Maths NCERT Exemplar Solutions Class 11th Chapter Four: Overview, Questions, Preparation

Maths NCERT Exemplar Solutions Class 11th Chapter Four 2025 ( Maths NCERT Exemplar Solutions Class 11th Chapter Four )

Raj Pandey
Updated on Jul 25, 2025 11:40 IST

By Raj Pandey

Table of content
  • Principle of Mathematical Induction Long Answer Type Questions
  • Principle of Mathematical Induction Short Answer Type Questions
  • Principle of Mathematical Induction Objective Type Questions
  • Jee mains
Maths NCERT Exemplar Solutions Class 11th Chapter Four Logo

Principle of Mathematical Induction Long Answer Type Questions

 A sequence  a 1 , a 2 , a 3 ,  is defined by letting  a 1 = 3  and  a k = 7 a k 1  , for all  k 2  . Show that  a n = 3 7 n 1  , for all  n  .
G i v e n t h a t : a 1 = 3 a 2 = 7 a 2 1 = 7 . a 1 = 7 . 3 = 2 1 a 3 = 7 . a 3 1 = 7 . a 2 = 7 . 2 1 = 1 4 7 L e t P ( n ) : a n = 3 . 7 n 1 , n N . S t e p 1 : P ( 2 ) : a 2 = 3 . 7 2 1 = 2 1 2 1 = 2 1 w h i c h i s t r u e f o r P ( 2 ) . S t e p 2 : P ( k ) : a k = 3 . 7 k 1 . L e t i t b e t r u e . S t e p 3 : a k = 7 a k 1 ( G i v e n ) P u t k = k + 1 a k + 1 = 7 a k = 7 ( 3 . 7 k 1 ) = 3 . 7 k + 1 1 = 3 . 7 ( k + 1 ) 1 w h i c h i s t r u e f o r P ( k + 1 ) . H e n c e , P ( k + 1 ) i s t r u e w h e n e v e r P ( k ) i s t r u e .
A sequence  b 0 , b 1 , b 2 ,  is defined by letting  b 0 = 5  and  b k = 4 + b k 1  , for all  k 1  . Show that  b n = 5 + 4 n  , for all  n  .
W e h a v e b 0 = 5 a n d b k = 4 + b k 1 b 0 = 5 , b 1 = 4 + b 0 = 4 + 5 = 9 a n d b 2 = 4 + b 1 = 4 + 9 = 1 3 L e t P ( n ) : b n = 5 + 4 n S t e p 1 : P ( 1 ) : b 1 = 5 + 4 = 9 9 = 9 w h i c h i s t r u e f o r P ( 1 ) . S t e p 2 : P ( k ) : b k = 5 + 4 k . L e t i t b e t r u e k N . S t e p 3 : G i v e n t h a t : P ( k ) = 4 + b k 1 P ( k + 1 ) = 4 + b k + 1 1 P ( k + 1 ) = 4 + b k = 4 + 5 + 4 k P ( k + 1 ) = 4 + b k = 5 + 4 ( k + 1 ) w h i c h i s t r u e f o r P ( k + 1 ) . H e n c e , P ( k + 1 ) i s t r u e w h e n e v e r P ( k ) i s t r u e .
Q&A Icon
Commonly asked questions
Q:  

A sequence a1,a2,a3, is defined by letting a1=3 and ak=7ak1 , for all k2 . Show that an=37n1 , for all n  .

Read more
A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar
Sol:

G i v e n t h a t : a 1 = 3 a 2 = 7 a 2 1 = 7 . a 1 = 7 . 3 = 2 1 a 3 = 7 . a 3 1 = 7 . a 2 = 7 . 2 1 = 1 4 7 L e t P ( n ) : a n = 3 . 7 n 1 , n N . S t e p 1 : P ( 2 ) : a 2 = 3 . 7 2 1 = 2 1 2 1 = 2 1 w h i c h i s t r u e f o r P ( 2 ) . S t e p 2 : P ( k ) : a k = 3 . 7 k 1 . L e t i t b e t r u e . S t e p 3 : a k = 7 a k 1 ( G i v e n ) P u t k = k + 1 a k + 1 = 7 a k = 7 ( 3 . 7 k 1 ) = 3 . 7 k + 1 1 = 3 . 7 ( k + 1 ) 1 w h i c h i s t r u e f o r P ( k + 1 ) . H e n c e , P ( k + 1 ) i s t r u e w h e n e v e r P ( k ) i s t r u e .

Q:  

A sequence d1,d2,d3, is defined by letting d1=2 and dk=dk1k , for all k2 . Show that dn=2n! , for all n .

Read more
A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar
Sol:

G i v e n t h a t : d 1 = 2 a n d d k = d k 1 k L e t P ( n ) : d n = 2 n ! S t e p 1 : P ( 1 ) : d 1 = 2 1 ! = 2 w h i c h i s t r u e f o r P ( 1 ) . S t e p 2 : P ( k ) : d k = 2 k ! . L e t i t b e t r u e f o r P ( k ) . S t e p 3 : G i v e n t h a t : d k = d k 1 k d k + 1 = d k + 1 1 k + 1 = d k k + 1 d k + 1 = 1 k + 1 . d k = 1 k + 1 . 2 k ! d k + 1 = 2 ( k + 1 ) ! w h i c h i s t r u e f o r P ( k + 1 ) . H e n c e , P ( k + 1 ) i s t r u e w h e n e v e r P ( k ) i s t r u e .

Q:  

A sequence b0,b1,b2, is defined by letting b0=5 and bk=4+bk1 , for all k1 . Show that bn=5+4n , for all n .

