Class 12th

Get insights from 12k questions on Class 12th, answered by students, alumni, and experts. You may also ask and answer any question you like about Class 12th

Follow Ask Question
12k

Questions

0

Discussions

58

Active Users

0

Followers

New answer posted

7 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

We have, f(x) = x + sin 2x ,x ∈ [0, 2π].

f(x) = 1 + 2cos 2x

At f(x) = 0

1 + 2 cos2x = 0

cos2x=12=cosπ3=cosππ3=cos2π3

2x=2nπ±2π3,n=1,2,3.

x=nπ±2π3

n=0,x=±π3x=π3[0,2π].

n=1,x=π±π3x=π+π3andππ3

=4π3ad2π3[0,2π]

n=2,x=2π±π3x=2π+π3ad2ππ3.

x=513[0,2π].

Hence, x=π3,2π3,4π3and5π3

Missing

At x=π3,f(π3)=π3+sin2π3=1.05+ sin(ππ3)=1.05+sinπ3

=1.05+√3/2

= 1.05 + 0.87

= 1.92

At x=2π3,f(2π3)=2π3+sin2*2π3 =2.10+sin(π+π3)

=2.10sinπ3=2,100.87

= 1.23

At x=4π3,f(4π3)=4π3+sin2*4π3=42+sin(3xπ3)

=4.2+sinπ3=4.2+0.87.

=5.07.

At x=5π3,f(5π3)=5π3+sin2*5π3=5.25+sin(3x+π3)

=525sin13

= 5.25 - 0.87 = 4.38

At and points,

f(0) = 0 + sin2 * 0 = 0

f(2π) = 2π + sin 2 * 2π = 6.2 + 0 = 6.28

∴Maximum value of f(x) = 6.28 at x = 2π and

minimum value of f(x) = 0 at x= 0

New answer posted

7 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

We have, f (x) = x4- 62x2 + ax + 9, x∈  [0, 2].

f (x) = 4x3- 124x + a

∴f (x) active its maxn value at x = 1 [0, 2]

∴f (1) = 0.

4 (1)3- 124 (1) + a = 0

a = 124 - 4 = 120.

∴a = 120

New answer posted

7 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

We have, f (x) =2x3- 24x + 107, x [1,3]

f (x) = 6x2- 24.

At f (x) = 0

6x2- 24= 0

x2=246=4

x = ±2. ->x = 2 ∈ [1, 3].

So, f (2) = 2 (2)3- 24 (2) + 107 = 16 - 48 + 107 = 75.

f (1) = 2 (1)3- 24 (1) + 107 = 2 - 24 + 107 = 85.

f (3) = 2 (3)3- 24 (3) + 107 = 54 - 72 + 107 = 89

∴ Maximum value of f (x) in interval [1, 3] is 89 at x = 3.

When x ∈  [ -3, -1]

From f (x) = 0

x = -2 ∈ [ -3, -1]

So, f (- 2) = 2 (- 2)3- 24 (- 2) + 107 = - 16 + 48 + 107 = 139.

f (- 3) = 2 (- 3)3- 24 (- 3) + 107 = - 54 + 72 + 107 = 125.

f (- 1) = 2 (- 1)3- 24 (- 1) + 107 = - 2 + 24 + 107 = 129.

∴ Maximum value of f (x) in interval [ -3, -1] is 139 at x = -2.

New answer posted

7 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

We have, f (x) = sin x + cos x.

f (x) = cos x - sin x.

At f (x) = 0

cosx - sin x = 0

sinx = cos x

sinxcosx=1.

tanx=1=tanπ4

x=π4orx=nπ+π4.

At x=π4+nπ ,

f (nπ+π4)=sin (nπ+π4)+cos (nx+π4).

= (1)xsinπ4+ (1)nsinπ4.

New answer posted

7 months ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

We have, f(x) = sin 2x, x ∈ [0, 2π],

f(x) = 2cos 2x.

At f(x) = 0.

2 cos 2x = 0

cos 2x = 0

2x=(2x+1)π2,x=0,1,2,3.

x=(2x+1)π4.

x=π4,3π4,5π4,7π4,[0,2π]

f(π4)=sin2π4=sinπ2=1 .

f(3π4)=sin2(3π4)= sin3π2 f(7π4)

=sin(π+π2)= =sin2*7π4

=sinπ2 =sin7π2

= 1. =sin3π+π2

f(5π4)=sin2*(5π4)=sin5π2=sin(2x+π4) =sinπ2

=sinπ4=1 = 1.

f(0) = sin 2(0) = sin 0 = 0

f(2π) = sin 2(2π) = sin 4π = 0

Hence, the points of maximum xfx are.

(π4,2)and (5π4,1).

New answer posted

7 months ago

0 Follower 7 Views

V
Vishal Baghel

Contributor-Level 10

We have, f (x) = 3x4- 8x3 + 12x2- 48x + 25, x ∈  [0, 3].

f (x) = 12x3- 24x2 + 24x - 48.

At f (x) = 0.

12x3- 24x2 + 24x - 48 = 0.

x3- 2x2 + 2x - 4 = 0

x2 (x - 2) + 2 (x - 2) = 0

(x - 2) + (x2 + 2) = 0

x = 2 ∈ [0, 3] or x = ±√-2 which is not possible as

∴f (x) = 3 (2)4- 8 (2)3 + 12 (2)2- 4 (2) + 25.

=48 - 64 + 48 - 96 + 25.

= -39.

f (0) =3 (0)4- 8 (0)3 + 12 (0)2- 48 (0) + 25.

= 25.

f (3) = 3 (3)4- 8 (3)3 + 12 (3)2- 48 (3) + 25.

= 243 - 216 + 108 - 144 + 25

= 16.

Maximum value of f (x) = 25 at x = 0.

and minimum value of f (x) = -39 at x = 2.

New answer posted

7 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

We have, p (x) = 41 -f2x - 18x2.

P (x) = - 72 - 36x

P (x) = -36

At extreme point,

- 72 - 36x = 0

 x=7236=2 .

At x = - 2, p" (x) = - 36 < 0.

∴x = -2 is a point of local maximum and the value of local

Maximum is given by P (2) = 41 - 72 (- 2) - 18 (- 2)2

41 + 144 - 72 = 113 units.

New question posted

7 months ago

0 Follower 2 Views

New answer posted

7 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

(i) We have,

f(x) = x3 , x ∈ [– 2, 2].

f(x) = 3x2.

At, f(x) = 0

3x2 = 0

x = 0 <--[-2, 2].

We shall absolute the value of f at x = 0 and points of interval [ -2, 2]. So,

f(0) = 0

f(- 2) = (- 2)3 = 8

f(2) = 23 = 8.

∴ Absolute maximum value of f(x) = 8 at x = 2

and absolute minimum value of f(x) = -8 at x = -2.

(ii) f (x) = sin x + cos x , x ∈ [0, π]

A.(ii)

We have, f(x) = sin x + cos x , x ∈ [0, π]

f(x) = cos x - sin x.

atf(x) = 0

cosx - sin x = 0

 sinx = cos x

sin°xcorx=1tanx=1tanx=tanπ4

x=π4[0,π]

(iii) f(x) = 4x 12x2,x[2,92]

A.(iii)

We have, f(x) = 4x 12x2,x[2,92]

f(x) = 4 - x

atf(x) = 0

4-  x = 0

 x = 4 [−2,92]

f(4)=4(4)12(4)2=168=8.

f(2)=4(2)12(2)2=82=10.

f(92)=4(92)12(92)2=18818=94818=638.

= 7.87.5

Hence, absolute maximum value of f(x) = 8 at x = 4

and absolute minimum value of f(

...more

New answer posted

7 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

(i) We have, f (x) = ex

f (x) = ex.

f (x)=ex.

At, extreme points,

f (x) = 0

ex = 0 which has no real 'a' value

∴f (x) has with maximum or minima

(ii) g (x) = log x

A (ii)

We have, g (x) = log x,

 g (x) = 1x

At extreme points,

g (x) = 0

1x=0.

 1 = 0 which is not true.

∴g (x) was value minima or maxima

(iii) h (x) = x3 + x2 + x + 1.

A (iii)

We have, h (x) = x3 + x2 + x + 1.

h (x) = 3x2 + 2x + 1

At extreme points,

h (x) = 0

3x2 + 2x + 1 = 0

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 66k Colleges
  • 1.2k Exams
  • 684k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.