Maths NCERT Exemplar Solutions Class 11th Chapter Three: Overview, Questions, Preparation

Maths NCERT Exemplar Solutions Class 11th Chapter Three 2025 ( Maths NCERT Exemplar Solutions Class 11th Chapter Three )

alok kumar singh
Updated on Aug 29, 2025 13:59 IST

By alok kumar singh, Executive Content Operations

Table of content
  • Trigonometric Functions Short Answer Type Questions
  • Trigonometric Functions Long Answer Type Questions
  • Trigonometric Functions Objective Type Questions
  • Trigonometric Functions Fill in the blanks Type Questions
  • Trigonometric Functions True or False Type Questions
  • JEE Mains 2020
Maths NCERT Exemplar Solutions Class 11th Chapter Three Logo

Trigonometric Functions Short Answer Type Questions

1. Prove that t a n A + s e c A 1 t a n A s e c A + 1 = 1 + S i n A c o s A .

Sol:

  L . H . S . t a n A + s e c A 1 t a n A s e c A + 1 = t a n A + ( s e c A 1 ) t a n A ( s e c A 1 ) = [ t a n A + ( s e c A 1 ) ] [ t a n A ( s e c A 1 ) ] × [ t a n A + ( s e c A 1 ) ] [ t a n A ( s e c A 1 ) ] [ R a t i o n a l i z i n g t h e ] = [ t a n A + ( s e c A 1 ) ] 2 t a n 2 A ( s e c A 1 ) 2 = t a n 2 A + ( s e c A 1 ) 2 + 2 t a n A ( s e c A 1 ) t a n 2 A ( s e c 2 A + 1 2 s e c A ) = t a n 2 A + s e c 2 A + 1 2 s e c A + 2 t a n A s e c A 2 t a n A t a n 2 A s e c 2 A 1 + 2 s e c A = s e c 2 A + s e c 2 A 2 s e c A + 2 t a n A s e c A 2 t a n A 1 1 + 2 s e c A = 2 s e c 2 A 2 s e c A + 2 t a n A s e c A 2 t a n A 2 s e c A 2 = s e c 2 A s e c A + t a n A s e c A t a n A s e c A 1 = s e c A ( s e c A 1 ) + t a n A ( s e c A 1 ) s e c A 1 = ( s e c A 1 ) ( s e c A + t a n A ) ( s e c A 1 ) = s e c A + t a n A = 1 c o s A + s i n A c o s A = 1 + s i n A c o s A R . H . S . H e n c e p r o v e d .

 

2. If 2 s i n α 1 + c o s α + s i n α ,   = 1   then prove that 1 c o s α + s i n α 1 + s i n α = i s   a l s o   e q u a l   t o   y .

[Hint: Express 1 c o s α + s i n α 1 + s i n α = 1 c o s α + s i n α 1 + s i n α = 1 + c o s α + s i n α 1 + c o s α + s i n α

Sol: 

G i v e n t h a t : y = 2 s i n α 1 + c o s α + s i n α = 2 s i n α 1 + c o s α + s i n α × 1 + s i n α c o s α 1 + s i n α c o s α = 2 s i n α ( 1 c o s α + s i n α ) ( 1 + s i n α ) 2 c o s 2 α = 2 s i n α ( 1 c o s α + s i n α ) 1 + s i n 2 α + 2 s i n α c o s 2 α = 2 s i n α ( 1 c o s α + s i n α ) ( 1 c o s 2 α ) + s i n 2 α + 2 s i n α = 2 s i n α ( 1 c o s α + s i n α ) s i n 2 α + s i n 2 α + 2 s i n α = 2 s i n α ( 1 c o s α + s i n α ) 2 s i n 2 α + 2 s i n α = 2 s i n α ( 1 c o s α + s i n α ) 2 s i n α ( 1 + s i n α ) = 1 c o s α + s i n α 1 + s i n α = y H e n c e p r o v e d .

Q&A Icon
Commonly asked questions
Q:  

Prove that t a n A + s e c A 1 t a n A s e c A + 1 = 1 + S i n A c o s A .

