Maths NCERT Exemplar Solutions Class 11th Chapter Ten: Overview, Questions, Preparation

Maths NCERT Exemplar Solutions Class 11th Chapter Ten 2025 ( Maths NCERT Exemplar Solutions Class 11th Chapter Ten )

Vishal Baghel
Updated on Aug 14, 2025 12:40 IST

By Vishal Baghel, Executive Content Operations

Table of content
  • Straight Limes Short Answer Type Questions
  • Straight Limes Long Answer Type Questions
  • Straight Limes Objective Type Questions
  • Straight Limes Fill in the Blank
  • Straight Limes True or False Type Questions
  • JEE MAINS 26th February 2021 First Shift
  • JEE Mains 2025
View More
Maths NCERT Exemplar Solutions Class 11th Chapter Ten Logo

Straight Limes Short Answer Type Questions

Find the equation of the straight line which passes through the point (1, –2) and cuts off equal intercepts from axes.

Sol:

I n t e r c e p t f o r m o f s t r a i g h t l i n e x a + y b = 1 , w h e r e a a n d b a r e t h e o n t h e a x i s G i v e n t h a t a = b x a + y a = 1 ( i ) I f e q n . ( i ) p a s s e s t h r o u g h t h e ( 1 , 2 ) , w e g e t 1 a 2 a = 1 1 a = 1 a = 1 S o , t h e e q u a t i o n o f t h e s t r a i g h t l i n e i s x 1 + y 1 = 1 x + y = 1 x + y + 1 = 0 H e n c e , t h e r e q u i r e d e q u a t i o n i s x + y + 1 = 0 .

Find the equation of the line passing through the point (5, 2) and perpendicular to the line joining the points (2, 3) and (3, –1).

Sol:

S l o p e o f t h e l i n e j o i n i n g t h r o u g h t h e ( 2 , 3 ) a n d ( 3 , 1 ) i s 1 3 3 2 = 4 S l o p e o f t h e r e q u i r e d l i n e w h i c h i s p e r p e n d i c u l a r t o i t = 1 4 = 1 4 [ m 1 m 2 = 1 ] E q u a t i o n o f t h e l i n e t h r o u g h t h e ( 5 , 2 ) i s y 2 = 1 4 ( x 5 ) [ y y 1 = m ( x x 1 ) ] 4 y 8 = x 5 x 4 y + 3 = 0 H e n c e , t h e r e q u i r e d e q u a t i o n i s x 4 y + 3 = 0 .

Q&A Icon
Commonly asked questions
Q:  

Find the equation of the straight line which passes through the point (1, –2) and cuts off equal intercepts from axes.

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Interceptformofstraightlinexa+yb=1,whereaandbaretheontheaxisGiventhata=bxa+ya=1(i)Ifeqn.(i)passesthroughthe(1,2),weget1a2a=11a=1a=1So,theequationofthestraightlineisx1+y1=1x+y=1x+y+1=0Hence,therequiredequationisx+y+1=0.

Q:  

If the intercept of a line between the coordinate axes is divided by the point (–5, 4) in the ratio 1: 2, then find the equation of the line.

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Letaandbbetheonthegivenline.CoordinatesofAandBare(a,0)and(0,b)respectively5=1×0+2×a1+22a=15a=152[?X=m1x2+m2x1m1+m2andY=m1y2+m2y1m1+m2]A=(152,0)and4=1×b+0×21+24=b3b=12B=(0,12)So,theequationoflineABisyy1=y2y1x2x1(xx1)y0=1200+152(x+152)y=12×215(x+152)y=85(x+152)5y=8x+608x5y+60=0Hence,therequiredequationis8x5y+60=0.

Q:  

Find the equation of a straight line on which the length of perpendicular from the origin is four units and the line makes an angle of 120° with the positive direction of the x-axis.

(Hint: Use normal form, where ω = 30°.)

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhat:OM=4unitsBAX=1200BAO=18001200orMOA+MAO=900[?OMAB]θ+600=900θ=900600θ=300So,equationofABinitsnormalformxcosθ+ysinθ=pxcos300+ysin300=4x×32+y×12=43x+y=8Hence,therequiredequationis3x+y=8.

Q:  

Find the equation of the line passing through the point (5, 2) and perpendicular to the line joining the points (2, 3) and (3, –1).

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Slopeofthelinejoiningthroughthe(2,3)and(3,1)is1332=4Slopeoftherequiredlinewhichisperpendiculartoit=14=14[
m1m2=1]Equationofthelinethroughthe(5,2)isy2=14(x5)[
yy1=m(xx1)]4y8=x5x4y+3=0Hence,therequiredequationisx4y+3=0.

Q:  

 Find the angle between the lines y = (2 – 3)(x + 5) and y = (2 + 3)(x – 7).

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Thegivenequationsarey=(23)(x+5)(i)andy=(2+3)(x7)(ii)Slopeoftheeqn.(i)m1(say)=(23)andslopeoftheeqn.(ii)m2(say)=(2+3)Letθbetheanglebetqweenthetwogivenlinestanθ=|m1m21+m1m2|=|23231+(23)(2+3)|=|232|=|3|tanθ=3or3θ=600or1200Hence,therequiredangleis600or1200.

Q:  

Find the equation of the lines which passes through the point (3, 4) and cuts off intercepts from the coordinate axes such that their sum is 14.

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Equationoflinehavingaandbontheaxisisxa+yb=1(i)Giventhata+b=14b=14axa+y14a=1(ii)Ifeqn.(ii)passesthroughthe(3,4)then3a+414a=13(14a)+4aa(14a)=142+a=14aa2a2+a14a+42=0a213a+42=0a27a6a+42=0a(a7)6(a7)=0(a6)(a7)=0a=6,7b=146=8,b=147=7Hence,therequiredequationoflinesarex6+y8=14x+3y=24andx7+y7=1x+y=7

Q:  

Find the points on the line x + y = 4 which lie at a unit distance from the line 4x + 3y = 10.

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Let(x1,y1)beanylyingintheequationx+y=4x1+y1=4(i)ofthe(x1,y1)fromtheequation4x+3y=104x1+3y110(4)2+(3)2=1|4x1+3y1105|=14x1+3y110=±5Taking(+)sign4x1+3y110=54x1+3y1=15(ii)Fromeqn.(i)wegety1=4x1Puttingthevalueofy1ineqn.(ii)weget4x1+3(4x1)=154x1+123x1=15x1+12=15x1=3andy1=43=1So,therequiredis(3,1)Nowtaking()sign,4x1+3y110=54x1+3y1=5(iii)Fromeqn.(i)wegety1=4x14x1+3(4x1)=54x1+123x1=5x1+12=5x1=7andy1=4(7)=11So,therequiredis(7,11)Hence,therequiredonthegivenlineare(3,1)and(7,11).

Q:  

Show that the tangent of an angle between the lines x/a + y/b = 1 and x/a − y/b = 1 is 2ab / (a² − b²).

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhat:xa+yb=1(i)andxayb=1(ii)Slopeoftheeqn.(i)m1(say)=baandslopeoftheeqn.(ii)m2(say)=baLetθbetheanglebetqweenthetwogivenlinestanθ=|m1m21+m1m2|=|baba1+(ba)(ba)|=|2ba1b2a2|=|2aba2b2|tanθ=2aba2b2.Henceproved.

Q:  

Find the equation of lines passing through (1, 2) and making an angle 30° with the y-axis.

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatthelinemakesangle300withyaxisAnglemadebythelinewithxaxisis600Slopeofthelinem=tan600m=3So,theequationofthelinethroughthe(1,2)andslope3isyy1=m(xx1)y2=3(x1)y2=3x3y3x32=0Hence,therequiredequationoflineisy3x32=0.

Q:  

Find the equation of the line passing through the point of intersection of 2x + y = 5 and x + 3y + 8 = 0 and parallel to the line 3x + 4y = 7.

