Maths NCERT Exemplar Solutions Class 11th Chapter Three: Overview, Questions, Preparation

Maths NCERT Exemplar Solutions Class 11th Chapter Three 2025 ( Maths NCERT Exemplar Solutions Class 11th Chapter Three )

alok kumar singh
Updated on Aug 29, 2025 13:59 IST

By alok kumar singh, Executive Content Operations

Table of content
  • Trigonometric Functions Short Answer Type Questions
  • Trigonometric Functions Long Answer Type Questions
  • Trigonometric Functions Objective Type Questions
  • Trigonometric Functions Fill in the blanks Type Questions
  • Trigonometric Functions True or False Type Questions
  • JEE Mains 2020
Maths NCERT Exemplar Solutions Class 11th Chapter Three Logo

Trigonometric Functions Short Answer Type Questions

1. Prove that t a n A + s e c A 1 t a n A s e c A + 1 = 1 + S i n A c o s A .

Sol:

  L . H . S . t a n A + s e c A 1 t a n A s e c A + 1 = t a n A + ( s e c A 1 ) t a n A ( s e c A 1 ) = [ t a n A + ( s e c A 1 ) ] [ t a n A ( s e c A 1 ) ] × [ t a n A + ( s e c A 1 ) ] [ t a n A ( s e c A 1 ) ] [ R a t i o n a l i z i n g t h e ] = [ t a n A + ( s e c A 1 ) ] 2 t a n 2 A ( s e c A 1 ) 2 = t a n 2 A + ( s e c A 1 ) 2 + 2 t a n A ( s e c A 1 ) t a n 2 A ( s e c 2 A + 1 2 s e c A ) = t a n 2 A + s e c 2 A + 1 2 s e c A + 2 t a n A s e c A 2 t a n A t a n 2 A s e c 2 A 1 + 2 s e c A = s e c 2 A + s e c 2 A 2 s e c A + 2 t a n A s e c A 2 t a n A 1 1 + 2 s e c A = 2 s e c 2 A 2 s e c A + 2 t a n A s e c A 2 t a n A 2 s e c A 2 = s e c 2 A s e c A + t a n A s e c A t a n A s e c A 1 = s e c A ( s e c A 1 ) + t a n A ( s e c A 1 ) s e c A 1 = ( s e c A 1 ) ( s e c A + t a n A ) ( s e c A 1 ) = s e c A + t a n A = 1 c o s A + s i n A c o s A = 1 + s i n A c o s A R . H . S . H e n c e p r o v e d .

 

2. If 2 s i n α 1 + c o s α + s i n α ,   = 1   then prove that 1 c o s α + s i n α 1 + s i n α = i s   a l s o   e q u a l   t o   y .

[Hint: Express 1 c o s α + s i n α 1 + s i n α = 1 c o s α + s i n α 1 + s i n α = 1 + c o s α + s i n α 1 + c o s α + s i n α

Sol: 

G i v e n t h a t : y = 2 s i n α 1 + c o s α + s i n α = 2 s i n α 1 + c o s α + s i n α × 1 + s i n α c o s α 1 + s i n α c o s α = 2 s i n α ( 1 c o s α + s i n α ) ( 1 + s i n α ) 2 c o s 2 α = 2 s i n α ( 1 c o s α + s i n α ) 1 + s i n 2 α + 2 s i n α c o s 2 α = 2 s i n α ( 1 c o s α + s i n α ) ( 1 c o s 2 α ) + s i n 2 α + 2 s i n α = 2 s i n α ( 1 c o s α + s i n α ) s i n 2 α + s i n 2 α + 2 s i n α = 2 s i n α ( 1 c o s α + s i n α ) 2 s i n 2 α + 2 s i n α = 2 s i n α ( 1 c o s α + s i n α ) 2 s i n α ( 1 + s i n α ) = 1 c o s α + s i n α 1 + s i n α = y H e n c e p r o v e d .