Read more
A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar
Sol:

W e h a v e b 0 = 5 a n d b k = 4 + b k 1 b 0 = 5 , b 1 = 4 + b 0 = 4 + 5 = 9 a n d b 2 = 4 + b 1 = 4 + 9 = 1 3 L e t P ( n ) : b n = 5 + 4 n S t e p 1 : P ( 1 ) : b 1 = 5 + 4 = 9 9 = 9 w h i c h i s t r u e f o r P ( 1 ) . S t e p 2 : P ( k ) : b k = 5 + 4 k . L e t i t b e t r u e k N . S t e p 3 : G i v e n t h a t : P ( k ) = 4 + b k 1 P ( k + 1 ) = 4 + b k + 1 1 P ( k + 1 ) = 4 + b k = 4 + 5 + 4 k P ( k + 1 ) = 4 + b k = 5 + 4 ( k + 1 ) w h i c h i s t r u e f o r P ( k + 1 ) . H e n c e , P ( k + 1 ) i s t r u e w h e n e v e r P ( k ) i s t r u e .

Q:  

Prove that, for all n :

c o s α + c o s ( α + β ) + c o s ( α + 2 β ) + + c o s ( α + ( n 1 ) β ) = c o s ( α + ( n 1 ) β 2 ) s i n n β 2 s i n β 2 .

A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar
Sol:

L e t P ( n ) : c o s α + c o s ( α + β ) + c o s ( α + 2 β ) + + c o s [ α + ( n 1 ) β ] = c o s [ α + ( n 1 2 ) β ] [ s i n n β 2 ] s i n β 2 S t e p 1 : P ( 1 ) : c o s α = ( c o s α ) ( s i n β 2 ) s i n β 2 = c o s α w h i c h i s t r u e f o r P ( 1 ) . S t e p 2 : P ( k ) : c o s α + c o s ( α + β ) + c o s ( α + 2 β ) + + c o s [ α + ( k 1 ) β ] = c o s [ α + ( k 1 2 ) β ] [ s i n k β 2 ] s i n β 2 L e t i t b e t r u e . S t e p 3 : P ( k + 1 ) : c o s α + c o s ( α + β ) + c o s ( α + 2 β ) + + c o s [ α + ( k 1 ) β ] + c o s [ α + ( k + 1 1 ) β ] = c o s [ α + ( k 1 2 ) β ] [ s i n k β 2 ] s i n β 2 + c o s ( α + k β ) [ F r o m S t e p 2 ] = 2 c o s [ α + ( k 1 2 ) β ] ( s i n k β 2 ) + 2 c o s ( α + k β ) . s i n β 2 2 s i n β 2 = s i n [ α + k β β 2 ] s i n [ α β 2 ] + s i n [ α + k β + β 2 ] s i n [ α + k β β 2 ] 2 s i n β 2 [ ? s i n A s i n B = 2 c o s A + B 2 . s i n A B 2 ] = c o s ( α + k β 2 ) . s i n ( k + 1 ) β 2 s i n β 2 = c o s [ α + ( k + 1 1 2 ) β ] . s i n ( k + 1 2 ) β s i n β 2 w h i c h i s t r u e f o r P ( k + 1 ) . H e n c e , P ( k + 1 ) i s t r u e w h e n e v e r P ( k ) i s t r u e .

Q:  

Prove that c o s θ c o s 2 θ c o s 4 θ c o s 2 n 1 θ = s i n ( 2 n θ ) 2 n s i n θ , for all   n .

A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar
Sol:

L e t P ( n ) : c o s θ . c o s 2 θ . c o s 2 2 θ + + c o s 2 n 1 θ = s i n 2 n θ 2 n s i n θ , f o r a l l n N . S t e p 1 : P ( 1 ) : c o s θ = s i n 2 1 θ 2 1 s i n θ = s i n 2 θ 2 s i n θ = 2 s i n θ . c o s θ 2 s i n θ = c o s θ c o s θ = c o s θ w h i c h i s t r u e f o r P ( 1 ) . S t e p 2 : P ( k ) : c o s θ . c o s 2 θ . c o s 2 2 θ + + c o s 2 k 1 θ = s i n 2 k θ 2 k s i n θ L e t i t b e t r u e f o r P ( k ) . S t e p 3 : P ( k + 1 ) : c o s θ . c o s 2 θ . c o s 2 2 θ + + c o s 2 k 1 θ . c o s 2 ( k + 1 ) 1 θ = s i n 2 k θ 2 k s i n θ . c o s 2 ( k + 1 ) 1 θ = s i n 2 k θ 2 k s i n θ . c o s 2 k θ = 2 s i n 2 k θ . c o s 2 k θ 2 . 2 k s i n θ = s i n 2 . 2 k θ 2 k + 1 s i n θ [ ? 2 s i n θ c o s θ = s i n 2 θ ] = s i n 2 k + 1 θ 2 k + 1 s i n θ w h i c h i s t r u e f o r P ( k + 1 ) . H e n c e , P ( k + 1 ) i s t r u e w h e n e v e r P ( k ) i s t r u e .

Q:  

Prove that s i n θ + s i n 2 θ + s i n 3 θ + + s i n n θ = s i n n θ 2 s i n ( n + 1 ) θ 2 s i n θ 2 , for all   n .