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

(a)Given

that:2x+y=5(i)x+3y+8=0(ii)3x+4y=7(iii)Equationofanylinethroughtheofofeqn.(i)andeqn.(ii)is(2x+y5)+λ(x+3y+8)=0(iv)[λ=]2x+y5+λx+3λy+8λ=0(2+λ)x+(1+3λ)y5+8λ=0Slopeoflinem1(say)=(2+λ)1+3λ[?m=ab]Slopeofline3x+4y=7ism2(say)=34Ifeqn.(iii)isparalleltoeqn.(iv)thenm1=m2(2+λ)1+3λ=342+λ1+3λ=348+4λ=3+9λ9λ4λ=55λ=5λ=1Onputtingthevalueofλineqn.(iv)weget(2x+y5)+1(x+3y+8)=02x+y5+x+3y+8=03x+4y+3=0Hence,therequiredequationis3x+4y+3=0.

Q:  

For what values of a and b the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x – 3y + 6 = 0 on the axes.

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Thegivenequationareax+by+8=0(i)and2x3y+6=0(ii)Fromeqn.(i)weget,ax+by+8=0ax+by=8a8x+b8y=1x8a+y8b=1So,theontheaxesare8aand8bFromeqn.(ii)weget,2x3y+6=02x3y=62x63y6=1x3+y2=1So,theontheaxesare3and2.Accordingtothequestion8a=+3a=83and8b=2b=+4Hence,therequiredvaluesofaandbare83and4.

Q:  

 Find the equation of one of the sides of an isosceles right-angled triangle whose hypotenuse is given by 3x + 4y = 4 and the opposite vertex of the hypotenuse is (2, 2).

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatequationofthehypotenuseis3x+4y=4andoppositevertexis(2,2)SlopeBC=34LetslopeofACbemtan450=|m+341+(34)m|1=|4m+343m|4m+343m=±1Taking(+)sign,4m+343m=14m+3=43m4m+3m=437m=1m=17Taking()sign,4m+343m=14m+3=4+3m4m3m=43m=7EquationofACwithslope(17)isy2=17(x2)7y14=x2x7y+12=0EquationofACwithslope(7)isy2=7(x2)y2=7x+147x+y16=0Hence,therequiredequationsarex7y+12=0and7x+y16=0.

Maths NCERT Exemplar Solutions Class 11th Chapter Ten Logo

Straight Limes Long Answer Type Questions

If the equation of the base of an equilateral triangle is x + y = 2 and the vertex is (2, –1), then find the length of the side of the triangle.

(Hint: Find the length of the perpendicular (p) from (2, –1) to the line and use p = l sin 60°, where l is the length of the side of the triangle.)

Sol:

E q u a t i o n o f t h e b a s e A B o f a Δ A B C i s x + y = 2 I n Δ A B D , s i n 6 0 0 = A D A B 3 2 = A D A B A D = 3 2 A B L e n g t h o f p e r p e n d i c u l a r f r o m A ( 2 , 1 ) t o t h e l i n e x + y = 2 i s A D = | 1 × 2 + 1 × 1 2 ( 1 ) 2 + ( 1 ) 2 | 3 2 A B = | 2 1 2 2 | = | 1 2 | 3 2 A B = 1 2 A B = 2 3 H e n c e , t h e r e q u i r e d l e n g t h o f s i d e = 2 3 .

A variable line passes through a fixed-point P. The algebraic sum of the perpendiculars drawn from the points (2, 0), (0, 2), and (1, 1) on the line is zero. Find the coordinates of the point P.

(Hint: Let the slope of the line be m. Then the equation of the line passing through the fixed-point P (x₁, y₁) is y – y ₁ = m (x – x₁). Taking the algebraic sum of perpendicular distances equal to zero, we get y – 1 = m (x – 1). Thus (x₁, y₁) is (1, 1).

Sol:

L e t ( x 1 , y 1 ) b e t h e c o o r d i n a t e s o f t h e g i v e n P a n d m b e t h e s l o p e o f t h e l i n e . E q u a t i o n o f t h e l i n e i s y y 1 = m ( x x 1 ) ( i ) G i v e n a r e A ( 2 , 0 ) , B ( 0 , 2 ) a n d C ( 1 , 1 ) . P e r p e n d i c u l a r f r o m A ( 2 , 0 ) d 1 ( s a y ) d 1 = 0 y 1 m ( 2 x 1 ) 1 + m 2 P e r p e n d i c u l a r f r o m B ( 0 , 2 ) d 2 ( s a y ) d 2 = 2 y 1 m ( 0 x 1 ) 1 + m 2 S i m i l a r l y , p e r p e n d i c u l a r f r o m C ( 1 , 1 ) d 3 ( s a y ) d 3 = 1 y 1 m ( 1 x 1 ) 1 + m 2 A c c o r d i n g t o t h e q u e s t i o n , w e h a v e d 1 + d 2 + d 3 = 0 0 y 1 m ( 2 x 1 ) 1 + m 2 + 2 y 1 m ( 0 x 1 ) 1 + m 2 + 1 y 1 m ( 1 x 1 ) 1 + m 2 = 0 y 1 2 m + m x 1 + 2 y 1 + m x 1 + 1 y 1 m + m x 1 = 0 3 m x 1 3 y 1 3 m + 3 = 0 m x 1 y 1 m + 1 = 0 t h e ( 1 , 1 ) s a t i f i e s t h e a b o v e e q u a t i o n . H e n c e , t h e ( 1 , 1 ) l i e s o n t h e l i n e .

Q&A Icon
Commonly asked questions
Q:  

If the equation of the base of an equilateral triangle is x + y = 2 and the vertex is (2, –1), then find the length of the side of the triangle.

(Hint: Find the length of the perpendicular (p) from (2, –1) to the line and use p = l sin 60°, where l is the length of the side of the triangle.)

Read more
A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

EquationofthebaseABofaΔABCisx+y=2InΔABD,sin600=ADAB32=ADABAD=32ABLengthofperpendicularfromA(2,1)tothelinex+y=2isAD=|1×2+1×12(1)2+(1)2|32AB=|2122|=|12|32AB=12AB=23Hence,therequiredlengthofside=23.

Q:  

A straight line moves so that the sum of the reciprocals of its intercepts made on axes is constant. Show that the line passes through a fixed point.

(Hint: 1/a+1/b=1, where a + b =” constant” =1/k (say). This implies that a + b = k. Line passes through the fixed point (k, k).)

Read more
A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

Interceptsformofastraightlineisxa+yb=1whereaandbarethemadebythelineontheaxes.Giventhat:1a+1b=1k(say)ka+kb=1whichshowsthatthelineisthroughthefixed(k,k).

Q:  

If the sum of the distances of a moving point in a plane from the axes is 1, then find the locus of the point.

(Hint: Given that x + y = 1, which gives four sides of a square.

Read more
A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

LetcoordinatesofamovingPbe(x,y).Giventhatthesumoftheaxestotheisalways1|x|+|y|=1x+y=1xy=1x+y=1xy=1Hence,theseequationsgivesusthelocusofthewhichisasquare.

Q:  

P1, P2 are points on either of the two lines y – 3x = 2 at a distance of 5 units from their point of intersection. Find the coordinates of the foot of perpendiculars drawn from P?, P? on the bisector of the angle between the given lines.

(Hint: Lines are y = 3 x + 2 and y = – 3 x + 2 according as x ≥ 0 or x < 0

Y-axis is the bisector of the angles between the lines. P?, P? are the points on these lines at a distance of 5 units from the point of intersection of these lines which have a point on y-axis as the common foot of perpendiculars from these points. The y-coordinate of the foot of the perpendicular is given by 2 + 5 cos30°.)

Read more
A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

Givenlinesarey3|x|=2y3x=2,ifx0(i)andy+3x=2,ifx<0(ii)Slopeofeqn.(i)istanθ=3θ=600Slopeofeqn.(ii)istanθ=3θ=1200Solvingeqn.(i)andeqn.(ii)wegety3x=2y+3x=2_2y=4y=2Puttingthevalueofyineqn.(i)wegetx=0ofofline(i)and(ii)isQ(0,2)QO=2InΔPEQ,cos300=PQQE32=PQ5PQ=532OP=OQ+PQ=2+532Hence,thecoordinatesofthefootofperpendicular=(0,2+532)

Q:  

If p is the length of perpendicular from the origin on the line xa+yb =1 and a2,p2,b2 are in A.P., then show that a2+b2 =0.