Q&A Icon
Commonly asked questions
Q:  

Prove that t a n A + s e c A 1 t a n A s e c A + 1 = 1 + S i n A c o s A .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

L . H . S . t a n A + s e c A 1 t a n A s e c A + 1 = t a n A + ( s e c A 1 ) t a n A ( s e c A 1 ) = [ t a n A + ( s e c A 1 ) ] [ t a n A ( s e c A 1 ) ] × [ t a n A + ( s e c A 1 ) ] [ t a n A ( s e c A 1 ) ] [ Rationalizingthedenominator ] = [ t a n A + ( s e c A 1 ) ] 2 t a n 2 A ( s e c A 1 ) 2 = t a n 2 A + ( s e c A 1 ) 2 + 2 t a n A ( s e c A 1 ) t a n 2 A ( s e c 2 A + 1 2 s e c A ) = t a n 2 A + s e c 2 A + 1 2 s e c A + 2 t a n A s e c A 2 t a n A t a n 2 A s e c 2 A 1 + 2 s e c A = s e c 2 A + s e c 2 A 2 s e c A + 2 t a n A s e c A 2 t a n A 1 1 + 2 s e c A = 2 s e c 2 A 2 s e c A + 2 t a n A s e c A 2 t a n A 2 s e c A 2 = s e c 2 A s e c A + t a n A s e c A t a n A s e c A 1 = s e c A ( s e c A 1 ) + t a n A ( s e c A 1 ) s e c A 1 = ( s e c A 1 ) ( s e c A + t a n A ) ( s e c A 1 ) = s e c A + t a n A = 1 c o s A + s i n A c o s A = 1 + s i n A c o s A R . H . S . H e n c e p r o v e d .

Q:  

If 2 s i n α 1 + c o s α + s i n α ,   = 1   then prove that 1 c o s α + s i n α 1 + s i n α = i s   a l s o   e q u a l   t o   y .

[Hint: Express 1 c o s α + s i n α 1 + s i n α = 1 c o s α + s i n α 1 + s i n α = 1 + c o s α + s i n α 1 + c o s α + s i n α  

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

          G i v e n t h a t : y = 2 s i n α 1 + c o s α + s i n α = 2 s i n α 1 + c o s α + s i n α × 1 + s i n α c o s α 1 + s i n α c o s α = 2 s i n α ( 1 c o s α + s i n α ) ( 1 + s i n α ) 2 c o s 2 α = 2 s i n α ( 1 c o s α + s i n α ) 1 + s i n 2 α + 2 s i n α c o s 2 α = 2 s i n α ( 1 c o s α + s i n α ) ( 1 c o s 2 α ) + s i n 2 α + 2 s i n α = 2 s i n α ( 1 c o s α + s i n α ) s i n 2 α + s i n 2 α + 2 s i n α = 2 s i n α ( 1 c o s α + s i n α ) 2 s i n 2 α + 2 s i n α = 2 s i n α ( 1 c o s α + s i n α ) 2 s i n α ( 1 + s i n α ) = 1 c o s α + s i n α 1 + s i n α = y H e n c e p r o v e d .

Q:  

If m   s i n θ = n   s i n ( θ + 2 α ) , then prove that t a n ( θ + α ) c o t α = m + n m n .  

[Hint: Express s i n ( θ + 2 α ) s i n θ   and apply componendo and dividendo.]

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol: 

  G i v e n t h a t : m s i n θ = n s i n ( θ + 2 α ) s i n ( θ + 2 α ) s i n θ = m n Usingcomponendoanddividendotheormweget s i n ( θ + 2 α ) + s i n θ s i n ( θ + 2 α ) s i n θ = m + n m n 2 s i n ( θ + 2 α + θ 2 ) . c o s ( θ + 2 α θ 2 ) 2 c o s ( θ + 2 α + θ 2 ) . s i n ( θ + 2 α θ 2 ) = m + n m n [ ? s i n A + s i n B = 2 s i n A + B 2 . c o s A B 2 s i n A s i n B = 2 c o s A + B 2 . s i n A B 2 ] s i n ( θ + α ) . c o s α c o s ( θ + α ) s i n α = m + n m n t a n ( θ + α ) . c o t α = m + n m n H e n c e p r o v e d .

Q:  

If c o s ( α + β ) = 4 5 and s i n ( α β ) = 5 1 3 , where α lies between 0 and π 4 , find the value of t a n 2 α .
[Hint: Express t a n 2 α
as t a n ( α + β + α β ) .]