A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar
Sol:

L e t P ( n ) : s i n θ + s i n 2 θ + s i n 3 θ + + s i n n θ = s i n n θ 2 . s i n ( n + 1 2 ) θ s i n θ 2 , f o r a l l n N . S t e p 1 : P ( 1 ) : s i n θ = s i n θ 2 . s i n ( 1 + 1 2 ) θ s i n θ 2 = s i n θ 2 . s i n θ s i n θ 2 = s i n θ s i n θ = s i n θ w h i c h i s t r u e f o r P ( 1 ) . S t e p 2 : P ( k ) : s i n θ + s i n 2 θ + s i n 3 θ + + s i n k θ = s i n k θ 2 . s i n ( k + 1 2 ) θ s i n θ 2 L e t i t b e t r u e f o r P ( k ) .

S t e p 3 : P ( k + 1 ) : s i n θ + s i n 2 θ + s i n 3 θ + + s i n k θ + s i n ( k + 1 ) θ = s i n k θ 2 . s i n ( k + 1 2 ) θ s i n θ 2 + s i n ( k + 1 ) θ = s i n k θ 2 . s i n ( k + 1 2 ) θ + s i n ( k + 1 ) θ . s i n θ 2 s i n θ 2 = 2 s i n k θ 2 . s i n ( k + 1 2 ) θ + s i n ( k + 1 ) θ . s i n θ 2 2 s i n θ 2 = c o s ( k θ 2 k + 1 2 θ ) c o s ( k θ 2 + k + 1 2 θ ) + c o s [ ( k + 1 ) θ θ 2 ] c o s [ ( k + 1 ) θ + θ 2 ] 2 s i n θ 2 = c o s ( θ 2 ) c o s ( k θ + θ 2 ) + c o s ( k θ + θ 2 ) c o s ( k θ + 3 θ 2 ) 2 s i n θ 2 = c o s ( θ 2 ) c o s ( k θ + 3 θ 2 ) 2 s i n θ 2 = 2 s i n ( θ 2 + k θ + 3 θ 2 2 ) . s i n ( θ 2 k θ 3 θ 2 2 ) 2 s i n θ 2 [ ? c o s A c o s B = 2 s i n A + B 2 . s i n A B 2 ] = 2 s i n ( k θ + 2 θ 2 ) . s i n ( k θ θ 2 ) 2 s i n θ 2 = s i n ( k θ + 2 θ 2 ) . s i n ( k θ + θ 2 ) s i n θ 2 = s i n [ ( k + 1 ) + 1 2 ] θ . s i n [ k + 1 2 ] θ s i n θ 2 w h i c h i s t r u e f o r P ( k + 1 ) . H e n c e , P ( k + 1 ) i s t r u e w h e n e v e r P ( k ) i s t r u e .

Q:  

Show that 5 n 3 n + 7 n 1 5 n +
 is a natural number, for all n  .

A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar
Sol:

L e t P ( n ) : n 5 5 + n 3 3 + 7 n 1 5 , n N . S t e p 1 : P ( 1 ) : 1 5 5 + 1 3 3 + 7 . 1 1 5 = 3 + 5 + 7 1 5 = 1 5 1 5 = 1 w h i c h i s t r u e f o r P ( 1 ) . S t e p 2 : P ( k ) : k 5 5 + k 3 3 + 7 k 1 5 . L e t i t b e t r u e f o r P ( k ) . A n d l e t k 5 5 + k 3 3 + 7 k 1 5 = λ S t e p 3 : P ( k + 1 ) : ( k + 1 ) 5 5 + ( k + 1 ) 3 3 + 7 ( k + 1 ) 1 5 = 1 5 [ k 5 + 5 k 4 + 1 0 k 3 + 1 0 k 2 + 5 k + 1 ] + 1 3 [ k 3 + 3 k 2 + 3 k + 1 ] + 7 k 1 5 + 7 1 5 = ( k 5 5 + k 3 3 + 7 k 1 5 ) + ( k 4 + 2 k 3 + 3 k 2 + 5 k ) + 1 5 + 1 3 + 7 1 5 = λ + k 4 + 2 k 3 + 3 k 2 + 2 k + 1 [ F r o m S t e p 2 ] =positiveintegers=naturalnumber W h i c h i s t r u e f o r P ( k + 1 ) . H e n c e , P ( k + 1 ) i s t r u e w h e n e v e r P ( k ) i s t r u e .

Q:  

Prove that 1 + 1 2 + 1 4 + + 1 2 n > 1 1 + 1 n , for all n>1 .

A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar
Sol:

L e t P ( n ) : 1 n + 1 + 1 n + 2 + + 1 2 n > 1 3 2 4 , n N . S t e p 1 : P ( 2 ) : 1 2 + 1 + 1 2 + 2 > 1 3 2 4 1 3 + 1 4 > 1 3 2 4 7 1 2 > 1 3 2 4 1 4 2 4 > 1 3 2 4 w h i c h i s t r u e f o r P ( 2 ) . S t e p 2 : P ( k ) : 1 k + 1 + 1 k + 2 + + 1 2 k > 1 3 2 4 . L e t i t b e t r u e f o r P ( k ) S t e p 3 : P ( k + 1 ) : 1 k + 1 + 1 k + 2 + + 1 2 k + 1 2 ( k + 1 ) > 1 3 2 4 Since1k+1+1k+2++12k>1324 S o , 1 k + 1 + 1 k + 2 + + 1 2 k + 1 2 ( k + 1 ) > 1 3 2 4 W h i c h i s t r u e f o r P ( k + 1 ) . H e n c e , P ( k + 1 ) i s t r u e w h e n e v e r P ( k ) i s t r u e .

Q:  

Prove that the number of subsets of a set containing n distinct elements is 2n , for all   n .