Read more
A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

Givenequationsisxa+yb=1,pisthelengthofperpendiculardrawnfromtheorigintothegivenline.p=|0a+0b11a2+1b2|Squaringbothsides,wehavep2=11a2+1b21a2+1b2=1p2(i),a2,p2,b2areinA.P.2p2=a2+b2p2=a2+b221p2=2a2+b2Puttingthevalueof1p2iseqn.(i)weget,1a2+1b2=2a2+b2a2+b2a2b2=2a2+b2(a2+b2)2=2a2b2a4+b4+2a2b2=2a2b2a4+b4=0.Henceproved.

Q:  

A variable line passes through a fixed-point P. The algebraic sum of the perpendiculars drawn from the points (2, 0), (0, 2), and (1, 1) on the line is zero. Find the coordinates of the point P.

(Hint: Let the slope of the line be m. Then the equation of the line passing through the fixed-point P (x?, y?) is y – y ? = m (x – x?). Taking the algebraic sum of perpendicular distances equal to zero, we get y – 1 = m (x – 1). Thus (x?, y?) is (1, 1).

Read more
A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

Let(x1,y1)bethecoordinatesofthegivenPandmbetheslopeoftheline.Equationofthelineisyy1=m(xx1)(i)GivenareA(2,0),B(0,2)andC(1,1).PerpendicularfromA(2,0)d1(say)d1=0y1m(2x1)1+m2PerpendicularfromB(0,2)d2(say)d2=2y1m(0x1)1+m2Similarly,perpendicularfromC(1,1)d3(say)d3=1y1m(1x1)1+m2Accordingtothequestion,wehaved1+d2+d3=00y1m(2x1)1+m2+2y1m(0x1)1+m2+1y1m(1x1)1+m2=0y12m+mx1+2y1+mx1+1y1m+mx1=03mx13y13m+3=0mx1y1m+1=0the(1,1)satifiestheaboveequation.Hence,the(1,1)liesontheline.

Q:  

In what direction should a line be drawn through the point (1, 2) so that its point of intersection with the line x + y = 4 is at a distance √5 from the given point?

Read more
A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

Letthegivenlinex+y=4andtherequiredline'l'atB(a,b)Slopeofline'l'isgivenbym=b2a1=tanθ(i)GiventhatAB=63So,byformulaforA(1,2)andB(a,b)(a1)2+(b2)2=63Onsquaringboththesidea2+12a+b2+44b=69a2+b22a4b+5=69(ii)B(a,b)alsosatifiestheeqn.x+y=4a+b=4(iii)Onsolving(ii)and(iii),wegeta=33+123,b=53123Puttingthevaluesofaandbineqn.(i),wehavetanθ=53123233+123=5314333+123=313+1tanθ=tan150θ=150

Q:  

Find the equation of the line which passes through the point (–4, 3), and the portion of the line intercepted between the axes is divided internally in the ratio 5: 3 by this point.

Read more
A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

LetABbealinethrougha(4,3)andmeetsxaxisatA(a,0)andyaxisatB(0,b).4=5×0+3a5+34=3a8a=323[?X=m1x2+m2x1m1+m2andY=m1y2+m2y1m1+m2]and3=5×b+3×05+33=5b8b=245Interceptformofthelineisx323+y245=13x32+5y24=19x+20y=969x20y+96=0Hence,therequiredequationis9x20y+96=0.

Q:  

Find the equations of the lines through the point of intersection of the lines x – y + 1 = 0 and 2x – 3y + 5 = 0 and whose distance from the point (3, 2) is √5.

Read more
A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

Givenequationsarexy+1=0(i)and2x3y+5=0(ii)Solvingeqn.(i)andeqn.(ii)weget2x2y+2=02x3y+5=0()(+)()_y3=0y=3Fromeqn.(i)wehavex3+1=0x=2So,(2,3)istheofofeqn.(i)andeqn.(ii).LetmbetheslopeoftherequiredlineEquationofthelineisy3=m(x2)y3=mx2mmxy+32m=0Since,theperpendicularfrom(3,2)tothelineis75then75=|m(3)2+32mm2+1|4925=(3m2+32m)2m2+14925=(m+1)2m2+149m2+49=25m2+50m+2549m225m250m+4925=024m250m+24=012m225m+12=012m216m9m+12=04m(3m4)3(3m4)=0(3m4)(4m3)=03m4=0and4m3=0m=43,34Equationofthelinetakingm=43isy3=43(x2)3y9=4x84x3y+1=0Equationofthelinetakingm=34isy3=34(x2)4y12=3x63x4y+6=0Hence,therequiredequationsare4x3y+1=0and3x4y+6=0.

Maths NCERT Exemplar Solutions Class 11th Chapter Ten Logo

Straight Limes Objective Type Questions

A line cutting off intercept –3 from the y-axis and the tangent at angle θ to the x-axis is tanθ =  3 5  , its equation is

(a) 5y-3x+15=0

(b) 3y-5x+15=0

(c) 5y-3x-15=0

(d) None of these

Sol:

t h e l i n e s c u t o f f 3 o n y a x i s t h e n t h e l i n e i s t h r o u g h t h e ( 0 , 3 ) . G i v e n t h a t : t a n θ = 3 5 S l o p e o f t h e l i n e m = 3 5 S o , t h e e q u a t i o n o f t h e l i n e i s y y 1 = m ( x x 1 ) y + 3 = 3 5 ( x 0 ) 5 y + 1 5 = 3 x 3 x 5 y 1 5 = 0 5 y 3 x + 1 5 = 0 H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Slope of a line which cuts off intercepts of equal lengths on the axes is

(a) -1

(b) -0

(c) 2

(d) 3

Sol:

Intercept f o r m o f a l i n e i s x a + y b = 1 x a + y a = 1 [ a = b ] x + y = a y = x + a S l o p e i s 1 H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q&A Icon
Commonly asked questions
Q:  

A line cutting off intercept –3 from the y-axis and the tangent at angle θ to the x-axis is tanθ = 35 , its equation is

(a)   5y-3x+15=0

(b)  3y-5x+15=0

(c)   5y-3x-15=0

(d)  None of these

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

thelinescutoff3onyaxisthenthelineisthroughthe(0,3).Giventhat:tanθ=35Slopeofthelinem=35So,theequationofthelineisyy1=m(xx1)y+3=35(x0)5y+15=3x3x5y15=05y3x+15=0Hence,thecorrectoptionis(a).

Q:  

Slope of a line which cuts off intercepts of equal lengths on the axes is

(a)   -1

(b)  -0

(c)   2

(d)  3

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

formofalineisxa+yb=1xa+ya=1[?a=b]x+y=ay=x+aSlopeis1Hence,thecorrectoptionis(a).

Q:  

The equation of the straight line passing through the point (3, 2) and perpendicular to the line y=x is

(a)   X-y=5

(b)  X+y=5

(c)   X+y=1

(d)  X-y=1

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

Equationofline'l'isgivenbyyy1=m(xx1)listhroughtheP(3,2).y2=m(x3)y=mx+23m(i)itisgiventhatlinesy=xand'l'areperpendiculartoeachother,m×1=1[?m1×m2=1]m=1Putm=1ineqn.(i),wegety=x+23(1)y=x+5x+y=5Hence,thecorrectoptionis(b).

Q:  

The equation of the line passing through the point (1, 2) and perpendicular to the line x+y+1=0 is

(a)   Y-x+1=0

(b)  Y-x-1=0

(c)   Y-x+2=0

(d)  Y-x-2=0

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

Equationofanylineperpendiculartothegivenlinex+y+1=0isxy+k=0(i)Ifeqn.(i)isthroughthe(1,2)then12+k=0k=1Puttingthevalueofkineqn.(i),wehavexy+1=0yx1=0Hence,thecorrectoptionis(b).

Q:  

The tangent of angle between the lines whose intercepts on the axes are (a,-b) and (b,-a), respectively, is

(a) a 2 - b 2 a b

(b) b 2 - a 2 2

(c) b 2 - a 2 2 a b

(d) None of these

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

Firstequationoflineontheaxesa,bisxayb=1bxay=ab(i)equationoflineontheaxesb,aisxbya=1axby=ab(ii)Slopeofeqn.(i)m1=baSlopeofeqn.(ii)m2=abtanθ=|m1m21+m1m2|=baab1+ba.ab=b2a22abHence,thecorrectoptionis(c).