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t : c o s ( α + β ) = 4 5 t a n ( α + β ) = 3 4 a n d s i n ( α β ) = 5 1 3 t a n ( α β ) = 5 1 2 N o w t a n 2 α = t a n [ α + β + α β ] = t a n [ ( α + β ) + ( α β ) ] = t a n ( α + β ) + t a n ( α β ) 1 t a n ( α + β ) . t a n ( α β ) = 3 4 + 5 1 2 1 3 4 × 5 1 2 = 9 + 5 1 2 4 8 1 5 4 8 = 1 4 1 2 × 4 8 3 3 = 5 6 3 3 H e n c e , t a n 2 α = 5 6 3 3 .

Q:  

If t a n   x = b a , then find the value of a + b a b + a b a + b .

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

        G i v e n t h a t : t a n x = b a a + b a b + a b a + b = a + b a b + a b a + b = a + b + a b ( a b ) ( a + b ) = 2 a a 2 b 2 = 2 a a 1 b 2 a 2 = 2 1 t a n 2 x [ ? t a n x = b a ] = 2 1 s i n 2 x c o s 2 x = 2 c o s 2 x s i n 2 x c o s x = 2 c o s x c o s 2 x [ ? c o s 2 x = c o s 2 x s i n 2 x ] H e n c e , a + b a b + a b a + b = 2 c o s x c o s 2 x

Q:  

Prove that c o s θ + c o s θ 2   c o s 3 θ c o s 9 θ 2 = s i n 7 θ s i n 8 θ .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

L . H . S . c o s θ c o s θ 2   c o s 3 θ c o s 9 θ 2 = 1 2 [ 2 c o s θ c o s θ 2 ] 1 2 [ 2 c o s 3 θ c o s 9 θ 2 ] = 1 2 [ c o s ( θ + θ 2 ) + c o s ( θ θ 2 ) ] 1 2 [ c o s ( 3 θ + 9 θ 2 ) + c o s ( 3 θ 9 θ 2 ) ] = 1 2 [ c o s 3 θ 2 + c o s θ 2 c o s 1 5 θ 2 c o s ( 3 θ 2 ) ] = 1 2 [ c o s 3 θ 2 + c o s θ 2 c o s 1 5 θ 2 c o s 3 θ 2 ] [ ? c o s ( θ ) = c o s θ ] = 1 2 [ c o s θ 2 c o s 1 5 θ 2 ] = 1 2 [ 2 s i n ( θ 2 + 1 5 θ 2 ) . s i n ( θ 2 1 5 θ 2 ) ] = s i n 8 θ s i n ( 7 θ ) = s i n 7 θ s i n 8 θ [ ? s i n ( θ ) = s i n θ ] L . H . S . = R . H . S . H e n c e p r o v e d .

Q:  

If a   c o s θ + b   s i n θ = m and a   s i n θ b   c o s θ = n , then show that a 2 + b 2 = m 2 + n 2 .  

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

  G i v e n t h a t : a c o s θ + b s i n θ = m a n d a s i n θ b c o s θ = n R . H . S . m 2 + n 2 = ( a c o s θ + b s i n θ ) 2 + ( a s i n θ b c o s θ ) 2 = a 2 c o s 2 θ + b 2 s i n 2 θ + 2 a b s i n θ c o s θ + a 2 s i n 2 θ + b 2 c o s 2 θ 2 a b s i n θ c o s θ = a 2 c o s 2 θ + b 2 s i n 2 θ + a 2 s i n 2 θ + b 2 c o s 2 θ = a 2 ( c o s 2 θ + s i n 2 θ ) + b 2 ( s i n 2 θ + c o s 2 θ ) = a 2 . 1 + b 2 . 1 = a 2 + b 2 L . H . S . L . H . S . = R . H . S . H e n c e p r o v e d .

Q:  

Find the value of t a n 2 2 3 0 ' .
[Hint: Use θ = 4 5
.]

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol: 

  L e t 2 2 0 3 0 ' = θ 2 θ = 4 5 0 t a n 2 2 0 3 0 ' = t a n θ 2 = s i n θ 2 c o s θ 2 = 2 s i n θ 2 c o s θ 2 2 c o s 2 θ 2 = s i n θ 1 + c o s θ P u t θ = 4 5 0 s i n θ 1 + c o s θ = s i n 4 5 0 1 + c o s 4 5 0 = 1 2 1 + 1 2 = 1 2 + 1 = 1 × ( 2 1 ) ( 2 + 1 ) ( 2 1 ) = 2 1 H e n c e , t a n 2 2 0 3 0 ' = 2 1 .