Q:  

If 2 s i n α 1 + c o s α + s i n α ,   = 1   then prove that 1 c o s α + s i n α 1 + s i n α = i s   a l s o   e q u a l   t o   y .

[Hint: Express 1 c o s α + s i n α 1 + s i n α = 1 c o s α + s i n α 1 + s i n α = 1 + c o s α + s i n α 1 + c o s α + s i n α  

Read more
Q:  

If m   s i n θ = n   s i n ( θ + 2 α ) , then prove that t a n ( θ + α ) c o t α = m + n m n .  

[Hint: Express s i n ( θ + 2 α ) s i n θ   and apply componendo and dividendo.]

Read more
Maths NCERT Exemplar Solutions Class 11th Chapter Three Logo

Trigonometric Functions Long Answer Type Questions

1. If s i n ( θ + α ) = a and s i n ( θ + β ) = b , then prove that c o s 2 ( α β ) 4 a b   c o s ( α β ) = 1 2 a 2 2 b 2 .

Hint: Express cos ( α β ) = cos (( θ + α ) ( θ + β )   )]

Sol:

G i v e n t h a t : s i n ( θ + α ) = a a n d s i n ( θ + β ) = b c o s ( α β ) = c o s [ θ + α θ β ] = c o s [ ( θ + α ) ( θ + β ) ] = c o s ( θ + α ) c o s ( θ + β ) + s i n ( θ + α ) s i n ( θ + β ) = 1 s i n 2 ( θ + α ) 1 s i n 2 ( θ + β ) + a . b = ( 1 a 2 ) ( 1 b 2 ) + a b = a b + 1 a 2 b 2 + a 2 b 2 N o w c o s 2 ( α β ) 4 a b c o s ( α β ) = 2 c o s 2 ( α β ) 1 4 a b c o s ( α β ) [ c o s 2 θ = 2 c o s 2 θ 1 ] = 2 [ a b + 1 a 2 b 2 + a 2 b 2 ] 2 1 4 a b [ a b + 1 a 2 b 2 + a 2 b 2 ] = 2 [ a 2 b 2 + 1 a 2 b 2 + a 2 b 2 + 2 a b 1 a 2 b 2 + a 2 b 2 ] 1 4 a 2 b 2 4 a b 1 a 2 b 2 + a 2 b 2 = 2 a 2 b 2 + 2 2 a 2 2 b 2 + 2 a 2 b 2 + 4 a b 1 a 2 b 2 + a 2 b 2 1 4 a 2 b 2 4 a b 1 a 2 b 2 + a 2 b 2 = 1 2 a 2 2 b 2 H e n c e , c o s 2 ( α β ) 4 a b c o s ( α β ) = 1 2 a 2 2 b 2 H e n c e p r o v e d .

 

2. If c o s ( θ + ϕ ) = m   c o s ( θ ϕ ) , then prove that tan θ = 1 m 1 + m .   c o t ϕ

[Hint: Express c o s ( θ + α ) c o s ( θ α ) = m 1   .]and apply componendo and dividendo.]

Sol:

G i v e n t h a t : c o s ( θ + ϕ ) = m c o s ( θ ϕ ) c o s ( θ + ϕ ) c o s ( θ ϕ ) = m 1 Using c o m p o n e n d o a n d d i v i d e n d o t h e o r e m , w e g e t c o s ( θ + ϕ ) + c o s ( θ ϕ ) c o s ( θ + ϕ ) c o s ( θ ϕ ) = m + 1 m 1 2 c o s ( θ + ϕ + θ ϕ 2 ) . c o s ( θ + ϕ θ + ϕ 2 ) 2 s i n ( θ + ϕ + θ ϕ 2 ) . s i n ( θ + ϕ θ + ϕ 2 ) = m + 1 m 1 c o s θ . c o s ϕ s i n θ . s i n ϕ = m + 1 m 1 c o t θ . c o t ϕ = m + 1 m 1 c o t ϕ t a n θ = m + 1 m 1 = 1 + m 1 m t a n θ = 1 + m 1 m c o t ϕ . H e n c e p r o v e d .