Q:  

If the line xa+yb=1 passes through the points (2, –3) and (4, –5), then (a, b) is

(a) (1, 1)

(b) (–1, 1)

(c) (1, –1)

(d) (–1, –1)

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

Equationoflinethroughthe(2,3)and(4,5)isy+3=5+342(x2)y+3=22(x2)y+3=(x2)y+3=x+2x+y=1x1+y1=1(Interceptform)a=1,b=1Hence,thecorrectoptionis(d).

Q:  

The distance of the point of intersection of the lines 2x – 3y + 5 = 0 and 3x + 4y = 0 from the line 5x – 2y = 0 is

(a)  130 17

(b)   13 7 29

(c)   130 7  

(d)  None of these

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

Givenequationsare:2x3y+5=0(i)3x+4y=0(ii)Fromeqn.(ii)weget,4y=3xy=34x(iii)Puttingthevalueofyineqn.(i)wehave2x3(34x)+5=08x+9x+20=017x+20=0x=2017Puttingthevalueofxineqn.(iii)wegety=34(2017)=1517ofis(2017,1517)Nowperpendicularfromthe(2017,1517)tothegivenline5x2y=0is|5(2017)2(1517)25+4|=|10017301729|=1301729Hence,thecorrectoptionis(a).

Q:  

The equations of the lines which pass through the point (3, –2) and are inclined at 60° to the line 3x + y = 1 is

(a)  y + 2 = 0 , 3 x y 2 - 3 3 = 0  

(b)  x 2 = 0 , 3 x y + 2 + 3 3 = 0

(c)   3 x y 2 - 3 3 = 0  

(d) None of these

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

Equationoflineisgivenby3x+y+1=0y=3x1Slopeofthisline,m1=3Letm2betheslopeoftherequiredlinetanθ=|m1m21+m1m2|tan600=|3m21+(3)m2|3=±(3m213m2)3=3m213m2[Taking(+)sign]33m2=3m22m2=23m2=3and3=(3m213m2)[Taking()sign]3=3+m213m233m2=3+m24m2=0m2=0Equationoflinethroughthe(3,2)withslope3isy+2=3(x3)y+2=3x333xy233=0andtheequationoflinethroughthe(3,2)withslope0isy+2=0(x3)y+2=0Hence,thecorrectoptionis(a).

Q:  

The equations of the lines passing through the point (1, 0) and at a distance 32 from the origin, are

(a)   3 x + y 3 = 0 , 3 x y 3 = 0  

(b)    3 x + y + 3 = 0 , 3 x y + 3 = 0

(c)   x + 3 y 3 = 0 , x 3 y 3 = 0  

(d)    None of these

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

Equationofanylinethrough(1,0)isy0=m(x1)mxym=0ofthelinefromoriginis3232=|m×00m1+m2|32=|m1+m2|Squaringbothsides,weget34=m21+m24m2=3+3m24m23m2=3m2=3m=±3equationsare±3xy?3=0i.e.,3xy3=0and3xy+3=03x+y3=0Hence,thecorrectoptionis(a).

Q:  

The distance between the lines y=mx+c1 and y=mx+c2 is

(a) c 1 - c 2 1 + m 2    

(b) c 1 - c 2 1 + m 2     

(c) 2 c 1 - c 2 1 + m 2    

(d) 0

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

Givenequationsarey=mx+c1(i)andy=mx+c2(ii)Slopesofeqn.(i)andeqn.(ii)aresamei.e.,mSo,theyareparallellines.betweenthetwolines=|c1c2|1+m2Hence,thecorrectoptionis(b).

Q:  

The coordinates of the foot of the perpendicular from the point (2, 3) on the line y=3x+4 is given by

(a)  37 10 , - 1 10  

(b)   - 1 10 , 37 10  

(c)  - 10 37 , - 10 37  

(d)   2 3 , - 1 3  

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

Givenequationisy=3x+43xy+4=0(i)Slope=3Equationofanylinethroughthe(2,3)isy3=m(x2)(ii)Ifeqn.(i)isperpendiculartoeqn.(ii)thenm×3=1[?m1×m2=1]m=13Puttingthevalueofmineqn.(ii)wegety3=13(x2)3y9=x+2x+3y=11(iii)Solvingeqn.(i)andeqn.(iii)weget3xy=4y=3x+4(iv)Puttingthevalueofyineqn.(iii)wegetx+3(3x+4)=11x+9x+12=1110x=1x=110Fromeqn.(iv)weget,y=3(110)+4y=310+4y=3710So,therequiredcoordinatesare(110,3710).Hence,thecorrectoptionis(b).

Q:  

 If the coordinates of the middle point of the portion of a line intercepted between the coordinate axes is (3, 2), then the equation of the line will be

(a) 2x + 3y = 12

(b) 3x + 2y = 12

(c)  4x – 3y = 6

(d)  5x – 2y = 10

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

LetthegivenlinemeetstheaxesatA(a,0)andB(0,b).GiventhatC(3,2)isthemidofAB3=a+02a=6and2=0+b2b=4InterceptformofthelineABxa+yb=1x6+y4=12x+3y=12Hence,thecorrectoptionis(a).

Q:  

Equation of the line passing through (1, 2) and parallel to the line y = 3x – 1 is

(a) y + 2 = x + 1

(b) y + 2 = 3 (x + 1)

(c)  y – 2 = 3 (x – 1)

(d)  y – 2 = x – 1

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

Givenequationisy=3x1Slope=3Slopeofthelinethroughthegiven(1,2)andparalleltothegivenline=3So,theequationoftherequiredlineisy2=3(x1)Hence,thecorrectoptionis(c).

Q:  

Equations of diagonals of the square formed by the lines x = 0, y = 0, x = 1, and y = 1 are

(a) y = x, y + x = 1

(b) y = x, x + y = 2

(c) 2y = x, y + x = 1 3  

(d) y = 2x, y + 2x = 1

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

Givenequationx=0,y=0,x=1andy=1formasquareofside1unitFromfigure,wegetthatOABCissquarehavingcornersO(0,0),A(1,0),B(1,1)andC(0,1)EquationofdiagonalACy0=1001(x1)y=(x1)y=x+1y+x=1EquationofdiagonalOBisy0=1010(x0)y=xHence,thecorrectoptionis(a).

Q:  

For specifying a straight line, how many geometrical parameters should be known?

(a) 1

(b) 2

(c) 4

(d) 3

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

DifferentformofequationofstraightlinesareSlopeform,y=mx+c,Parameter=2Interceptform,xa+yb=1,Parameter=2Oneform,yy1=m(xx1),Parameter=2Normalform,xcosw+ysinw=P,Parameter=2Hence,thecorrectoptionis(b).

Q:  

The point (4, 1) undergoes the following two successive transformations:

i. Reflection about the line y = x

ii. Translation through a distance 2 units along the positive x-axis

Then the final coordinates of the point are

(a) (4, 3)

(b) (3, 4)

(c)  (1, 4)

(d)   7 2 , 7 2  

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

LetthereflectionofA(4,1)iny=xbeB(a,b)midofAB=(4+a2,1+b2)whichliesony=x4+a2=1+b24+a=1+bab=3(i)Theslopeoftheliney=xis1andslopeofAB=b1a41(b1a4)=1b1=a+4a+b=5(ii)Solvingeqn.(i)andeqn.(ii)wegeta=1andb=4Theaftertranslationis(1+2,4)or(3,4)Hence,thecorrectoptionis(b).