Q:  

Prove that s i n   4 A = 4 s i n A   c o s 3 A 4 c o s A   s i n 3 A .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

L . H . S . s i n 4 A = s i n ( A + 3 A ) = s i n A c o s 3 A + c o s A s i n 3 A = s i n A ( 4 c o s 3 A 3 c o s A ) + c o s A ( 3 s i n A 4 s i n 3 A ) = 4 s i n A c o s 3 A 3 s i n A c o s A + 3 s i n A c o s A 4 c o s A s i n 3 A = 4 s i n A c o s 3 A 4 c o s A s i n 3 A R . H . S . L . H . S . = R . H . S . H e n c e p r o v e d .

Q:  

If t a n θ + s i n θ = m and t a n θ s i n θ = n , then prove that m 2 n 2 = 4 s i n θ   t a n θ .  

[Hint: Use m + n = 2 t a n θ and m n = 2 s i n θ ., then use   m 2 n 2 = ( m + n ) ( m n ) ]

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t : t a n θ + s i n θ = m a n d t a n θ s i n θ = n L . H . S . m 2 n 2 = ( m + n ) ( m n ) = [ ( t a n θ + s i n θ ) + ( t a n θ s i n θ ) ] . [ ( t a n θ + s i n θ ) ( t a n θ s i n θ ) ] = [ t a n θ + s i n θ + t a n θ s i n θ ] . [ t a n θ + s i n θ t a n θ + s i n θ ] = 2 t a n θ . 2 s i n θ = 4 s i n θ t a n θ R . H . S . L . H . S . = R . H . S . H e n c e p r o v e d .

Q:  

If t a n ( A + B ) = p , t a n ( A B ) = q , then show that t a n 2 A = 1 + p q p q .

[Hint: Use 2 A = ( A + B ) + ( A B )   .]

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t : t a n ( A + B ) = p a n d t a n ( A B ) = q L . H . S . t a n 2 A = t a n ( A + B + A B ) = t a n [ ( A + B ) + ( A B ) ] = t a n ( A + B ) + t a n ( A B ) 1 t a n ( A + B ) . t a n ( A B ) = p + q 1 p q R . H . S . L . H . S . = R . H . S . H e n c e p r o v e d .

Q:  

If  c o s α + c o s β = 0 and s i n α + s i n β = 0 , then prove that c o s 2 α + c o s 2 β = 2 c o s ( α + β ) .

[Hint: Use ( c o s α + c o s β ) 2 ( s i n α + s i n β ) 2 = 0 .]

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t : c o s α + c o s β = 0 a n d s i n α + s i n β = 0 ( c o s α + c o s β ) 2 ( s i n α + s i n β ) 2 = 0 ( c o s 2 α + c o s 2 β + 2 c o s α c o s β ) ( s i n 2 α + s i n 2 β + 2 s i n α s i n β ) = 0 c o s 2 α + c o s 2 β + 2 c o s α c o s β s i n 2 α s i n 2 β 2 s i n α s i n β = 0 ( c o s 2 α s i n 2 α ) + ( c o s 2 β s i n 2 β ) + 2 ( c o s α c o s β s i n α s i n β ) = 0 c o s 2 α + c o s 2 β + 2 c o s ( α + β ) = 0 H e n c e , c o s 2 α + c o s 2 β = 2 c o s ( α + β ) . H e n c e p r o v e d .

Q:  

If s i n ( x + y ) a + b = s i n ( x y ) a b ,   then show that t a n x a = t a n y b .  

[Hint: Use Componendo and Dividendo.]

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t : s i n ( x + y ) s i n ( x y ) = a + b a b s i n ( x + y ) + s i n ( x y ) s i n ( x + y ) s i n ( x y ) = a + b + a b a + b a + b [ Usingcomponendoanddividendotheorem ] 2 s i n ( x + y + x y 2 ) c o s ( x + y x + y 2 ) 2 c o s ( x + y + x y 2 ) s i n ( x + y x + y 2 ) = 2 a 2 b s i n x . c o s y c o s x . s i n y = a b t a n x . c o t y = a b t a n x t a n y = a b . H e n c e p r o v e d .

