Maths NCERT Exemplar Solutions Class 12th Chapter Eight: Overview, Questions, Preparation

Maths NCERT Exemplar Solutions Class 12th Chapter Eight 2025 ( Maths NCERT Exemplar Solutions Class 12th Chapter Eight )

Payal Gupta
Updated on Jul 9, 2025 10:48 IST

By Payal Gupta, Retainer

Table of content
  • Applications of Integrals Short Answer Type Questions
  • Applications of Integrals Long Answer Type Questions
  • Applications of Integrals Objective Type Questions
Maths NCERT Exemplar Solutions Class 12th Chapter Eight Logo

Applications of Integrals Short Answer Type Questions

1. Find the area of the region bounded by the curves y 2 = 9 x  and  y = 3 x  .

Sol:

W e h a v e , y 2 = 9 x , y = 3 x S o l v i n g t h e t w o e q u a t i o n s , w e h a v e ( 3 x ) 2 = 9 x 9 x 2 9 x = 0 9 x ( x 1 ) = 0 x = 0 , 1 A r e a o f t h e s h a d e d r e g i o n = a r ( r e g i o n O A B ) a r ( Δ O A B ) = 0 1 y 1 d x = 0 1 9 x d x 0 1 3 x d x = 3 0 1 x d x 3 0 1 x d x = 3 × 2 3 [ x 3 / 2 ] 0 1 3 [ x 2 2 ] 0 1 = 2 [ ( 1 ) 3 / 2 0 ] 3 2 [ ( 1 ) 2 0 ] = 2 ( 1 ) 3 2 ( 1 ) = 2 3 2 = 1 2 s q . u n i t s H e n c e , t h e r e q u i r e d a r e a = 1 2 s q . u n i t s .

2. Find the area of the region bounded by the parabolas y 2 = 2 p x  and x 2 = 2 p y .

Sol:

W e a r e g i v e n t h a t x 2 = 2 p y ( i ) a n d y 2 = 2 p x ( i i ) F r o m e q n . ( i ) w e g e t y = x 2 2 p P u t t i n g t h e t h e o f y i n e q n . ( i i ) , w e h a v e ( x 2 2 p ) 2 = 2 p x x 4 4 p 2 = 2 p x x 4 = 8 p 3 x x 4 8 p 3 x = 0 x ( x 3 8 p 3 ) = 0 x = 0 , 2 p Required a r e a = A r e a o f t h e r e g i o n ( O C B A O D B A ) = 0 2 p 2 p x d x 0 2 p x 2 2 p d x = 2 p 0 2 p x d x 1 2 p 0 2 p x 2 d x = 2 p . 2 3 [ x 3 / 2 ] 0 2 p 1 2 p . 1 3 [ x 3 ] 0 2 p = 2 2 3 [ ( 2 p ) 3 / 2 0 ] 1 6 p [ ( 2 p ) 3 0 ] = 2 2 3 p . 2 2 p 3 2 1 6 p . 8 p 3 = 8 3 . p 2 8 6 p 2 = 8 6 p 2 = 4 3 p 2 s q . u n i t s H e n c e , t h e r e q u i r e d a r e a = 4 3 p 2 s q . u n i t s .

Q&A Icon
Commonly asked questions
Q:  

Find the area of the region bounded by the curves y2=9x and y=3x .

Q:  

Find the area of the region included between the curves   y 2 = 9 x and y = x .

Read more
Q:  

Find the area of the region bounded by the parabolas y 2 = 2 p x  and x 2 = 2 p y .

Maths NCERT Exemplar Solutions Class 12th Chapter Eight Logo

Applications of Integrals Long Answer Type Questions

1. Find the area of the region bounded by the curves y 2 = 2 x and x 2 + y 2 = 4 x .

Sol.

E q u a t i o n s o f t h e c u r v e a r e g i v e n b y x 2 + y 2 = 4 x ( i ) a n d y 2 = 2 x ( i i ) x 2 4 x + y 2 = 0 x 2 4 x + 4 4 + y 2 = 0 ( x 2 ) 2 + y 2 = 4 C l e a r l y i t i s t h e e q u a t i o n o f a c i r c l e h a v i n g i t s c e n t r e ( 2 , 0 ) a n d r a d i u s 2 . S o l v i n g x 2 + y 2 = 4 x a n d y 2 = 2 x x 2 + 2 x = 4 x x 2 + 2 x 4 x = 0 x 2 2 x = 0 x ( x 2 ) = 0 x = 0 , 2 Area of the r equired r e g i o n = 2 [ 0 2 4 ( x 2 ) 2 d x 0 2 2 x d x ] [ P a r a b o l a a n d c i r c l e b o t h a r e s y m m e t r i c a l a b o u t x a x i s ] = 2 [ x 2 2 4 ( x 2 ) 2 + 4 2 s i n 1 x 2 2 ] 0 2 2 . 2 . 2 3 [ x 3 / 2 ] 0 2 = 2 [ ( 0 + 0 ) ( 0 + 2 s i n 1 ( 1 ) ) ] 4 2 3 [ ( 2 ) 3 / 2 0 ] = 2 × 2 . ( π 2 ) 4 2 3 . 2 2 = 2 π 1 6 3 = 2 ( π 8 3 ) s q . u n i t s H e n c e , t h e r e q u i r e d a r e a = 2 ( π 8 3 ) s q . u n i t s .