Q:  

A point equidistant from the lines 4x + 3y + 10 = 0, 5x – 12y + 26 = 0, and 7x + 24y – 50 = 0 is

(a) (1, –1)

(b) (1, 1)

(c) (0, 0)

(d) (0, 1)

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

Givenequationsare4x+3y+10=0(i)5x12y+26=0(ii)and7x+24y50=0(iii)Let(x1,y1)beanyfromeqn.(i),eqn.(ii)andeqn.(iii)of(x1,y1)fromeqn.(i)=|4x1+3y1+1016+9|=|4x1+3y1+105|of(x1,y1)fromeqn.(ii)=|5x112y1+2625+144|=|5x112y1+2613|of(x1,y1)fromeqn.(ii)=|7x1+24y15049+576|=|7x1+24y15025|Ifthe(x1,y1)isfromthegivenlines,then|4x1+3y1+105|=|5x112y1+2613|=|7x1+24y15025|Weseethatputtingx1=0andy1=0,theaboverelationissatisfiedi.e.,105=2613=5025=2Hence,thecorrectoptionis(c).

Q:  

A line passes through (2, 2) and is perpendicular to the line 3x + y = 3. Its y-intercept is

(a) 1 3

(b) 2 3   

(c) 1

(d)   4 3  

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

Anylineperpendicularto3x+y=3x3y=λ(λ=)Ifitpassesthroughthe(2,2)then23(2)=λλ=4equationisx3y=43y=x4y=13x+43[?y=mx+c]So,theyis43.Hence,thecorrectoptionis(d).

Q:  

The ratio in which the line 3x + 4y + 2 = 0 divides the distance between the lines 3x + 4y + 5 = 0 and 3x + 4y – 5 = 0 is

(a) 1 : 2

(b) 3 : 7

(c) 2 : 3

(d)  2 : 5

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

Givenequationsare3x+4y+5=0(i)3x+4y5=0(ii)and3x+4y+2=0(iii)Clearly,eqn.(i),(ii)and(iii)areparalleltoeachotherasthecoefficientsofxandyaresame.betweenparallellines(i)and(iii)weget=|52(3)2+(4)2|=35[?betweenthetwoparallellines=|c1c2|a2+b2]betweenparallellines(ii)and(iii)weget=|52(3)2+(4)2|=75Ratiobetweenthe35:75=3:7Hence,thecorrectoptionis(b).

Q:  

One vertex of the equilateral triangle with centroid at the origin and one side as x + y – 2 = 0 is

(a) (–1, –1)

(b) (2, 2)

(c)  (–2, –2)

(d) (2, –2)

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

L e t A B C b e a n e q u i l a t e r a l t r i a n g l e w i t h v e r t e x ( x 1 , y 1 ) . A D B C a n d l e t ( a , b ) b e t h e c o o r d i n a t e s o f D . G i v e n t h a t t h e c e n t r o i d G l i e s a t t h e o r i g i n i . e . , ( 0 , 0 ) Since,thecentroidofatriangle,dividesthemedianintheratio1:2 S o , 0 = 1 × x 1 + 2 × a 1 + 2 x 1 + 2 a = 0 ( i ) a n d 0 = 1 × y 1 + 2 × b 1 + 2 y 1 + 2 b = 0 ( i i ) E q u a t i o n s o f B C i s g i v e n b y x + y 2 = 0 ( i i i ) PointD(a,b)liesonthelinex+y2=0 S o , a + b 2 = 0 ( i v ) S l o p e o f e q n . ( i i i ) i s = 1 a n d t h e S l o p e o f A G = y 1 0 x 1 0 = y 1 x 1 Since,theyareperpendiculartoeachother 1 × y 1 x 1 = 1 y 1 = x 1 F r o m e q n . ( i ) a n d ( i i ) w e g e t x 1 + 2 a = 0 2 a = x 1 y 1 + 2 b = 0 2 b = y 1 F r o m e q n . ( i v ) w e g e t a + b 2 = 0 a + a 2 = 0 2 a 2 = 0 a = 1 a n d b = 1 [ ? a = b ] x 1 = 2 × 1 = 2 a n d y 1 = 2 × 1 = 2 H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

 

Maths NCERT Exemplar Solutions Class 11th Chapter Ten Logo

Straight Limes Fill in the Blank

If a, b, c are in A.P., then the straight lines ax + by + c = 0 will always pass through ____.

Sol:

G i v e n e q u a t i o n i s a x + b y + c = 0 ( i ) a , b a n d c a r e i n A . P . b = a + c 2 a + c = 2 b a 2 b + c = 0 ( i i ) C o m p a r i n g e q n . ( i ) w i t h e q n . ( i i ) w e g e t , x = 1 , y = 2 S o , t h e l i n e w i l l p a s s t h r o u g h ( 1 , 2 ) H e n c e , t h e v a l u e o f t h e f i l l e r i s ( 1 , 2 ) .

The line which cuts off equal intercepts from the axes and passes through the point (1, –2) is ____.

Sol:

I n t e r c e p t f o r m o f t h e l i n e i s x a + y b = 1 ( i ) G i v e n t h a t a = b x a + y a = 1 x + y = a ( i i ) I f t h e l i n e ( i ) p a s s e s t h r o u g h ( 1 , 2 ) w e g e t 1 2 = a a = 1 S o , t h e r e q u i r e d e q u a t i o n i s x + y = 1 x + y + 1 = 0 H e n c e , t h e v a l u e o f t h e f i l l e r i s x + y + 1 = 0 .

Q&A Icon
Commonly asked questions
Q:  

If a, b, c are in A.P., then the straight lines ax + by + c = 0 will always pass through ____.

A: 

This is a Fill in the Blank Type Questions as classified in NCERT Exemplar

Sol:

Givenequationisax+by+c=0(i)a,bandcareinA.P.b=a+c2a+c=2ba2b+c=0(ii)Comparingeqn.(i)witheqn.(ii)weget,x=1,y=2So,thelinewillpassthrough(1,2)Hence,thevalueofthefilleris(1,2).

Q:  

The line which cuts off equal intercepts from the axes and passes through the point (1, –2) is ____.

A: 

This is a Fill in the Blank Type Questions as classified in NCERT Exemplar

Sol:

Interceptformofthelineisxa+yb=1(i)Giventhata=bxa+ya=1x+y=a(ii)Iftheline(i)passesthrough(1,2)weget12=aa=1So,therequiredequationisx+y=1x+y+1=0Hence,thevalueofthefillerisx+y+1=0.

Q:  

Equations of the lines through the point (3, 2) and making an angle of 45° with the line x – 2y = 3 are ____.

Read more
A: 

This is a Fill in the Blank Type Questions as classified in NCERT Exemplar

Sol:

Givenlineisx2y=3andtheis(3,2)Equationofalinethroughthe(3,2)isAnglebetweeneqn.(i)andthegivenlinex2y=3whoseslopeis12tanθ=|m1m21+m1m2|tan450=|m121+m×12|1=|m121+m2|m121+m2=±1Taking(+)signm121+m2=1m12=1+m2mm2=1+12m2=32m=3Taking()signm121+m2=1m12=1m2m+m2=1+123m2=12m=13So,therequiredequationsare,Whenm=3,y2=3(x3)y2=3x93xy7=0Whenm=13,y2=13(x3)3y6=x+3x+3y9=0Hence,thevalueofthefillerare3xy7=0andx+3y9=0.

Q:  

The points (3, 4) and (2, –6) are situated on the ____ of the line 3x – 4y – 8 = 0.

A: 

This is a Fill in the Blank Type Questions as classified in NCERT Exemplar

Sol:

Givenlineis3x4y8=0(i)andgiventheare(3,4)and(2,6).For(3,4),linebecomes=3(3)4(4)8=9168=924=15<0For(2,6),linebecomes=3(2)4(6)8=6+248=308=22>0So,the(3,4)and(2,6)aresituatedontheoppositesidesof3x4y8=0.Hence,thevalueofthefillerisopposite.

Q:  

A point moves so that the square of its distance from the point (3, –2) is numerically equal to its distance from the line 5x – 12y = 3. The equation of its locus is ____.

Read more
A: 

This is a Fill in the Blank Type Questions as classified in NCERT Exemplar

Sol:

Thegivenequationoflineis5x12y=3andthegivenis(3,2).Let(a,b)beanymovingbetween(a,b)andthe(3,2)=(a3)2+(b+2)2andtheof(a,b)fromtheline5x12y=3=|5a12b325+144|=|5a12b313|Accordingtothequestion,wehave[(a3)2+(b+2)2]2=|5a12b313|Takingnumericalvalues,wehave(a3)2+(b+2)2=5a12b313a26a+9+b2+4b+4=5a12b313a2+b26a+4b+13=5a12b31313a2+13b278a+52b+169=5a12b313a2+13b283a+64b+172=0So,thelocusoftheis13a2+13b283a+64b+172=0.Hence,thevalueofthefilleris13a2+13b283a+64b+172=0.