Q:  

If  t a n θ = s i n α α c o s α + α , then show that s i n α + c o s α = 2 c o s θ .  

[Hint: Express the given equation as  t a n θ = t a n ( α π 4 ) .]

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t : t a n θ = s i n α c o s α s i n α + c o s α t a n θ = t a n α 1 t a n α + 1 = t a n α t a n π 4 1 + t a n π 4 t a n α t a n θ = t a n ( α π 4 ) θ = α π 4 c o s θ = c o s ( α π 4 ) c o s θ = c o s α c o s π 4 + s i n α s i n π 4 c o s θ = c o s α . 1 2 + s i n α . 1 2 2 c o s θ = c o s α + s i n α c o s α + s i n α = 2 c o s θ . H e n c e p r o v e d .

Q:  

If s i n θ + c o s θ = 1 , then find the general value of θ .

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t : s i n θ + c o s θ = 1 D i v i d i n g b o t h s i d e s b y ( 1 ) 2 + ( 1 ) 2 = 2 w e g e t 1 2 s i n θ + 1 2 c o s θ = 1 2 ( i ) s i n π 4 s i n θ + c o s π 4 c o s θ = 1 2 c o s ( θ π 4 ) = c o s π 4 θ π 4 = 2 n π ± π 4 , n Z [ I f c o s θ = c o s α θ = 2 n π ± α ] θ = 2 n π + π 4 + π 4 o r θ = 2 n π π 4 + π 4 θ = 2 n π + π 2 o r θ = 2 n π , n Z H e n c e , t h e g e n e r a l v a l u e s o f θ a r e 2 n π + π 2 a n d 2 n π .

Q:  

Find the most general value of θ satisfying the equation tanθ=1andcosθ=12.  

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t : t a n θ = 1 a n d c o s θ = 1 2 t a n θ = 1 t a n θ = t a n ( π 4 ) t a n θ = t a n ( 2 π π 4 ) t a n θ = t a n 7 π 4 θ = 7 π 4 N o w , c o s θ = 1 2 c o s θ = c o s π 4 c o s θ = c o s ( 2 π π 4 ) c o s θ = c o s 7 π 4 θ = 7 π 4 [ t a n θ a n d c o s θ a r e p o s i t i v e i n 4 t h q u a d r a n t ] H e n c e , t h e m o s t g e n e r a l v a l u e o f θ a r e 2 n π + 7 π 2 .

Q:  

If c o t θ + t a n θ = 2 c s c θ , then find the general value of θ .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t : c o t θ + t a n θ = 2 c o s e c θ c o s θ s i n θ + s i n θ c o s θ = 2 s i n θ c o s 2 θ + s i n 2 θ s i n θ c o s θ = 2 s i n θ 1 s i n θ c o s θ = 2 s i n θ 2 s i n θ c o s θ = s i n θ 2 s i n θ c o s θ s i n θ = 0 s i n θ ( 2 c o s θ 1 ) = 0 s i n θ 0 o r 2 c o s θ 1 = 0 o r c o s θ = 1 2 c o s θ = c o s π 3 θ = 2 n π ± π 3 H e n c e , t h e g e n e r a l v a l u e o f θ a r e 2 n π ± π 3 .

Q:  

If 2 s i n 2 θ = 3 c o s θ , where 0 θ 2 π , then find the value of θ .

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t : 2 s i n 2 θ = 3 c o s θ 2 ( 1 c o s 2 θ ) = 3 c o s θ 2 2 c o s 2 θ 3 c o s θ = 0 2 c o s 2 θ + 3 c o s θ 2 = 0 2 c o s 2 θ + 4 c o s θ c o s θ 2 = 0 2 c o s θ ( c o s θ + 2 ) 1 ( c o s θ + 2 ) = 0 ( c o s θ + 2 ) ( 2 c o s θ 1 ) = 0 c o s θ + 2 = 0 o r 2 c o s θ 1 = 0 c o s θ 2 [ 1 c o s θ 1 ] 2 c o s θ 1 = 0 c o s θ = 1 2 c o s θ = c o s π 3 , c o s ( 2 π π 3 ) c o s θ = c o s π 3 , c o s 5 π 3 θ = 2 n π ± π 3 a n d θ = 2 n π ± 5 π 3 ( n Z ) H e n c e , t h e v a l u e o f θ a r e π 3 a n d 5 π 3 .