2. Find the area bounded by the curve y = s i n x between x = 0 and x = 2 π .

Sol. 

Required area = 0 π s i n x d x + 0 2 π | s i n x | d x = [ c o s x ] 0 π + | ( c o s x ) | 0 2 π = [ c o s π c o s 0 ] + [ c o s 2 π c o s π ] = [ 1 1 ] + [ 1 + 1 ] = 2 + 2 = 4 s q . u n i t s H e n c e , t h e r e q u i r e d a r e a = 4 s q . u n i t s .

Q&A Icon
Commonly asked questions
Q:  

Compute the area bounded by the lines x + 2 y = 2 , y x = 1 , and 2 x + y = 7 .

Read more
Q:  

Find the area of the region bounded by the curves y 2 = 2 x and x 2 + y 2 = 4 x .

Q:  

Find the area bounded by the curve y = s i n x between x = 0 and x = 2 π

Maths NCERT Exemplar Solutions Class 12th Chapter Eight Logo

Applications of Integrals Objective Type Questions

 

1. The area of the region bounded by the y-axis, y = c o s x  and y = s i n x , 0 x π 2 is:

(A) 2 sq. units

(B) 2 +1sq. units

(C) 2 1  sq. units

(D) 2 2 1 sq. units

Sol.

G i v e n t h a t y a x i s , y = c o s x , y = s i n x , 0 x π 2 Required a r e a = 0 π 4 c o s x d x 0 π 4 s i n x d x = [ s i n x ] 0 π 4 [ c o s x ] 0 π 4 = [ s i n π 4 s i n 0 ] + [ c o s π 4 c o s 0 ] = [ 1 2 0 + 1 2 1 ] = 2 2 1 = ( 2 1 ) s q . u n i t s H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

2. The area of the region bounded by the curve x 2 = 4 y  and the straight line x = 4 y 2 is:

(A) 3 8 sq. units

(B) 5 8 sq. units

(C) 7 8 sq. units

(D) 9 8 sq. units

Sol.

G i v e n t h a t : T h e e q u a t i o n o f p a r a b o l a i s x 2 = 4 y ( i ) a n d e q u a t i o n o f s t r a i g h t l i n e x = 4 y 2 ( i i ) S o l v i n g e q n ( i ) a n d ( i i ) w e g e t y = x 2 4 x = 4 ( x 2 4 ) 2 x = x 2 2 x 2 x 2 = 0 x 2 2 x + x 2 = 0 x ( x 2 ) + 1 ( x 2 ) = 0 ( x 2 ) ( x + 1 ) = 0 x = 1 , x = 2 Required a r e a = 1 2 x + 2 4 d x 1 2 x 2 4 d x = 1 4 [ x 2 2 + 2 x ] 1 2 1 4 . 1 3 [ x 3 ] 1 2 = 1 4 [ ( 4 2 + 2 ) ( 1 2 2 ) ] 1 1 2 [ 8 + 1 ] = 1 4 [ 6 + 3 2 ] 1 1 2 [ 9 ] = 1 4 × 1 5 2 3 4 = 1 5 8 3 4 = 9 8 s q . u n i t s H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .
Q&A Icon
Commonly asked questions
Q:  

The area of the region bounded by the y-axis, y = c o s x  and y = s i n x , 0 x π 2  is:

(A) 2 sq. units

(B) 2 +1sq. units

(C) 2 1  sq. units

(D) 2 2 1 sq. units

Read more
Q:  

The area of the region bounded by the curve x 2 = 4 y  and the straight line x = 4 y 2 is:

(A) 3 8 sq. units

(B) 5 8 sq. units

(C) 7 8 sq. units

(D) 9 8 sq. units

Read more
Q:  

The area of the region bounded by the curve y = 1 6 x 2  and the x-axis is:

(A) 8 sq. units

(B) 2 0 π sq. units

(C) 1 6 π sq. units

(D) 2 5 6 π sq. units

Read more
qna

Maths NCERT Exemplar Solutions Class 12th Chapter Eight Exam

Student Forum

chatAnything you would want to ask experts?
Write here...