Read more
A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar
Sol:

L e t P ( n ) : N u m b e r o f s u b s e t s o f a s e t c o n t a i n i n g n d i s t i n c t e l e m e n t s i s 2 n , f o r a l l n N . S t e p 1 : I t i s c l e a r t h a t P ( 1 ) i s t r u e f o r n = 1 . N u m b e r o f s u b s e t s = 2 1 = 2 . W h i c h i s t r u e . Step2:P(k)isassumedtobetrueforn=k.Sincethenumberofsubsets=2k. S t e p 3 : P ( k + 1 ) = 2 k + 1 W e k n o w i f o n e n u m b e r ( i . e . , e l e m e n t ) i s a d d e d t o t h e e l e m e n t s o f a g i v e n s e t , t h e n u m b e r o f s u b s e t s b e c o m e d o u b l e . N u m b e r o f s u b s e t s o f a s e t h a v i n g ( k + 1 ) d i s t i n c t e l e m e n t s = 2 × 2 k = 2 k + 1 w h i c h i s t r u e f o r P ( k + 1 ) . H e n c e , P ( k + 1 ) i s t r u e w h e n e v e r P ( k ) i s t r u e .

Q:  

If y = Σ???? kcos?¹{ (3/5)coskx - (4/5)sinkx }, then dy/dx at x=0 is 

A: 

Kindly consider the following Image 

 

Q:  

If the variance of the terms in an increasing A.P. b?,b?,b?,...,b?? is 90, then the common difference of this A.P. is 

Read more
A: 

Kindly consider the following Image 

 

Q:  

Let [t] denote the greatest integer less than or equal to t. Then the value of ∫?²|2x-[3x]|dx is

A: 

Kindly consider the following Image 

 

Q:  

For a positive integer n, (1+x/2)? is expanded in increasing powers of x. If three consecutive coefficients in this expansion are in the ratio 2:5:12, then n is equal to

Read more
A: 

Kindly consider the following Image 

 

Q:  

Let the position vectors of points 'A' and 'B' be i+j+k and 2i+j+3k, respectively. A point 'P' divides the line segment AB internally in the ratio λ:1(λ>0). If O is the origin and OB.OP - 3|OA×OP|² = 6, then λ is equal to 

Read more
A: 

Kindly consider the following Image 

 

Try these practice questions

Q1:

Let S be the sum of the first 9 terms of series (x+ka)+(x²+(k+2)a)+(x³+(k+4)a)+(x?+(k+6)a)+..., where a≠0 and x≠1. If S=(x¹?-x+45a(x-1))/(x-1), then k is equal to

View Full Question

Q2:

Let E? denote the complement of an event E. Let E?, E?, and E? be any pairwise independent events with P(E?)>0 and P(E?∩E?∩E?)=0. Then P(E??∩E??/E?) is equal to

View Full Question

Q3:

The area (in sq. units) of an equilateral triangle inscribed in the parabola y²=8x, with one of its vertices on the vertex of this parabola, is

View Full Question

Maths NCERT Exemplar Solutions Class 11th Chapter Four Logo

Principle of Mathematical Induction Short Answer Type Questions

Give an example of a statement  P ( n )  which is true for all  n 4  but  P ( 1 )  ,  P ( 2 )  , and  P ( 3 )  are not true. Justify your answer.
T h e r e q u i r e d s t a t e m e n t i s P ( n ) = 2 n < n ! J u s t i f i c a t i o n : P ( n ) : 2 n < n ! P ( 1 ) : 2 . 1 < 1 ! 2 < 1 n o t t r u e P ( 2 ) : 2 . 2 < 2 ! 4 < 2 . 1 4 < 2 n o t t r u e P ( 3 ) : 2 . 3 < 3 ! 6 < 3 . 2 . 1 6 < 6 n o t t r u e P ( 4 ) : 2 . 4 < 4 ! 8 < 4 . 3 . 2 . 1 8 < 2 4 T r u e P ( 5 ) : 2 . 5 < 5 ! 1 0 < 5 . 4 . 3 . 2 . 1 1 0 < 1 2 0 T r u e H e n c e , P ( n ) : 2 n < n ! i s n o t t r u e f o r P ( 1 ) , P ( 2 ) a n d P ( 3 ) b u t i t i s t r u e f o r a l l v a l u e s o f n 4 .

Give an example of a statement  P ( n )  which is true for all  n  . Justify your answer.

T h e r e q u i r e d s t a t e m e n t i s P ( n ) : 1 + 2 + 3 + + n = n ( n + 1 ) 2 J u s t i f i c a t i o n : P ( 1 ) : 1 = 1 ( 1 + 1 ) 2 P ( k ) : 1 + 2 + 3 + + k = k ( k + 1 ) 2 . L e t i t b e t r u e . P ( k + 1 ) : 1 + 2 + 3 + + k + ( k + 1 ) = k ( k + 1 ) 2 + ( k + 1 ) = ( k + 1 ) ( k + 2 ) 2 H e n c e , P ( k + 1 ) i s t r u e w h e n e v e r P ( k ) i s t r u e .
Q&A Icon
Commonly asked questions
Q:  

 Give an example of a statement P(n) which is true for all n4 but P(1) , P(2) , and P(3) are not true. Justify your answer.