Q:  

If s e c x c o s   5 x + 1 = 0 , where 0 < x π 2 , then find the value of x .

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t : s e c x c o s 5 x + 1 = 0 1 c o s x . c o s 5 x + 1 = 0 c o s 5 x + c o s x = 0 2 c o s ( 5 x + x 2 ) . c o s ( 5 x x 2 ) = 0 c o s 3 x . c o s 2 x = 0 c o s 3 x = 0 o r c o s 2 x = 0 3 x = π 2 o r 2 x = π 2 x = π 6 o r x = π 4 H e n c e , t h e v a l u e o f x a r e π 6 , π 4 .

Maths NCERT Exemplar Solutions Class 11th Chapter Three Logo

Trigonometric Functions Long Answer Type Questions

1. If s i n ( θ + α ) = a and s i n ( θ + β ) = b , then prove that c o s 2 ( α β ) 4 a b   c o s ( α β ) = 1 2 a 2 2 b 2 .

Hint: Express cos ( α β ) = cos (( θ + α ) ( θ + β )   )]

Sol:

G i v e n t h a t : s i n ( θ + α ) = a a n d s i n ( θ + β ) = b c o s ( α β ) = c o s [ θ + α θ β ] = c o s [ ( θ + α ) ( θ + β ) ] = c o s ( θ + α ) c o s ( θ + β ) + s i n ( θ + α ) s i n ( θ + β ) = 1 s i n 2 ( θ + α ) 1 s i n 2 ( θ + β ) + a . b = ( 1 a 2 ) ( 1 b 2 ) + a b = a b + 1 a 2 b 2 + a 2 b 2 N o w c o s 2 ( α β ) 4 a b c o s ( α β ) = 2 c o s 2 ( α β ) 1 4 a b c o s ( α β ) [ c o s 2 θ = 2 c o s 2 θ 1 ] = 2 [ a b + 1 a 2 b 2 + a 2 b 2 ] 2 1 4 a b [ a b + 1 a 2 b 2 + a 2 b 2 ] = 2 [ a 2 b 2 + 1 a 2 b 2 + a 2 b 2 + 2 a b 1 a 2 b 2 + a 2 b 2 ] 1 4 a 2 b 2 4 a b 1 a 2 b 2 + a 2 b 2 = 2 a 2 b 2 + 2 2 a 2 2 b 2 + 2 a 2 b 2 + 4 a b 1 a 2 b 2 + a 2 b 2 1 4 a 2 b 2 4 a b 1 a 2 b 2 + a 2 b 2 = 1 2 a 2 2 b 2 H e n c e , c o s 2 ( α β ) 4 a b c o s ( α β ) = 1 2 a 2 2 b 2 H e n c e p r o v e d .

 

2. If c o s ( θ + ϕ ) = m   c o s ( θ ϕ ) , then prove that tan θ = 1 m 1 + m .   c o t ϕ

[Hint: Express c o s ( θ + α ) c o s ( θ α ) = m 1   .]and apply componendo and dividendo.]

Sol:

G i v e n t h a t : c o s ( θ + ϕ ) = m c o s ( θ ϕ ) c o s ( θ + ϕ ) c o s ( θ ϕ ) = m 1 Using c o m p o n e n d o a n d d i v i d e n d o t h e o r e m , w e g e t c o s ( θ + ϕ ) + c o s ( θ ϕ ) c o s ( θ + ϕ ) c o s ( θ ϕ ) = m + 1 m 1 2 c o s ( θ + ϕ + θ ϕ 2 ) . c o s ( θ + ϕ θ + ϕ 2 ) 2 s i n ( θ + ϕ + θ ϕ 2 ) . s i n ( θ + ϕ θ + ϕ 2 ) = m + 1 m 1 c o s θ . c o s ϕ s i n θ . s i n ϕ = m + 1 m 1 c o t θ . c o t ϕ = m + 1 m 1 c o t ϕ t a n θ = m + 1 m 1 = 1 + m 1 m t a n θ = 1 + m 1 m c o t ϕ . H e n c e p r o v e d .

