Class 11th
Get insights from 8k questions on Class 11th, answered by students, alumni, and experts. You may also ask and answer any question you like about Class 11th
Follow Ask QuestionQuestions
Discussions
Active Users
Followers
New answer posted
2 months agoContributor-Level 10
x? + 2 (20)¹/? x³ + (20)¹/²x² + . No.
x² = - (20)¹/? x - (5)¹/².
α+β = - (20)¹/? , αβ=5¹/².
α²+β² = (α+β)²-2αβ = (20)¹/² - 2 (5)¹/² = 0.
α? +β? = (α²+β²)² - 2 (αβ)² = 0 - 2 (5) = -10.
α? +β? = (α? +β? )² - 2 (αβ)? = (-10)² - 2 (5)² = 100 - 50 = 50.
New answer posted
2 months agoContributor-Level 10
C= (2,3), O= (0,0). r = OC = √13.
Slope of OC = 3/2. Slope of PQ = -2/3.
Let P= (x, y). Vector CP = (x-2, y-3). Vector OC = (2,3).
CP.OC=0 ⇒ 2 (x-2)+3 (y-3)=0 ⇒ 2x+3y=13.
Also (x-2)²+ (y-3)²=13.
From 2x=13-3y, x= (13-3y)/2.
(13-3y)/2-2)²+ (y-3)²=13 ⇒ (9-3y)/2)²+ (y-3)²=13
(9 (y-3)²/4) + (y-3)² = 13 ⇒ (13/4) (y-3)²=13 ⇒ (y-3)²=4 ⇒ y-3=±2.
y=5 or y=1.
If y=5, x=-1. P= (-1,5).
If y=1, x=5. Q= (5,1).
New answer posted
2 months agoContributor-Level 10
? P? =? P? ⇒ n!/ (n-r)! = n!/ (n-r-1)! ⇒ n-r=1.
? C? =? C? ⇒ r + (r-1) = n ⇒ n = 2r-1.
Substitute n: (2r-1)-r=1 ⇒ r=2.
New answer posted
2 months agoContributor-Level 10
T? = ¹? C? (xsinα)¹? (acosα/x)? = ¹? C? x¹? ²? sin¹? α a? cos? α
For term independent of x, 10-2r=0 ⇒ r=5.
T? = ¹? C? sin? α a? cos? α = ¹? C? (sin2α/2)? a?
This is the greatest when sin2α=1.
the greatest value = ¹? C? (a/2)? = 10!/ (5!)².
¹? C? = 252.
252 (a/2)? = 252.
(a/2)? = 1 ⇒ a=2.
New answer posted
2 months agoContributor-Level 10
Coeff of x? in (x²+1/bx)¹¹: T? = ¹¹C? (x²)¹¹? (1/bx)? = ¹¹C? x²²? ³? b?
22-3r=7 ⇒ 3r=15 ⇒ r=5. Coeff is ¹¹C? /b?
Coeff of x? in (x-1/bx²)¹¹: T? = ¹¹C? (x)¹¹? (-1/bx²)? = ¹¹C? x¹¹? ³? (-1)? b?
11-3r=-7 ⇒ 3r=18 ⇒ r=6. Coeff is ¹¹C? (-1)? /b? = ¹¹C? /b?
¹¹C? /b? = ¹¹C? /b? ⇒ b = ¹¹C? /¹¹C? = (11-5+1)/5 = 7/5. This differs from the solution.
Let's check the exponents again.
x? : 22-2r-r=7 => 22-3r=7 => 3r=15 => r=5. Correct.
x? : 11-r-2r=-7 => 11-3r=-7 => 3r=18 => r=6. Correct.
The given solution has b=1.
New answer posted
2 months agoContributor-Level 10
Reflected point of (2,1) about y-axis is (-2,1).
Reflected ray passes through (-2,1) and (5,3).
Equation: (y-1)/ (x+2) = (3-1)/ (5+2) = 2/7 ⇒ 2x - 7y + 11 = 0.
This is one directrix. Let the other be 2x - 7y + α = 0.
Distance between directrices = 2a/e = |11-α|/√53.
Distance from focus to directrix = a/e - ae = 8/√53.
a/e (1-e²) = 8/√53.
e=1/3. a/e (8/9) = 8/√53 ⇒ a/e = 9/√53.
2a/e = 18/√53 = |11-α|/√53.
|11-α| = 18.
11-α = 18 ⇒ α = -7.
11-α = -18 ⇒ α = 29.
Other directrix: 2x-7y-7=0 or 2x-7y+29=0.
New answer posted
2 months agoContributor-Level 9
PV = nRT
n = PV/RT = (1 atm * 4*10? L) / (0.083 LatmK? ¹mol? ¹ * 300 K) = 1.6 * 10? mol
Mass = n * Molar Mass = 1.6 * 10? mol * 16 g/mol = 25.6 * 10? g ≈ 26 * 10? g
New answer posted
2 months agoContributor-Level 10
cotθ = (1+cos2θ)/sin2θ
cot (π/24) = (1+cos (π/12)/sin (π/12)
cos (π/12) = cos (15°) = cos (45-30) = (√3+1)/2√2
sin (π/12) = sin (15°) = sin (45-30) = (√3-1)/2√2
cot (π/24) = (1+ (√3+1)/2√2)/ (√3-1)/2√2) = (2√2+√3+1)/ (√3-1)
= (2√2+√3+1) (√3+1)/2 = (2√6+2√2+3+√3+√3+1)/2
= √6 + √2 + √3 + 2
New answer posted
2 months agoContributor-Level 10
S? : x² + y² - x - y - 1/2 = 0, C? : (1/2, 1/2), r? = √ (1/4)+ (1/4)+ (1/2) = 1.
S? : x² + y² - 4y + 7/4 = 0, C? : (0, 2), r? = √ (4 - 7/4) = 3/2.
S? : (x-2)² + (y-1)² ≤ r², C? : (2, 1).
A ∪ B ⊂ C means both circles S? and S? must be inside S?
Distance C? = √ (2-1/2)² + (1-1/2)²) = √ (9/4 + 1/4) = √10/2.
Condition: r ≥ C? + r? ⇒ r ≥ √10/2 + 1.
Distance C? = √ (2-0)² + (1-2)²) = √5.
Condition: r ≥ C? + r? ⇒ r ≥ √5 + 3/2.
√10/2 + 1 ≈ 1.58 + 1 = 2.58.
√5 + 3/2 ≈ 2.23 + 1.5 = 3.73.
So minimum r = (√10+2)/2 and (2√5+3)/2. We need the maximum of these two.
Let's recheck the question logic f
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 679k Reviews
- 1800k Answers