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

T h e r e q u i r e d s t a t e m e n t i s P ( n ) = 2 n < n ! J u s t i f i c a t i o n : P ( n ) : 2 n < n ! P ( 1 ) : 2 . 1 < 1 ! 2 < 1 n o t t r u e P ( 2 ) : 2 . 2 < 2 ! 4 < 2 . 1 4 < 2 n o t t r u e P ( 3 ) : 2 . 3 < 3 ! 6 < 3 . 2 . 1 6 < 6 n o t t r u e P ( 4 ) : 2 . 4 < 4 ! 8 < 4 . 3 . 2 . 1 8 < 2 4 T r u e P ( 5 ) : 2 . 5 < 5 ! 1 0 < 5 . 4 . 3 . 2 . 1 1 0 < 1 2 0 T r u e H e n c e , P ( n ) : 2 n < n ! i s n o t t r u e f o r P ( 1 ) , P ( 2 ) a n d P ( 3 ) b u t i t i s t r u e f o r a l l v a l u e s o f n 4 .

Q:  

Give an example of a statement P(n) which is true for all n . Justify your answer.

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

T h e r e q u i r e d s t a t e m e n t i s P ( n ) : 1 + 2 + 3 + + n = n ( n + 1 ) 2 J u s t i f i c a t i o n : P ( 1 ) : 1 = 1 ( 1 + 1 ) 2 P ( k ) : 1 + 2 + 3 + + k = k ( k + 1 ) 2 . L e t i t b e t r u e . P ( k + 1 ) : 1 + 2 + 3 + + k + ( k + 1 ) = k ( k + 1 ) 2 + ( k + 1 ) = ( k + 1 ) ( k + 2 ) 2 H e n c e , P ( k + 1 ) i s t r u e w h e n e v e r P ( k ) i s t r u e .

Q:  

For any natural numbers n, 7n2n is divisible by x-y where x and y are any integers with x≠y.

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

L e t P ( n ) : 7 n 2 n S t e p 1 : P ( 1 ) : 7 1 2 1 = 7 2 = 5 w h i c h i s d i v i s i b l e b y 5 . S o , i t i s t r u e f o r P ( 1 ) . S t e p 2 : P ( k ) : 7 k 2 k = 5 λ L e t i t b e t r u e . S t e p 3 : P ( k + 1 ) : 7 k + 1 2 k + 1 = 7 k + 1 + 7 k . 2 7 k . 2 2 k + 1 = ( 7 k + 1 7 k . 2 ) + ( 7 k . 2 2 k + 1 ) = 7 k ( 7 2 ) + 2 . ( 7 k 2 k ) = 5 . 7 k + 2 . 5 λ ( f r o m S t e p 2 ) = 5 ( 7 k + 2 λ ) w h i c h i s d i v i s i b l e b y 5 . S o , i t i s t r u e f o r P ( k + 1 ) . H e n c e , P ( k + 1 ) i s t r u e w h e n e v e r P ( k ) i s t r u e .

Q:  

  4 n 1 is divisible by 3, for each natural number n .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

L e t P ( n ) : 4 n 1 S t e p 1 : P ( 1 ) : 4 1 = 3 w h i c h i s d i v i s i b l e b y 3 , s o i t i s t r u e . S t e p 2 : P ( k ) : 4 k 1 = 3 λ L e t i t b e t r u e . S t e p 3 : P ( k + 1 ) = 4 k + 1 1 = 4 k . 4 1 = 4 . 4 k 4 + 3 = 4 . ( 4 k 1 ) + 3 = 4 ( 3 λ ) + 3 ( f r o m S t e p 2 ) = 3 [ 4 λ + 1 ] w h i c h i s t r u e w h e n e v e r P ( k ) i s t r u e .

Q:  

 23n1 is divisible by 7, for all natural numbers n .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

L e t P ( n ) : 2 3 n 1 S t e p 1 : P ( 1 ) : 2 3 . 1 1 = 8 1 = 7 w h i c h i s d i v i s i b l e b y 7 , s o i t i s t r u e . S t e p 2 : P ( k ) : 2 3 k 1 = 7 λ L e t i t b e t r u e . S t e p 3 : P ( k + 1 ) = 2 3 ( k + 1 ) 1 = 2 3 k + 3 1 = 2 3 . 2 3 k 8 + 7 = 8 . 2 3 k 8 + 7 = 8 ( 2 3 k 1 ) + 7 ( f r o m S t e p 2 ) = 8 . 7 λ + 7 = 7 [ 8 λ + 1 ] w h i c h i s t r u e a s i t i s d i v i s i b l e b y 7 H e n c e , P ( k + 1 ) i s t r u e w h e n e v e r P ( k ) i s t r u e .

Q:  

 n37n+3 is divisible by 3, for all natural numbers n .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

L e t P ( n ) : n 3 7 n + 3 S t e p 1 : P ( 1 ) : ( 1 ) 3 7 ( 1 ) + 3 = 1 7 + 3 = 3 w h i c h i s d i v i s i b l e b y 3 S o , i t i s t r u e f o r P ( 1 ) . S t e p 2 : P ( k ) : ( k ) 3 7 k + 3 = 3 λ L e t i t b e t r u e . k 3 = 3 λ + 7 k 3 S t e p 3 : P ( k + 1 ) : ( k + 1 ) 3 7 ( k + 1 ) + 3 = k 3 + 1 + 3 k 2 + 3 k 7 k 7 + 3 = k 3 + 3 k 2 4 k 3 = ( 3 λ + 7 k 3 ) + 3 k 2 4 k 3 ( f r o m S t e p 2 ) = 3 k 2 + 3 k + 3 λ 6 = 3 ( k 2 + k + λ 2 ) w h i c h i s d i v i s i b l e b y 3 . S o , i t i s t r u e f o r P ( k + 1 ) . H e n c e , P ( k + 1 ) i s t r u e w h e n e v e r P ( k ) i s t r u e .