Q:  

 Locus of the midpoints of the portion of the line xsinθ+ycosθ=p intercepted between the axes is ____.

Read more
A: 

This is a Fill in the Blank Type Questions as classified in NCERT Exemplar

Sol:

Givenequationofthelineisxcosθ+ysinθ=p(i)LetC(h,k)bethemidofthegivenlineABwhereitmeetsthetwoaxisatA(a,0)andB(0,b).(a,0)liesoneqn.(i)thenacosθ+0=pa=pcosθ(ii)B(0,b)alsoliesoneqn.(i)then0+bsinθ=pb=psinθ(iii)C(h,k)isthemidofABh=0+a2a=2handk=b+02b=2kPuttingthevaluesofaandbiseqn.(ii)and(iii)weget2h=pcosθcosθ=p2h(iv)and2k=psinθsinθ=p2k(v)Squaringandaddingeqn.(iv)and(v)wegetcos2θ+sin2θ=p24h2+p24k21=p24h2+p24k2So,thelocusofthemidis1=p24x2+p24y24x2y2=p2(x2+y2)Hence,thevalueofthefilleris4x2y2=p2(x2+y2).

Maths NCERT Exemplar Solutions Class 11th Chapter Ten Logo

Straight Limes True or False Type Questions

 If the vertices of a triangle have integral coordinates, then the triangle cannot be equilateral.

Sol:

W e k n o w t h a t i f t h e v e r t i c e s o f t r i a n g l e h a s c o o r d i n a t e s , t h e n t h e t r i a n g l e c a n n o t b e e q u i l a t e r a l . S o , t h e g i v e n s t a t e m e n t i s T r u e .

The points A(–2, 1), B(0, 5), C(–1, 2) are collinear.

Sol:

G i v e n a r e A ( 2 , 1 ) , B ( 0 , 5 ) , C ( 1 , 2 ) A r e a o f Δ A B C = 1 2 | 2 1 1 0 5 1 1 2 1 | = 1 2 | 2 | 5 1 2 1 | 1 | 0 1 1 1 | + 1 | 0 5 1 2 | | = 1 2 | 2 ( 5 2 ) 1 ( 0 + 1 ) + 1 ( 0 + 5 ) | = 1 2 | 2 × 3 1 × 1 + 1 × 5 | = 1 2 | 6 1 + 5 | = 1 2 | 2 | = 1 s q . u n i t S o , t h e g i v e n a r e n o t c o l l i n e a r . S o , t h e g i v e n s t a t e m e n t i s F a l s e .

Q&A Icon
Commonly asked questions
Q:  

If the vertices of a triangle have integral coordinates, then the triangle cannot be equilateral.

A: 

This is a True or False Type Questions as classified in NCERT Exemplar

Sol:

Weknowthatiftheverticesoftrianglehascoordinates, thenthetrianglecannotbeequilateral.So, thegivenstatementisTrue.

Q:  

The points A(–2, 1), B(0, 5), C(–1, 2) are collinear.

A: 

This is a True or False Type Questions as classified in NCERT Exemplar

Sol:

GivenareA(2,1),B(0,5),C(1,2)AreaofΔABC=12|211051121|=12|2|5121|1|0111|+1|0512||=12|2(52)1(0+1)+1(0+5)|=12|2×31×1+1×5|=12|61+5|=12|2|=1sq.unitSo,thegivenarenotcollinear.So,thegivenstatementisFalse.

Q:  

Equation of the line passing through the point acos3θ,asin3θ and perpendicular to the line xsecθ+ycosecθ=a is xcosθysinθ=asin2θ .

Read more
A: 

This is a True or False Type Questions as classified in NCERT Exemplar

Sol:

Equationofanylineperpendiculartoxsecθ+ycosecθ=aisxcosecθysecθ=k(i)Ifeqn.(i)passesthrough(acos3θ,asin3θ)thenacos3θ.cosecθasin3θ.secθ=kacos3θsinθasin3θcosθ=kequationisxcosecθysecθ=acos3θsinθasin3θcosθxsinθycosθ=a[cos4θsin4θsinθcosθ]xcosθysinθsinθcosθ=a[(cos2θ+sin2θ)(cos2θsin2θ)sinθcosθ]xcosθysinθ=a(cos2θsin2θ)xcosθysinθ=acos2θSo,thegivenstatementisFalse.

Q:  

The straight line 5x + 4y = 0 passes through the point of intersection of the straight lines x + 2y – 10 = 0 and 2x + y + 5 = 0.

Read more
A: 

This is a True or False Type Questions as classified in NCERT Exemplar

Sol:

Givenequationsarex+2y10=0(i)and2x+y+5=0(ii)Fromeqn.(i)x=102y(iii)Puttingthevalueofxineqn.(ii)weget2(102y)+y+5=0204y+y+5=03y+25=0y=253Puttingthevalueofyineqn.(iii)wegetx=102(253)=30503=203=(203,253)Ifthegivenline5x+4y=0throughthe(203,253)then5(203)+4(253)=01003+1003=00=0satisfied.So,thegivenlinethroughtheofofthegivenlines.Hence,thegivenstatementisTrue.

Q:  

The vertex of an equilateral triangle is (2, 3) and the equation of the opposite side is x + y = 2. Then the other two sides are y3=2±3x2 .

Read more
A: 

This is a True or False Type Questions as classified in NCERT Exemplar

Sol:

LetABCbeanequilateraltrianglewithvertex(2,3)andtheoppositesideisx+y=2withslope1.SupposeslopeoflineABism.eachangleofequilateraltriangleis600.AnglebetweenABandBCtan600=|1m1+(1)m|3=|1+m1m|3=±(1+m1m)Taking(+)sign3=1+m1m33m=1+m3m+m=31m(3+1)=31m=313+1m=313+1×3131m=3+12331=23Taking()sign3=(1+m1m)33m=1m3m+m=13m(3+1)=13m=1313m=1313×1+31+3m=133313=4232=2(2+3)2=2+3So,theequationsofothertwolinesarey3=(2±3)(x2)Hence,thegivenstatementisTrue.

Q:  

The equation of the line joining the point (3, 5) to the point of intersection of the lines 4x + y – 1 = 0 and 7x – 3y – 35 = 0 is equidistant from the points (0, 0) and (8, 34).

Read more
A: 

This is a True or False Type Questions as classified in NCERT Exemplar

Sol:

Givenequationsare4x+y1=0(i)and7x3y35=0(ii)Fromeqn.(i)y=14x(iii)Puttingthevalueofyineqn.(ii)weget7x3(14x)35=07x3+12x35=019x38=0x=2Fromeqn.(iii)y=14×2y=7Theofis(2,7).Equationoflinejoiningthe(3,5)tothe(2,7)isy5=7523(x3)y5=12(x3)y5=12x3612xy31=0(iv)ofeqn.(iv)fromthe(0,0)=|31(12)2+(1)2|=31145ofeqn.(iv)fromthe(8,34)=|12×83431(12)2+(1)2|=|9665145|=31145HencethegivenstatementisTrue.

Q:  

The line xa+yb=1 moves in such a way that 1a2+1b2=1c2 , where c is a constant. The locus of the foot of the perpendicular from the origin on the given line is x2+y2=c2 .

Read more
A: 

This is a True or False Type Questions as classified in NCERT Exemplar

Sol:

Thegivenequationisxa+yb=1(i)Equationoflinethroughthe(0,0)andperpendiculartoeqn.(i)isxbya=0(ii)Squaringandaddingeqn.(i)and(ii)weget(xa+yb)2+(xbya)2=1+0x2a2+y2b2+2xyab+x2b2+y2a22xyab=1x2(1a2+1b2)+y2(1b2+1a2)=1(x2+y2)(1a2+1b2)=1(x2+y2)(1c2)=1[?1c2=1a2+1b2]x2+y2=c2HencethegivenstatementisTrue.

