − 1] = 2πr3 [1.0612 − 1]
= 0.0612 * 2πr3
% error
New answer posted
a month agoContributor-Level 10
For every day's work, P1 can afford to miss 3 days.
Hence, to break even it has to be 7 days' work in 28 days.
New answer posted
a month agoContributor-Level 10
Let Ab = X km and speed of bus be Y km/hr and time be T hrs original equation becomes
By increasing speed by 7 km/hr equation becomes
By decreasing speed by 5 km/hr equation becomes
On solving equation 1, 2 & 3 we get the value of y as and
and
AB = X =
≈ 31 km
New answer posted
a month agoContributor-Level 10
A + 4 = B + 5 = C + 6 = D + 7 = P + B + C + D + 8
A + 4 = B + 5 A – 1 = B
A + 4 = C + 6 A – 2 = C
A + 4 = D + 7 A – 3 = D
Now, A + 4 = A + A – 1 + A – 2 + A – 3 + 8
A
So, A + B + C + D =
New answer posted
a month agoContributor-Level 10
Suppose P is midway between Q & R. Now, X hours after 7 a.m.
25 X – 20 (X – 1.25) = 220 – 25X – 30 (X – 3.5) etc.
So, 12 o'clock & 125 km from A.
New answer posted
a month agoContributor-Level 10
Let the ages of Akshat, Rishab, Gaurav be X, Y, Z years respectively.
X = 2 Z . (1)
X + Z = 2 Y . (2)
(X + 6 + Y + 6) = 3 (Z + 6) &nb
New answer posted
a month agoContributor-Level 10
Total number of passenger is the Rajdhani Express = 10 * 20 = 200
So, in the 9 boggies the minimum number of total passengers = 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20 = 144
Hence, the minimum number of passenger in one boggie can be (200? 144) = 56
New answer posted
a month agoContributor-Level 10
Let A and B work for m days and C for n days to complete the work. Therefore,
. (1)
Out of the total of Rs. 18000, B gets Rs. 6000 more than C.
i.e., . (2)
On adding Eqs. (1) and (2), we get
New answer posted
a month agoContributor-Level 10
Let f (x) = px2 + qx + k, where p, q and k are integers, and p ≠ 0
f (0) = k = 1
f (x) = px2 + qx + 1
= px2 +qx + k (Differentiate both sides with respect to x)
f' (x) = 2px + q
For maxima or minima f' (x) = 0, x =
f (x) attains maximum at x = 1
q = − 2p
f (1) = p + q + 1 = 3
1 − p = 3
p = − 2
q = 4
f (x) = −2x2 + 4x + 1
f (10) = − 200 + 40 + 1 = −159
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers