Heavy metal
Metallurgical engineering is the science of extracting metals from ores, processing and readying them for various uses. According to Dr Siddhartha Das, professor, department of metallurgical and materials engineering, Indian Institute of Technology (IIT) Kharagpur, “Traditional metallurgical engineering involves a) beneficiation (crushing and separating) of ores, b) extraction of metals from ores, c) processing of these metals to make alloys with desired properties for engineering applications d) giving them (alloys) useful/proper shape and size for engineering applications and e) evaluating their properties and to further improve upon them.”
The formal study of metallurgical engineering in India dates back to “1923, when Banaras Hindu University started a graduate
programme,” says Dr S Prakash, scientist, National Metallurgical Laboratory, Jamshedpur, which is under the Council of Scientific and Industrial Research (CSIR). “The setting up of the first steel plant in India by JN Tata in 1907 had necessitated the study of metallurgical engineering in the country,” Dr Prakash adds.
The scope of metallurgical engineering is broad and it “overlaps many other faculties of science and technology, such as physics, chemistry, mechanical engineering, mining, thermal science, etc,” points out Tanmay Bhattacharyya, a metallurgical engineer and researcher, product research group, R&D, Tata Steel, Jamshedpur. Prof Das agrees. “Young students believe that metallurgy means only extraction of metals. Actually, it is more of physics than chemistry. Many great physicists, including Nobel laureates like the late Prof. John Bardeen (through his research) contributed immensely to this field.” According to Prof Das, many research instruments that are routinely used by metallurgists have evolved from physics laboratories. “If you love physics and chemistry, you will definitely love metallurgy,” he points out.
There are different branches of metallurgical engineering. “Broadly speaking, these are: mineral processing; extractive metallurgy; physical metallurgy; metal forming; casting; powder metallurgy; fuel refractory and furnaces, etc,” says Dr Prakash. “Subjects of material science such as nano-technology and bio-processing have increased the scope of metallurgical engineering,” he adds.
The demand for skilled metallurgical engineers is rising in the country. “India is going to produce 200 million tonnes of steel by 2020; therefore, the scope (of work) of a metallurgical engineer here is huge,” says Dr Prakash. Prof Das, who says there are adequate numbers of skilled metallurgical engineers in India, agrees. “The need for engineers is increasing because of the many steel plants and research and development laboratories coming up in India,” he says.
Many opportunities are being created today for the engineers. Apart from working in steel plants and the non-ferrous (aluminum, copper, zinc, etc) industry, they can work in research institutions like CSIR, regional research laboratories, in defence (production) and research or as faculty in IITs and other engineering colleges.
And as for the challenges — “reduction of energy consumption in metal production and developing green technologies, besides conserving scarce resources through waste utilisation,” are the major concerns of the industry, says Dr Prakash.
Author: Pranab Ghosh
Date: 18th Feb., 2010
For further details about related courses and colleges please click below:
Related courses and colleges
Comments
(1)