Q&A Icon
Commonly asked questions
Q:  

If  s i n ( θ + α ) = a and s i n ( θ + β ) = b , then prove that c o s 2 ( α β ) 4 a b   c o s ( α β ) = 1 2 a 2 2 b 2 .

Hint: Express cos ( α β ) = cos (( θ + α ) ( θ + β )   )]

Q:  

If c o s ( θ + ϕ ) = m   c o s ( θ ϕ ) , then prove that tan θ = 1 m 1 + m .   c o t ϕ

[Hint: Express c o s ( θ + α ) c o s ( θ α ) = m 1   .]and apply componendo and dividendo.]

Q:  

Find the value of the expression 3 [ s i n 4 ( 3 π 2 α ) + s i n 4 ( 3 π + α ) ] 2 [ s i n 6 ( 2 π / 2 + α ) + s i n 6 ( 5 π α ) ] .

Read more
Maths NCERT Exemplar Solutions Class 11th Chapter Three Logo

Trigonometric Functions Objective Type Questions

 

Choose the correct answer from the given four options in each of the Exercises 30 to 59:

1. If s i n θ + c o s e c θ = 2 , then s i n 2 θ + c o s e c 2 θ is equal to:

(a) 1

(b) 4

(c) 2

(d) None of these

Sol:

G i v e n t h a t : s i n θ + c o s e c θ = 2 S q u a r i n g b o t h s i d e s , w e g e t ( s i n θ + c o s e c θ ) 2 = ( 2 ) 2 s i n 2 θ + c o s e c 2 θ + 2 s i n θ c o s e c θ = 4 s i n 2 θ + c o s e c 2 θ + 2 s i n θ × 1 s i n θ = 4 s i n 2 θ + c o s e c 2 θ + 2 = 4 s i n 2 θ + c o s e c 2 θ = 2 H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

 

2. If f ( x ) = c o s 2 x + s e c 2 x , then:

(a) f ( x ) < 1

(b) f ( x ) = 1

(c) 2 < f ( x ) < 1

(d) f(x) 2

 [Hint: A.M ≥ G.M.]

 

Sol:

G i v e n t h a t : f ( x ) = c o s 2 x + se c 2 x W e k n o w t h a t A M G M c o s 2 x + se c 2 x 2 c o s 2 x . se c 2 x c o s 2 x + se c 2 x 2 1 c o s 2 x + se c 2 x 2 f ( x ) 2 H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q&A Icon
Commonly asked questions
Q:  

Choose the correct answer from the given four options in each of the Exercises 30 to 59:

If s i n θ + c o s e c θ = 2 , then s i n 2 θ + c o s e c 2 θ is equal to:

(a) 1

(b) 4

(c) 2

(d) None of these

Read more
Q:  

If f ( x ) = c o s 2 x + s e c 2 x , then:

(a) f ( x ) < 1

(b) f ( x ) = 1

(c) 2 < f ( x ) < 1

(d) f(x)2

 [Hint: A.M ≥ G.M.]

Q:  

If t a n θ = 1 2 = and t a n ϕ = 1 / 3   , then the value of θ + ϕ is:

(a) π 6

(b) π

(c) 0

(d) π 4

Maths NCERT Exemplar Solutions Class 11th Chapter Three Logo

Trigonometric Functions Fill in the blanks Type Questions

1. The value of s i n 5 0 s i n 1 3 0 is ___.

Sol:

          s i n 5 0 0 s i n 1 3 0 0 = s i n 5 0 0 s i n ( 1 8 0 0 5 0 0 ) = s i n 5 0 0 s i n 5 0 0 = 1 H e n c e , t h e v a l u e o f f i l l e r i s 1 .