Q:  

  3 2 n 1 is divisible by 8, for all natural numbers n .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

L e t P ( n ) : 3 2 n 1 S t e p 1 : P ( 1 ) : 3 2 1 = 9 1 = 8 w h i c h i s d i v i s i b l e b y 8 S o , i t i s t r u e f o r P ( 1 ) . S t e p 2 : P ( k ) : 3 2 k 1 = 8 λ L e t i t b e t r u e . S t e p 3 : P ( k + 1 ) : 3 2 ( k + 1 ) 1 = 3 2 k + 2 1 = 3 2 . 3 2 k 9 + 8 = 9 ( 3 2 k 1 ) + 8 = 9 . 8 λ + 8 ( f r o m S t e p 2 ) = 8 [ 9 λ + 1 ] w h i c h i s d i v i s i b l e b y 8 . S o , i t i s t r u e f o r P ( k + 1 ) . H e n c e , P ( k + 1 ) i s t r u e w h e n e v e r P ( k ) i s t r u e .

Q:  

For any natural numbers n, xny is divisible by 5.

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

L e t P ( n ) : x n y n S t e p 1 : P ( 1 ) : x 1 y 1 = x y w h i c h i s d i v i s i b l e b y x y . S o , i t i s t r u e f o r P ( 1 ) . S t e p 2 : P ( k ) : x k y k = ( x y ) λ L e t i t b e t r u e . S t e p 3 : P ( k + 1 ) : x k + 1 y k + 1 = x k + 1 + x k . y x k . y y k + 1 = ( x k + 1 x k . y ) + ( x k . y y k + 1 ) = x k ( x y ) + y . ( x k y k ) = x k ( x y ) + y ( x y ) λ ( f r o m S t e p 2 ) = ( x y ) ( x k + y λ ) w h i c h i s d i v i s i b l e b y ( x y ) . S o , i t i s t r u e f o r P ( k + 1 ) . H e n c e , P ( k + 1 ) i s t r u e w h e n e v e r P ( k ) i s t r u e .

Q:  

 n3n is divisible by 6, for each natural number n2 .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

L e t P ( n ) : n 3 n S t e p 1 : P ( 2 ) : 2 3 2 = 8 2 = 6 w h i c h i s d i v i s i b l e b y 6 . S o , i t i s t r u e f o r P ( 2 ) . S t e p 2 : P ( k ) : k 3 k = 6 λ L e t i t b e t r u e f o r k 2 . k 3 = 6 λ + k ( i ) S t e p 3 : P ( k + 1 ) : ( k + 1 ) 3 ( k + 1 ) = k 3 + 1 + 3 k 2 + 3 k k 1 = k 3 k + 3 ( k 2 + k ) = 6 λ + 3 ( k 2 + k ) [ f r o m ( i ) ] W e k n o w t h a t 3 ( k 2 + k ) i s d i v i s i b l e b y 6 f o r e v e r y v a l u e o f k N . H e n c e , P ( k + 1 ) i s t r u e w h e n e v e r P ( k ) i s t r u e .

Q:  

 n(n2+5) is divisible by 6, for each natural number n .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

L e t P ( n ) : n ( n 2 + 5 ) S t e p 1 : P ( 1 ) : 1 ( 1 + 5 ) = 6 w h i c h i s d i v i s i b l e b y 6 . S o , i t i s t r u e f o r P ( 1 ) . S t e p 2 : P ( k ) : k ( k 2 + 5 ) = 6 λ L e t i t b e t r u e . k 3 + 5 k = 6 λ k 3 = 6 λ 5 k ( i ) S t e p 3 : P ( k + 1 ) : ( k + 1 ) [ ( k + 1 ) 2 + 5 ] = ( k + 1 ) [ k 2 + 1 + 2 k + 5 ] = ( k + 1 ) [ k 2 + 2 k + 6 ] = k 3 + 2 k 2 + 6 k + k 2 + 2 k + 6 = k 3 + 3 k 2 + 8 k + 6 = k 3 + 5 k + 3 k 2 + 3 k + 6 = 6 λ 5 k + 5 k + 3 ( k 2 + k + 2 ) [ F r o m ( i ) ] = 6 λ + 3 ( k 2 + k + 2 ) W e k n o w t h a t k 2 + k + 2 i s d i v i s i b l e b y 2 f o r e a c h v a l u e o f k N , S o , l e t k 2 + k + 2 = 2 m S o , P ( k + 1 ) = 6 λ + 3 . 2 m = 6 ( λ + m ) w h i c h i s d i v i s i b l e b y 6 . H e n c e , P ( k + 1 ) i s t r u e w h e n e v e r P ( k ) i s t r u e .

Q:  

 n2<2n , for all natural numbers n5 .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

L e t P ( n ) : n 2 < 2 n f o r a l l n a t u r a l n u m b e r s , n 5 S t e p 1 : P ( 5 ) : 1 5 < 2 5 1 < 3 2 w h i c h i s t r u e f o r P ( 5 ) . S t e p 2 : P ( k ) : k 2 < 2 k . L e t i t b e t r u e f o r k N . S t e p 3 : P ( k + 1 ) : ( k + 1 ) 2 < 2 k + 1 F r o m S t e p 2 , w e g e t k 2 < 2 k k 2 + 2 k + 1 < 2 k + 2 k + 1 ( k + 1 ) 2 < 2 k + 2 k + 1 ( i ) Since(2k+1)<2k S o k 2 + 2 k + 1 < 2 k + 2 k k 2 + 2 k + 1 < 2 . 2 k k 2 + 2 k + 1 < 2 k + 1 ( i i ) F r o m e q n . ( i ) a n d ( i i ) , w e g e t ( k + 1 ) 2 < 2 k + 1 . H e n c e , P ( k + 1 ) i s t r u e w h e n e v e r P ( k ) i s t r u e f o r k N , n 5 .

Q:  

 2n<(n+2)! , for all natural numbers n .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

L e t P ( n ) : 2 n < ( n + 2 ) ! f o r a l l k N . S t e p 1 : P ( 1 ) : 2 . 1 < ( 1 + 2 ) ! 2 < 3 ! 2 < 6 w h i c h i s t r u e f o r P ( 1 ) . S t e p 2 : P ( k ) : 2 k < ( k + 2 ) ! L e t i t b e t r u e f o r P ( k ) S t e p 3 : P ( k + 1 ) : 2 ( k + 1 ) < ( k + 1 + 2 ) ! F r o m S t e p 2 , w e g e t 2 k < ( k + 2 ) ! 2 k + 2 < ( k + 2 ) ! + 2 2 ( k + 1 ) < ( k + 2 ) ! + 2 Also,(k+2)!+2<(k+3)! 2 ( k + 1 ) < ( k + 3 ) ! 2 ( k + 1 ) < ( k + 2 + 1 ) ! w h i c h i s t r u e f o r P ( k + 1 ) H e n c e , P ( k + 1 ) i s t r u e w h e n e v e r P ( k ) i s t r u e .

Q:  

1 1 + 1 2 + + 1 n < n , for all natural numbers n2 .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

L e t P ( n ) : n < 1 1 + 1 2 + + 1 n , n 2 S t e p 1 : P ( 2 ) : 2 < 1 1 + 1 2 w h i c h i s t r u e . S t e p 2 : P ( k ) : k < 1 1 + 1 2 + + 1 k L e t i t b e t r u e . S t e p 3 : P ( k + 1 ) : k + 1 < 1 1 + 1 2 + + 1 k + 1 F r o m S t e p 2 , w e g e t k < 1 1 + 1 2 + + 1 k k + 1 k + 1 < 1 1 + 1 2 + + 1 k + 1 k + 1 k . k + 1 + 1 k + 1 < 1 1 + 1 2 + + 1 k + 1 k + 1 ( i ) N o w i f k + 1 < k . k + 1 + 1 k + 1 ( k + 1 ) < k . k + 1 + 1 k < k . k + 1 ( i i ) F r o m e q n . ( i ) a n d ( i i ) w e g e t k + 1 < 1 1 + 1 2 + + 1 k + 1 H e n c e , P ( k + 1 ) i s t r u e w h e n e v e r P ( k ) i s t r u e .

Q:  

2 + 4 + 6 + + 2 n = n 2 + n , for all natural numbers n .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

L e t P ( n ) : 2 + 4 + 6 + + 2 n = n 2 + n , n N . S t e p 1 : P ( 1 ) : 2 = 1 2 + 1 = 2 w h i c h i s t r u e f o r P ( 1 ) . S t e p 2 : P ( k ) : 2 + 4 + 6 + + 2 k = k 2 + k L e t i t b e t r u e . S t e p 3 : P ( k + 1 ) : 2 + 4 + 6 + + 2 k + 2 k + 2 = k 2 + k + 2 k + 2 = k 2 + 3 k + 2 = k 2 + 2 k + k + 1 + 1 = ( k + 1 ) 2 + ( k + 1 ) W h i c h i s t r u e f o r P ( k + 1 ) H e n c e , P ( k + 1 ) i s t r u e w h e n e v e r P ( k ) i s t r u e .

Q:  

1 + 2 + 2 2 + + 2 n = 2 n + 1 1 , for all natural numbers n .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

L e t P ( n ) : 1 + 2 + 2 2 + + 2 n = 2 n + 1 1 , n N . P ( n ) : 2 0 + 2 1 + 2 2 + + 2 n = 2 n + 1 1 S t e p 1 : P ( 1 ) : 2 0 = 2 0 + 1 1 = 2 1 = 2 0 w h i c h i s t r u e . S t e p 2 : P ( k ) : 2 0 + 2 1 + 2 2 + + 2 k = 2 k + 1 1 . L e t i t b e t r u e . S t e p 3 : P ( k + 1 ) : 2 0 + 2 1 + 2 2 + + 2 k + 2 k + 1 = 2 k + 1 1 + 2 k + 1 = 2 . 2 k + 1 1 = 2 k + 2 1 = 2 ( k + 1 ) + 1 1 w h i c h i s t r u e f o r P ( k + 1 ) H e n c e , P ( k + 1 ) i s t r u e w h e n e v e r P ( k ) i s t r u e .

Q:  

 1+5+9+...
+(4n3)=n(2n1) , for all natural numbers n .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

L e t P ( n ) : 1 + 5 + 9 + + ( 4 n 3 ) = n ( 2 n 1 ) , n N . S t e p 1 : P ( 1 ) : 1 = 1 ( 2 . 1 1 ) = 1 w h i c h i s t r u e f o r P ( 1 ) . S t e p 2 : P ( k ) : 1 + 5 + 9 + + ( 4 k 3 ) = k ( 2 k 1 ) . L e t i t b e t r u e . S t e p 3 : P ( k + 1 ) : 1 + 5 + 9 + + ( 4 k 3 ) + ( 4 k + 1 ) = k ( 2 k 1 ) + ( 4 k + 1 ) = 2 k 2 k + 4 k + 1 = 2 k 2 + 3 k + 1 = 2 k 2 + 2 k + k + 1 = 2 k ( k + 1 ) + 1 ( k + 1 ) = ( 2 k + 1 ) ( k + 1 ) = ( k + 1 ) ( 2 k + 2 1 ) = ( k + 1 ) [ 2 ( k + 1 ) 1 ] w h i c h i s t r u e f o r P ( k + 1 ) . H e n c e , P ( k + 1 ) i s t r u e w h e n e v e r P ( k ) i s t r u e .

Maths NCERT Exemplar Solutions Class 11th Chapter Four Logo

Principle of Mathematical Induction Objective Type Questions

If  is divisible by 9 for all , then the least positive integral value of  is:

(a) 5

(b) 3

(c) 7

(d) 1

L e t P ( n ) = 1 0 n + 3 . 4 n + 2 + k i s d i v i s i b l e b y 9 , n N P ( 1 ) = 1 0 1 + 3 . 4 1 + 2 + k = 1 0 + 3 . 6 4 + k = 1 0 + 1 9 2 + k = 2 0 2 + k m u s t b e d i v i s i b l e b y 9 . I f ( 2 0 2 + k ) i s d i v i s i b l e b y 9 t h e n k m u s t b e e q u a l t o 5 2 0 2 + 5 = 2 0 7 w h i c h i s d i v i s i b l e b y 9 = 2 0 7 9 = 2 3 S o , t h e l e a s t p o s i t i v e integral v a l u e o f k = 5 . H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

For all n , 3 5 2 n + 1 + 2 3 n + 1  is divisible by:

(a) 9

(b) 17

(c) 23

(d) 25

L e t P ( n ) = 3 . 5 2 n + 1 + 2 3 n + 1 P ( 1 ) = 3 . 5 2 . 1 + 1 + 2 3 . 1 + 1 = 3 . 5 3 + 2 4 = 3 ( 1 2 5 ) + 1 6 = 3 7 5 + 1 6 = 3 9 1 = 2 3 × 1 7 S o , i t i s d i v i s i b l e b y 1 7 a n d 2 3 b o t h . H e n c e , t h e c o r r e c t o p t i o n i s ( b ) a n d ( c ) .
Q&A Icon
Commonly asked questions
Q:  

If  1 0 n + 3 4 n + 2 + k is divisible by 9 for all n , then the least positive integral value of k  is:

(a) 5

(b) 3

(c) 7

(d) 1

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar
Sol:

L e t P ( n ) = 1 0 n + 3 . 4 n + 2 + k i s d i v i s i b l e b y 9 , n N P ( 1 ) = 1 0 1 + 3 . 4 1 + 2 + k = 1 0 + 3 . 6 4 + k = 1 0 + 1 9 2 + k = 2 0 2 + k m u s t b e d i v i s i b l e b y 9 . I f ( 2 0 2 + k ) i s d i v i s i b l e b y 9 t h e n k m u s t b e e q u a l t o 5 2 0 2 + 5 = 2 0 7 w h i c h i s d i v i s i b l e b y 9 = 2 0 7 9 = 2 3 So,theleastpositiveintegralvalueofk=5. H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q:  

For all n , 3 5 2 n + 1 + 2 3 n + 1  is divisible by:

(a) 19

(b) 17

(c) 23

(d) 25

A: 

This is a Objective Type Questions as classified in NCERT Exemplar
Sol:

L e t P ( n ) = 3 . 5 2 n + 1 + 2 3 n + 1 P ( 1 ) = 3 . 5 2 . 1 + 1 + 2 3 . 1 + 1 = 3 . 5 3 + 2 4 = 3 ( 1 2 5 ) + 1 6 = 3 7 5 + 1 6 = 3 9 1 = 2 3 × 1 7 S o , i t i s d i v i s i b l e b y 1 7 a n d 2 3 b o t h . H e n c e , t h e c o r r e c t o p t i o n i s ( b ) a n d ( c ) .

Q:  

If x n 1  is divisible by x k , then the least positive integral value of k  is:

(a) 1

(b) 2

(c) 3

(d) 4

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar
Sol:

L e t P ( n ) = x n 1 i s d i v i s i b l e b y x k . P ( 1 ) = x 1 i s d i v i s i b l e b y x k . Sincek=1isthepossibleleastintegralvalueofk. H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q:  

If P ( n ) : 2 n < n ! , n , then P ( n )  is true for all n  ____.

A: 

This is a Objective Type Questions as classified in NCERT Exemplar
Sol:

G i v e n t h a t P ( n ) : 2 n < n ! n N F o r n = 1 2 < 1 ( N o t T r u e ) F o r n = 2 2 × 2 < 2 ! 4 < 2 ( N o t T r u e ) F o r n = 3 2 × 3 < 3 ! 6 < 3 . 2 . 1 6 < 6 ( N o t T r u e ) F o r n = 4 2 × 4 < 4 ! 8 < 4 . 3 . 2 . 1 8 < 2 4 ( T r u e ) F o r n = 5 2 × 5 < 5 ! 1 0 < 5 . 4 . 3 . 2 . 1 1 0 < 1 2 0 ( T r u e ) S o , P ( n ) i s t r u e f o r n 4 . H e n c e , t h e v a l u e o f t h e f i l l e r i s 4 .

Q:  

Let P(n) be a statement and let P(k + 1) for some natural number k . Then P(n) is true for all n .

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar
Sol:

G i v e n t h a t : P ( k ) P ( k + 1 ) P ( 1 ) P ( 2 ) w h i c h i s n o t t r u e . H e n c e , t h e s t a t e m e n t i s ' F a l s e ' .

Maths NCERT Exemplar Solutions Class 11th Chapter Four Logo

Jee mains

Jee mains

qna

Maths NCERT Exemplar Solutions Class 11th Chapter Four Exam

Student Forum

chatAnything you would want to ask experts?
Write here...