Sequences and Series

Get insights from 207 questions on Sequences and Series, answered by students, alumni, and experts. You may also ask and answer any question you like about Sequences and Series

Follow Ask Question
207

Questions

0

Discussions

4

Active Users

0

Followers

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

94. As a, b, c are in A.P. we can write,

ba=cb

b+b=a+c

2b=a+c I

As b, c, d are in G.P. we can write,

cb=dc

c2=bd II

And ar 1c,1d,1e are in A.P. we can write,

1d1c=1e1d

1d+1d=1c+1e

2d=e+cce

d2=cee+c

d=2cec+e …………. III

Now, c2=Bd from II

=a+c2*2cec+c {from 1 and 3}

c2=(a+c)cec+e

c=(a+c)e(c+e)

c(c+e)=(a+c)e

c2+ce=ac+ce

c2=ae

ca=ec

i.e., a, c and e are in G.P.

New question posted

4 months ago

0 Follower 1 View

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

92. Given, ab are roots of x23x+p=0

and c & d are roots of x212x+q=0

So, a+b=(3)1 and ab=P1

a + b = +3 ………….I and ab = P…………….II { ? sum of roots = BA , Product of roots = CA }

Similarly, c + d =(12)1 and cd=q1

c + d = 12 ……….III ad cd = q (4)

As a, b, c, d from a G.P and if r be the common ratio

a = a

b = ar

c = ar2

d = ar3

So, from equation, (1),

a+b=3a+ar=3a(1+r)=3 (5)

And c+d=12ar2+ar3=12ar2(1+r)=12 (6)

Dividing equation (6) and (5) we get,

ar2(1+r)a(1+r)=123

 r2 = 4

Now, L.H.S. =q+pqp=cd+abcdab {from (4) and (5)}

=ar2*ar3+a*arar2+ar3a*ar

=a2r(r4+1)a2r(r41)

=(r2)2+1(r2)21=42+1421=16+1161=1715 = R.H.S.

New answer posted

4 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

91. Let r be the common ratio of the G.P.

Then, a, b, c, d a, ar, ar2, ar3

So, an+bn=an+(ar)n=an+anrn=an(1+rn)(1)

bn+cn=(ar)n+(ar2)n=anrn+anr2n=anrn(1+rn) (2)

cn+dn=(ar2)n+(ar3)n=anr2n+anr3n=anr2n(1+rn) (3)

Hence, bn+cnan+bn=anrn(1+rn)an(1+rn)=rn {from (2) and (1)}

and  cn+dnbn+cn=anr2n(1+r2)anrn(1+r2)=rn {from (3) and (2)}

i.e., bn+cnax+bn=cn+dnbx+cn

an+bn,bn+cn,cn+dn are in A.P

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

90. Given, a(1b+1c),b(1c+1a),c(1a+1b) are in A.P.

So, a(c+b)bc,b(a+c)ac,c(b+a)ab are in A.P.

ac+abbc,ab+bcac,bc+acab are in A.P.

If we add 1 to all each terms of the sequence it will given be an A.P of common difference 1.

So, ac+abbc+1,ab+bcac+1,bc+acab+1 are in A.P.

ac+ab+bcbc,ab+bc+acac,Bc+ac+abab are in A.P.

Dividing add of the sum by ab + bc + ac will conserve.

then A.P so,

1bc,1ac,1ab are in A.P.

Similarly multiplying each term by abc we get,

abcbc,abcac,abcab are in A.P.

a, b, c, are in A.P.

Hence proved

New answer posted

4 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

89. Let A and d be the first term & common difference of the A.P.

Then,

ap=aA+(p1)d=a ………I

ar=cA+(M1)d=c …………III

So, L.H.S. =(q1)a+(np)b+(qq)c

=(qr)[A+(p1)d]+(np)[A+(q1)d]+(pq)[A+(r1)d]

{putting value for I, II, III}

Aq+q(p1)dArr(p1)d+Ar+r(q1)dApp(q1)d

+Ap+p(r1)dAqq(r1)d

pqdqdrpd+rd+rqdrdpqd+pd+rpdpdrqd+qd

=0= R.H.S

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

88. Let a and r be the first term & common ratio of the G.P.

So, S = a +ar + ar2 +……… upto n terms.

S=a(1rn)1r

and P = a .ar. ar2 ar . upton n terms.

=anr1+2+3++(n1)

=anr(n1)(n1+1)2

=anrn(n1)2

And R = sum of reciprocal of n terms ( 1a+1arn+........... upto n terms)

=1a[(1r)n1]1r1  As r <1

1r >1

=1a[1rn1]1rr=1a[1rnrn]*r1r

=1rnarn*r1r

=1rna(1r)rn1 …. III

Now, L.H.S. = P2 Rn

=[anrn(n1)2]2·[1xna(1n)rn1]n { equation II & III}

=a2nrn(n1)*[1rn]nan(1n)nrn(n1)

=a2xn*rn(x1)rn(n1)*[1xn]n(1r)n

=an[1rn]n(1r)n

=[a[1rn](1r)]n

=Sn=R.H.S { ? equation I}

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

87. Here, a+bxabx=b+cxbcx

(a+bx)(bcx)=(b+cx)(abx)

abacx+b2xbcx2=abb2x+acxbcx2

ababacxacx=b2xb2x+bcx2bcx2

2acx=2b2x

ac=b2

cb=ba …………I

And b+cxbcx=c+dxcdx

(b+cx)(cdx)=(c+dx)(bcx)

bcbdx+c2xcdx=bcc2x+bdxcdx

bcbc+c2x+c2x=bdx+bdxcdx+cdx 

2c2x=2bdx

c2=bd

cb=dc ……………II

From I and II

aa=cb=dc

a, b, c and d are in G.P.

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

86. Given, a = 11

Let d and l be the common difference & last term of the A.P.

Then, a+(a+d)+(a+2d)+(a+3d)=56 [first 4 terms sum]

4a+6d=56

6d=564a=564*11=5644=12

d=126=2

And, l+(ld)+(l2d)+(l3d)=112

4l6d=112

4l=112+6d=112+6*2=112+12=124 [last 4 terms sum]

l=1244=31

So, l=31

a+(n1)d=31

11+(n1)2=31

(n1)2=3111=20

n1=202=10

n=10+1

n=11

the A.P. has 11 number of terms.

New answer posted

4 months ago

0 Follower 7 Views

P
Payal Gupta

Contributor-Level 10

85. Let a and r be the first term and common ratio of G.P.

Then, number of term = 2n (even).

a1+a2+?+a2n=5(a1+a3+?+a2n1)[?]

a+ar+.........+ar2n1=5(a+ar2+.......+ar2n11)

a(1r2n)1n=5*a[1(r2)n]1r2 { series on R.H.S. has 2n2=n terms and common ratio ar2a=r2 }

1r2n1r=5[1r2n]1r2 (eliminating a)

1r2r1r=[1r2r1r]*51+r{?a2b2=(ab)(a+b)} 

1=51+r{Eliminating same term}

1+r=5

r=51

r = 4

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.