Q:  

The lines ax+2y+1=0,bx+3y+1=0, and cx+4y+1=0 are concurrent if a, b, c are in G.P.

A: 

This is a True or False Type Questions as classified in NCERT Exemplar

Sol:

Givenequationsareax+2y+1=0(i)bx+3y+1=0(ii)cx+4y+1=0(iii)Solvingeqn.(i)and(ii)wegetax+2y+1=0y=ax12Puttingthevalueofyineqn.(ii)wehavebx+3(ax12)+1=02bx3ax3+2=0(2b3a)x=1x=12b3ay=a(12b3a)12=a2b+3a2(2b3a)=2a2b2(2b3a)=ab2b3aSo,theofofeqn.(i)and(ii)is(12b3a,ab2b3a)Ifeqn.(i),(ii)and(iii)areconcurrent,thentheabovemustlieoneqn.(iii)cx+4y+1=0c[12b3a]+4[ab2b3a]+1=0c+4a4b+2b3a2b3a=0c+a2b=02b=a+cSo,a,bandcareinA.P.andnotinG.P.HencethegivenstatementisFalse.

Q:  

The line joining the points (3, –4) and (–2, 6) is perpendicular to the line joining the points (–3, 6) and (9, –18).

Read more
A: 

This is a True or False Type Questions as classified in NCERT Exemplar

Sol:

Thegivenare(3,4)and(2,6),(3,6)and(9,18).Slopeofthelinejoiningthe(3,4)and(2,6)m1=6+423=105=2Slopeofthelinejoiningthe(3,6)and(9,18)m2=1869+3=2412=2Sincem1=m2=2So,thelinesareparallelandnotperpendicular.HencethegivenstatementisFalse.

Q:  

Match the following:

Column C1                                                            Column C2

(a) The coordinates of the points P and Q on the                                (i) 3 , 1 , 7 , 11  

 line x + 5 y = 13 , which are at a distance of 2 units

 from the line 12 x 5 y + 26 = 0 are

(b) The coordinates of the point on the                                                 (ii) 3 , 1 , 7 , 11  

 line x + y = 4 , which is at a unit distance

 from the line 4 x + 3 y 10 = 0 .

(c) The coordinates of the point on the line                                         (iii) 12 5 , 16 5 , 1 , 3  

joining A(–2, 5) and B(3, 1) such that

  A P = P Q = Q B are

Read more
A: 

This is a True or False Type Questions as classified in NCERT Exemplar

Sol:

(a)LetP(x1,y1)beanyonthegivenlinex+5y=13x1+5y1=13ofline12x5y+26=0fromthe(x1,y1)2=|12x15y1+26(12)2+(5)2|2=|12x1(13x1)+2613|2=|12x113+x1+2613|2=|13x1+1313|2=±(x1+1)2=x1+1x1=1(Taking(+)sign)and2=x11x1=3(Taking()sign)Puttingthevalueofx1ineqn.x1+5y1=13Wegety1=125and165So,therequiredare(1,125)and(3,165).Hence,(a)(iii)(b)LetP(x1,y1)beanyonthegivenlinex+y=4x1+y1=4(i)ofline4x+3y10=0fromthe(x1,y1)1=|4x1+3y110(4)2+(3)2|1=|4x1+3(4x1)105|1=|4x1+123x1105|1=|x1+25|1=±(x1+25)x1+25=1(Taking(+)sign)x1+2=5x1=3andx1+25=1(Taking()sign)x1+2=5x1=7Puttingthevalueofx1ineqn.(i)wegetAtx1=3,y1=1Atx1=7,y1=11So,therequiredare(3,1)and(7,11).Hence,(b)(i).

( c ) G i v e n t h a t A P = P Q = Q B E q u a t i o n o f l i n e j o i n i n g A ( 2 , 5 ) a n d B ( 3 , 1 ) i s y 5 = 1 5 3 + 2 ( x + 2 ) y 5 = 4 5 ( x + 2 ) 5 y 2 5 = 4 x 8 4 x + 5 y 1 7 = 0 LetP(x1,y1)andQ(x2,y2)beanytwopointsonthelineAB P ( x 1 , y 1 ) d i v i d e s t h e l i n e A B i n t h e r a t i o 1 : 2 x 1 = 1 . 3 + 2 ( 2 ) 1 + 2 = 3 4 3 = 1 3 y 1 = 1 . 1 + 2 . 5 1 + 2 = 1 + 1 0 3 = 1 1 3 S o , t h e c o o r d i n a t e s o f P ( x 1 , y 1 ) = ( 1 3 , 1 1 3 ) . NowpointQ(x2,y2)isthemid-pointofPB x 2 = 3 1 3 2 = 4 3 y 2 = 1 + 1 1 3 2 = 7 3 H e n c e , t h e c o o r d i n a t e s o f Q ( x 2 , y 2 ) = ( 4 3 , 7 3 ) . H e n c e , ( c ) ( i i ) .

Q:  

The value of λ , if the lines 2 x + 3 y + 4 + λ 6 x y + 12 = 0  are

Column C1                                                                  Column C2

i.       Parallel to y-axis is                                                 (i) λ = - 3 4  

ii.    Perpendicular to   7 x + y 4 = 0 is                           (ii) λ = - 1 3  

iii.   passes through (1, 2) is                                            (iii) λ = - 17 41  

iv.  parallel to x-axis is                                                  (iv) λ = 3  

Read more
A: 

This is a True or False Type Questions as classified in NCERT Exemplar

Sol:

(a)Given??equationis(2x+3y+4)+λ(6xy+12)=0(2+6λ)x+(3λ)y+4+12λ=0(i)Ifeqn.(i)isparalleltoyaxis,then3λ=0λ=3Hence,(a)(iv)(b)Given??linesare(2x+3y+4)+λ(6xy+12)=0(i)(2+6λ)x+(3λ)y+4+12λ=0Slope=(2+6λ3λ)equationis7x+y4=0(ii)Slope=7Ifeqn.(i)andeqn.(ii)areperpendiculartoeachother(7)[(2+6λ3λ)]=114+42λ3λ=114+42λ=3+λ42λλ=31441λ=17λ=1741Hence,(b)(iii)(c)Given??equationis(2x+3y+4)+λ(6xy+12)=0(i)Ifeqn.(i)throughthegiven(1,2)then(2×1+3×2+4)+λ(6×12+12)=0(2+6+4)+λ(62+12)=012+16λ=0λ=1216=34Hence,(c)(i)(d)Thegiven??equationis(2x+3y+4)+λ(6xy+12)=0(2+6λ)x+(3λ)y+4+12λ=0(i)Ifeqn.(i)isparalleltoxaxis,then2+6λ=0λ=13Hence,(d)(ii)

Q:  

The equation of the line through the intersection of the lines 2x3y=0 and 4x5y=2 and

Column C1Column C2

through the point (2, 1) is (i) 2xy=4

perpendicular to the line x+2y+1=0 is (ii) x+y5=0

parallel to the line 3x4y+5=0 is (iii) xy1=0

equally inclined to the axes is (iv) 3x4y1=0

Read more
A: 

Sol:

( a ) G i v e n ? ? e q u a t i o n s ? ? a r e ? ? 2 x ? 3 y = 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ( i ) ? ? ? ? ? ? ? a n d ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 4 x ? 5 y = 2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ( i i ) ??????Equations??of??line??passing??through??eqn.(i)??and??(ii)??we??get ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ( 2 x ? 3 y ) + k ( 4 x ? 5 y ? 2 ) = 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ( i i i ) ? ? ? ? ? ? I f ? ? e q n . ( i i i ) ? ? p a s s e s ? ? t h r o u g h ? ? ( 2 , 1 ) , ? ? w e ? ? g e t ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ( 2 × 2 ? 3 × 1 ) + k ( 4 × 2 ? 5 × 1 ? 2 ) = 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ( 4 ? 3 ) + k ( 8 ? 5 ? 2 ) = 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 + k ( 8 ? 7 ) = 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? k = ? 1 ? ? ? ? ? S o , ? ? t h e ? ? r e q u i r e d ? ? e q u a t i o n ? ? i s ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ( 2 x ? 3 y ) ? 1 ( 4 x ? 5 y ? 2 ) = 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 x ? 3 y ? 4 x + 5 y + 2 = 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 x + 2 y + 2 = 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? x ? y ? 1 = 0 ? ? ? ? ? ? H e n c e , ? ? ( a ) ? ( i i i ) (b)Equation??of??any??line??passing??through??the??point??of??intersection??of??the??line ? ? ? ? ? ? ? 2 x ? 3 y = 0 ? ? a n d ? ? 4 x ? 5 y = 2 ? ? i s ? ? ? ? ? ? ? ? ? ? ( 2 x ? 3 y ) + k ( 4 x ? 5 y ? 2 ) = 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ( i ) ? ? ? ( 2 + 4 k ) x + ( ? 3 ? 5 k ) y ? 2 k = 0 ? ? ? ? ? ? ? ? S l o p e = ? ( 2 + 4 k ) ? 3 ? 5 k = 2 + 4 k 3 + 5 k ? ? ? ? ? ? ? ? S l o p e ? ? o f ? ? t h e ? ? g i v e n ? ? l i n e ? ? x + 2 y + 1 = 0 ? ? i s ? ? ? 1 2 . ? ? ? ? ? ? ? ? I f ? ? t h e y ? ? a r e ? ? p e r p e n d i c u l a r ? ? t o ? ? e a c h ? ? o t h e r ? ? t h e n ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 2 ( 2 + 4 k 3 + 5 k ) = ? 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 + 2 k 3 + 5 k = 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 + 2 k = 3 + 5 k ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 3 k = ? 2 ? ? ? ? ? ? ? ? ? k = ? 2 3 ? ? ? ? ? ? P u t t i n g ? ? t h e ? ? v a l u e ? ? o f ? ? k ? ? i n ? ? e q n . ( i ) ? ? w e ? ? g e t ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ( 2 x ? 3 y ) ? 2 3 ( 4 x ? 5 y ? 2 ) = 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 6 x ? 9 y ? 8 x + 1 0 y + 4 = 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 x + y + 4 = 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 x ? y = 4 ? ? ? ? ? ? H e n c e , ? ? ( b ) ? ( i )

( c ) G i v e n ? ? e q u a t i o n s ? ? a r e ? ? 2 x ? 3 y = 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ( i ) ? ? ? ? ? ? ? a n d ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 4 x ? 5 y = 2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ( i i ) ??????Equations??of??line??passing??through??eqn.(i)??and??(ii)??we??get ? ? ? ? ? ? ? ? ? ? ? ? ? ( 2 x ? 3 y ) + k ( 4 x ? 5 y ? 2 ) = 0 ? ? ? ? ? ( 2 + 4 k ) x + ( ? 3 ? 5 k ) y ? 2 k = 0 ? ? ? ? ? ? ? S l o p e = ? ( 2 + 4 k ) ? 3 ? 5 k = 2 + 4 k 3 + 5 k ? ? ? ? ? ? ? ? S l o p e ? ? o f ? ? t h e ? ? g i v e n ? ? l i n e ? ? 3 x ? 4 y + 5 = 0 ? ? i s ? ? 3 4 . ? ? ? ? ? ? ? ? I f ? ? t h e ? ? t w o ? ? e q u a t i o n s ? ? a r e ? ? p a r a l l e l , ? ? t h e n ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 + 4 k 3 + 5 k = 3 4 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 8 + 1 6 k = 9 + 1 5 k ? ? ? ? ? ? ? ? ? ? ? ? ? 1 6 k ? 1 5 k = 9 ? 8 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? k = 1 ? ? ? ? ? S o , ? ? t h e ? ? r e q u i r e d ? ? e q u a t i o n ? ? o f ? ? l i n e ? ? i s ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ( 2 x ? 3 y

Maths NCERT Exemplar Solutions Class 11th Chapter Ten Logo

JEE MAINS 26th February 2021 First Shift

JEE MAINS 26th February 2021 First Shift

Try these practice questions

Q1:

If sin1xa=cos1xb=tan1yc;0<x<1, then the value of cos(πca+b)is:

Q2:

The value of |(1+1)(a+2)a+21(a+2)(a+3)a+31(a+3)(a+4)a+41|is:

Q3:

The value of π2π2cos2x1+3xdxis: 

Q&A Icon
Commonly asked questions
Q:  

The area bounded by the lines y = ||x2|2| is-----------.

A: 

Information missing. The question was droppedby NTA.

 y=||x1|2|

Area bounded region = 12×4×2=4

Q:  

If 3(cos2x)=(31)cosx+1, the number of solutions of the given equation when x  [0,π2] is------.

A: 

3cos2x= (31)cosx+1

(3cosx+1) (cosx1)=0

cosx=13 (rejected)

Hence, cos x = 1 x = 0 one solution

Q:  

The number of solution of the log4 (x-1) = log2 (x-3) is------------.

A: 

 log4 (x1)=log2 (x3)

12log2 (x1)=log2 (x3)

log2 (x1)=log2 (x3)2

x1=x26x+9

x=2, 5

also x – 1 > 0 and x – 3 > 0

x > 1 & x > 3

Hence, x = 5 possible. Only one solution.

Q:  

If y = y(x) is the solution of the equation esin y cosydydx+esinycosx=cosx,y(0)=0; then 1+y(π6)+32y(π3)+12y(π4) is equal to----------.

A: 

esinycosydydx+esinycosx=cosx

Put esin y = t

esinycosydydx=dtdx

dtdx+tcosx=cosx

I.F=ecosxdx=esinx

tesinx=esinxcosxdx

Put sin x = u, cos xdx = du

putx=0, y (0)=0, 1=1+cc=0

1+0+0+0=1

Q:  

Let (λ,2,1) be a point on the plane which passes which through the point (4, 2, 2). If the plane is perpendicular to the line joining the points (2, 21, 29) and (1, 16, 23), then (λ11)24λ114 is equal to----------.

Read more
A: 

Let A (2, 21, 29), B (1, 16, 23), P (λ, 2, 1), Q (4, 2, 2)

Given ABPQ

AB.PQ=0

(i^+5j^6k^). ( (4λ)i^4j^+k^)=0

4λ206=0

λ=22

(λ11)2+ (4λ11)4=4+84=8

Q:  

The number of integral values of ‘k’ for which the equation 3sinx + 4cos x = k + 1 has a solution, k  R is------------.

Read more
A: 

3sinx+4cosx=k+1, cosα=35, sinα=45

5sin (x+α)=k+1,

5k+156k4

 total number of integral values of k is 11.

Q:  

The sum of 162th power of the roots of the equation x 3 2 x 2 + 2 x 1 = 0 i s -------------.

Read more
A: 

(x1) (x2x+1)=0

x=1, x=1±3i2=12+32i, 1232i=eiπ3, eiπ3

Sum of 162th power of roots = 1+ei54π+ei54π=1+1+1=3

Q:  

Let m, n  N and gcd (2, n) = 1. If 30 (300)+29(301)+.....+2(3028)+1(3029) = n. 2m, then n + m is equal to--------.

(Here(nk)=n?Ck)

Read more
A: 

3030C0+2930C1+.....+230C28+1.30C29=n.2m

n=15, m=0

n+m=15+30=45

Q:  

The difference between degree and order of a differential equation that represents the family of curves given by y2 = a (x+a2),a>0is --------------.

Read more
A: 

y2=a (x+a2), a>0

2yy1 = a

y2=2yy1 (x+2yy12)

y=2y1x+y12yy1

(y2y1x)2=y12.2yy1=2yy13

order=1, degree=3

Hence, degree – order = 3 – 1 = 2

Q:  

The value of the integral 0π|sin2x|dxis -----------.

A: 

0π|sin2x|dx

=20π/2sin2xdx =2  [cos2x2]0π/2 = 2 ( 1 2 ( 1 2 ) ) = 2

Maths NCERT Exemplar Solutions Class 11th Chapter Ten Logo

JEE Mains 2025

JEE Mains 2025

qna

Maths NCERT Exemplar Solutions Class 11th Chapter Ten Exam

Student Forum

chatAnything you would want to ask experts?
Write here...