Structure of Atom

Get insights from 126 questions on Structure of Atom, answered by students, alumni, and experts. You may also ask and answer any question you like about Structure of Atom

Follow Ask Question
126

Questions

0

Discussions

7

Active Users

7

Followers

New answer posted

2 months ago

0 Follower 5 Views

R
Raj Pandey

Contributor-Level 9

v = 1 λ = R z 2 ? 1 n 1 2 - 1 n 2 2

For H atom z = 1

v = R 1 n 1 2 - 1 n 2 2

For Balmer series:  n 1 = 2

If n 2 = 3 1 λ = R z 2 1 4 - 1 9

1 λ = R 5 36

λ m a x = 36 5 R

New answer posted

2 months ago

0 Follower 1 View

S
Syed Aquib Ur Rahman

Contributor-Level 10

In a hydrogen atom, which we know has a single electron, the orbital energy will only depend on the principal quantum number (n). Here, the orbitals like 2s and 2p have the same energy (degenerate).

It's a little different with multielectron atoms. The energy depends on both n and the azimuthal quantum number (l). This causes splitting. And, the energies increase in the order: s < p < d < f.

New answer posted

2 months ago

0 Follower 2 Views

S
Syed Aquib Ur Rahman

Contributor-Level 10

The quantum mechanical model of the atom is a significant shift from orbits to orbitals. Though Bohr's atomic model was the beginning of understanding of how electrons move in fixed circular paths, it was Heisenberg's Uncertainty Principle that changed the view. It showed exact positions and velocities can't both be known. So definite orbits don't exist.

In the quantum mechanical model of atom, electrons are treated as waves and described by orbitals. These are regions where they are most likely to be found. These come from Schrödinger's wave function, where |? |² gives the probability of locating an electron. Each orbital is defined

...more

New answer posted

2 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Total 25 orbitals are possible

New answer posted

2 months ago

0 Follower 1 View

S
Syed Aquib Ur Rahman

Contributor-Level 10

Through Heisenberg's Uncertainty Principle, it's proven that you can't pin down where an electron is and how fast it's moving at the same time. The Bohr model did not look into this. The main reason for that thought was that it pictured electrons like little planets that would move in a loop around the nucleus. But that only works if you know both position and speed exactly. Nature doesn't let you do that. Add to it the fact that electrons also behave like waves, and the Bohr model just couldn't keep up. That's why scientists had to move on to the quantum model, which fits way better with how electrons actually act.

New answer posted

2 months ago

0 Follower 1 View

S
Syed Aquib Ur Rahman

Contributor-Level 10

De Broglie had the idea that everything that moves has a bit of wave behaviour.  Technically, that includes any person, a football, and even a bus.  The catch is that for big things, the mass is so large that their wavelength is insanely tiny. It's so tiny it's impossible to notice. That's why you don't see a football spreading out like ripples when you kick it. Electrons though? They're super light, so their wavelengths are big enough for us to actually measure. And when scientists did experiments, such as electron diffraction, the electrons really did behave like waves. That was the proof De Broglie needed to show he was ri

...more

New answer posted

2 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

Δx . Δp = h/4π
Δx . mΔv = h/4π
Δv = 5 * 10? * 0.02/100 = 1000 m/s
∴ Δx = h/ (4πmΔv) = 6.63*10? ³? / (4*3.14*9.1*10? ³¹*1000)
= 5.8 * 10? m
= 58 * 10? m.

New answer posted

2 months ago

0 Follower 1 View

V
Vishal Baghel

Contributor-Level 10

Rutherford atomic model can not explain hydrogen spectrum it is explained by Bohr's atomic model and from Bohr's atomic model, uncertainity principle can't be explained.

New answer posted

2 months ago

0 Follower 2 Views

S
Syed Aquib Ur Rahman

Contributor-Level 10

Bohr's model played an important role in the development of quantum theory. It introduced the idea of quantised electron orbits. It disproved claims of classical mechanics, which predicted that electrons would spiral into the nucleus. Bohr proposed that electrons can exist only in specific, stable energy levels called stationary states. There would be transitions between these levels that would help Bohr explain the line spectra of hydrogen. That together linked the atomic structure with the concept of energy quantisation. Even though the model could not explain multi-electron atoms, it laid the foundation for modern quantum mechanics.

...more

New answer posted

2 months ago

0 Follower 2 Views

S
Syed Aquib Ur Rahman

Contributor-Level 10

The existence of atomic spectra tells us that energy levels in atoms are quantised. When atoms absorb or emit light, they do so at specific wavelengths. They lead to line spectra instead of a continuous spectrum. Now, every line corresponds to an electron that transitions between fixed energy levels. This is to make the photon's energy equal to the difference between them. If energy levels were not discrete, the spectra would be continuous. So, the line spectra provide direct evidence that electrons in atoms occupy quantised energy states.

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 686k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.