 

2. If k = s i n π 1 8 s i n 5 π 1 8 s i n 7 π 1 8 , then the numerical value of k is ___.

Sol:

G i v e n t h a t : k = s i n ( π 1 8 ) s i n ( 5 π 1 8 ) s i n ( 7 π 1 8 ) k = s i n 1 0 0 . s i n 5 0 0 . s i n 7 0 0 k = s i n 1 0 0 . s i n ( 9 0 0 4 0 0 ) . s i n ( 9 0 0 2 0 0 ) k = s i n 1 0 0 . c o s 4 0 0 . c o s 2 0 0 k = s i n 1 0 0 . 1 2 [ 2 c o s 4 0 0 . c o s 2 0 0 ] k = s i n 1 0 0 . 1 2 [ c o s ( 4 0 0 + 2 0 0 ) + c o s ( 4 0 0 2 0 0 ) ] k = 1 2 s i n 1 0 0 [ c o s 6 0 0 + c o s 2 0 0 ] k = 1 2 s i n 1 0 0 [ 1 2 + c o s 2 0 0 ] k = 1 4 s i n 1 0 0 + 1 2 s i n 1 0 0 c o s 2 0 0 k = 1 4 s i n 1 0 0 + 1 4 ( 2 s i n 1 0 0 c o s 2 0 0 ) k = 1 4 s i n 1 0 0 + 1 4 [ s i n ( 1 0 0 + 2 0 0 ) + s i n ( 1 0 0 2 0 0 ) ] k = 1 4 s i n 1 0 0 + 1 4 [ s i n 3 0 0 + s i n ( 1 0 0 ) ] k = 1 4 s i n 1 0 0 + 1 4 s i n 3 0 0 1 4 s i n 1 0 0 k = 1 4 s i n 3 0 0 = 1 4 × 1 2 = 1 8 . H e n c e , t h e v a l u e o f f i l l e r i s 1 8 .

Q&A Icon
Commonly asked questions
Q:  

The value of s i n 5 0 s i n 1 3 0 is ___.

Q:  

If k = s i n π 1 8 s i n 5 π 1 8 s i n 7 π 1 8 , then the numerical value of k is ___.

Q:  

If t a n A = 1 c o s B s i n B , then t a n 2 A is ___.

Maths NCERT Exemplar Solutions Class 11th Chapter Three Logo

Trigonometric Functions True or False Type Questions

1. If t a n A = 1 c o s B s i n B , then t a n 2 A = t a n B .

Sol:

G i v e n t h a t : t a n A = 1 c o s B s i n B = 2 s i n 2 B / 2 2 s i n B / 2 c o s B / 2 = t a n B 2 t a n 2 A = 2 t a n A 1 t a n 2 A = 2 t a n B / 2 1 t a n 2 B / 2 t a n 2 A = t a n B H e n c e , t h e s t a t e m e n t i s ' T r u e ' .

 

2. The equality s i n A + s i n 2 A + s i n 3 A = 3 holds for some real value of A .

Sol: 

G i v e n t h a t : s i n A + s i n 2 A + s i n 3 A = 3 Since t h e maximum v a l u e o f s i n A i s 1 b u t f o r s i n 2 A a n d s i n 3 A i t i s n o t e q u a l t o 1 . S o i t i s n o t p o s s i b l e . H e n c e , t h e s t a t e m e n t i s ' F a l s e ' .

Q&A Icon
Commonly asked questions
Q:  

If t a n A = 1 c o s B s i n B , then t a n 2 A = t a n B .

Q:  

The equality s i n A + s i n 2 A + s i n 3 A = 3 holds for some real value of A .

Q:  

s i n 1 0 is greater than c o s 1 0 .

Maths NCERT Exemplar Solutions Class 11th Chapter Three Logo

JEE Mains 2020

JEE Mains 2020

Try these practice questions

Q1:

Let a be root of the equation 1 + x2 + x4 = 0. Then the value of a1011 + a2022 - a3033 is equal to:

qna

Maths NCERT Exemplar Solutions Class 11th Chapter Three Exam

Student Forum

chatAnything you would want to ask experts?
Write here...