Sequences and Series

Get insights from 207 questions on Sequences and Series, answered by students, alumni, and experts. You may also ask and answer any question you like about Sequences and Series

Follow Ask Question
207

Questions

0

Discussions

4

Active Users

0

Followers

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

51. The sum of product of corresponding terms of the given

Sequences =  (2*128)+ (4*32)+ (8*8)+ (16*2)+ (32*12)

= 256+128+69+32+16

The above is a G.P. of a = 256,  r=128256=12< 1 and x = 5

Sum required = 256 (1 (12)5)112

256 (1132)212

256* (32132)12=256*2*3132=496

New answer posted

4 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

50. The given sequence, 8, 88, 888, 8888, …., upto xterm is not a G.P. so we can such that it will be changed to a G.P. by the following .

Sum of x terms, sx = 8+ 88+888+8888 ….upto x term

8[1+11+111+1111+......] upto x term

Multiplying the numerator and denumerator by 9 we get,

89[9+99+999+9999+.........] x terms

89[(101)+(1021)+(1031)+(1041)+.....] upto x terms

89 [(10 + 1010 + 103 +104 …….upto, x terms) (1 +1 + 1 + 1 …… upto, x terms)]

89[10(10n1)1011*n]

89[10(10n1)9n]

8081(10n1)89n

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

49. Let aand r be the first term and common ration of the G.P.

So,  a4=x

 ar3=x - I

And a10 = y

 ar9=y - II

Also a 16 = z

ar15=z - III

So,  yx=ar9ar3=r93=r6

and zy=ar15ar9=r159=r6

? yx=zy

?  x, y, z are in G.P

New answer posted

4 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

48. Let a and r be the first term and common ratio.

Then,  a1+a2=4

 a+ar=4

 a(1+r)=4

 a (1+ n) = 4

 ar4=4ar2

r2 = 4

r2 =22

 r = ±2

When r =2

a (1+2)=-4

a 3 = -4

a=43

So, the G.P. is a, ar, ar2,………….  43,43*2,43(2)2...........

 43,83,163,.........

When r=2

a=(12)=4

a = (-) = -4

a = 4

So, the reqd. by G.P. is a, ar, ar2…………. 4, 4 (-2), 4 (-2)2, .

 4, 8, 16, .

New answer posted

4 months ago

0 Follower 10 Views

P
Payal Gupta

Contributor-Level 10

47. Given, a= 729

a7=ar6=64

729. r6 = 64

 r6=64729

 r6=(23)6

 r=+23 <1

When r=23

s7=a(1r7)4r=729(1(23)7)123=729[11282187]322

729*31*[21871282187]

729*3*20592187

= 2059

When r=23

s7=a(1r7)1r=729[1(23)7]1(23)=729[1+1282187]1+23

729[2187+1282187]3+23

729*35*[23152187]

= 463

New answer posted

4 months ago

0 Follower 4 Views

P
Payal Gupta

Contributor-Level 10

46. Let a be the first term and r be the common ratio of the G.P.

Then a1+a2+a3=16

a+ar+ar2+16

a(1+r+r2)=16 ………. I

Also a4+a5+a6=128

ar3+ar4+ar5=128

ar3(1+r+r2)=128 …… II

Dividing II and I we get,

ar3(1+r+r2)a(1+r+r2)=12816

r3= 8

r3 = 23

 r = 2 >1

So, putting r = 2 in I we get,

a(1+2+22)=16

 a(1+2+4)=16

 a(7)=16

 a=167

And sx=a(rn1)r1

 167(2n1)21

 167(2n1)

New answer posted

4 months ago

0 Follower 4 Views

P
Payal Gupta

Contributor-Level 10

45. Given, a=3

r=333=3>1

If sn=120

Then a (rn1)r1=120

 3 (3n1)31=120

 3 (3n1)2=120

 3n1=120*23

3n= 80+1

3n= 81

= 3n = 34

r=4

So, 120 is the sum of first 4 terms of the G.P

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

44. Let the three terms of the G.P be ar,a,ar.

So, ara.ar=1

a3=1

a=1

And ar+a+ar=3910

1r+1+r=3910 (as a = 1)

1+r+r2r=3910

(r2+r+1)*10=39*r

10r2+10r+10=39r

10r2+10r39r+10=0

10r229r+10=0

10r225r4r+10=0

5r(2r5)2(2r5)=10

=(2x5)(5r2)=0

(2x5)=0 or (5r2)=0

r=52 or r=25

When a=1, r=52 the terms are,

 152,1, 1*52=25,1,52

When a=1, r=25 the terms are,

125, 1, 1*25=52, 1, 25

New answer posted

4 months ago

0 Follower 6 Views

P
Payal Gupta

Contributor-Level 10

41. Here,  a1=1

r=91=a

So,  sn=a1 [1rn]1r

1 [1 (a)n]1 (a)

1 (a)1+an

New question posted

4 months ago

0 Follower 10 Views

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.