Q&A Icon
Commonly asked questions
Q:  

If  s i n ( θ + α ) = a and s i n ( θ + β ) = b , then prove that c o s 2 ( α β ) 4 a b   c o s ( α β ) = 1 2 a 2 2 b 2 .

Hint: Express cos ( α β ) = cos (( θ + α ) ( θ + β )   )]

A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t : s i n ( θ + α ) = a a n d s i n ( θ + β ) = b c o s ( α β ) = c o s [ θ + α θ β ] = c o s [ ( θ + α ) ( θ + β ) ] = c o s ( θ + α ) c o s ( θ + β ) + s i n ( θ + α ) s i n ( θ + β ) = 1 s i n 2 ( θ + α ) 1 s i n 2 ( θ + β ) + a . b = ( 1 a 2 ) ( 1 b 2 ) + a b = a b + 1 a 2 b 2 + a 2 b 2 N o w c o s 2 ( α β ) 4 a b c o s ( α β ) = 2 c o s 2 ( α β ) 1 4 a b c o s ( α β ) [ ? c o s 2 θ = 2 c o s 2 θ 1 ] = 2 [ a b + 1 a 2 b 2 + a 2 b 2 ] 2 1 4 a b [ a b + 1 a 2 b 2 + a 2 b 2 ] = 2 [ a 2 b 2 + 1 a 2 b 2 + a 2 b 2 + 2 a b 1 a 2 b 2 + a 2 b 2 ] 1 4 a 2 b 2 4 a b 1 a 2 b 2 + a 2 b 2 = 2 a 2 b 2 + 2 2 a 2 2 b 2 + 2 a 2 b 2 + 4 a b 1 a 2 b 2 + a 2 b 2 1 4 a 2 b 2 4 a b 1 a 2 b 2 + a 2 b 2 = 1 2 a 2 2 b 2 H e n c e , c o s 2 ( α β ) 4 a b c o s ( α β ) = 1 2 a 2 2 b 2 H e n c e p r o v e d .

Q:  

If c o s ( θ + ϕ ) = m   c o s ( θ ϕ ) , then prove that tan θ = 1 m 1 + m .   c o t ϕ

[Hint: Express c o s ( θ + α ) c o s ( θ α ) = m 1   .]and apply componendo and dividendo.]

A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t : c o s ( θ + ? ) = m c o s ( θ ? ) c o s ( θ + ? ) c o s ( θ ? ) = m 1 Usingcomponendoanddividendotheorem,weget c o s ( θ + ? ) + c o s ( θ ? ) c o s ( θ + ? ) c o s ( θ ? ) = m + 1 m 1 2 c o s ( θ + ? + θ ? 2 ) . c o s ( θ + ? θ + ? 2 ) 2 s i n ( θ + ? + θ ? 2 ) . s i n ( θ + ? θ + ? 2 ) = m + 1 m 1 c o s θ . c o s ? s i n θ . s i n ? = m + 1 m 1 c o t θ . c o t ? = m + 1 m 1 c o t ? t a n θ = m + 1 m 1 = 1 + m 1 m t a n θ = 1 + m 1 m c o t ? . H e n c e p r o v e d .

Q:  

Find the value of the expression 3 [ s i n 4 ( 3 π 2 α ) + s i n 4 ( 3 π + α ) ] 2 [ s i n 6 ( 2 π / 2 + α ) + s i n 6 ( 5 π α ) ] .

Read more
A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

          G i v e n t h a t : 3 [ s i n 4 ( 3 π 2 α ) + s i n 4 ( 3 π + α ) ] 2 [ s i n 6 ( π 2 + α ) + s i n 6 ( 5 π α ) ] = 3 [ c o s 4 α + s i n 4 ( π + α ) ] 2 [ c o s 6 α + s i n 6 ( π α ) ] = 3 [ c o s 4 α + s i n 4 α ] 2 [ c o s 6 α + s i n 6 α ] = 3 [ c o s 4 α + s i n 4 α + 2 s i n 2 α c o s 2 α 2 s i n 2 α c o s 2 α ] 2 [ ( c o s 2 α + s i n 2 α ) 3 3 c o s 2 α s i n 2 α ( c o s 2 α + s i n 2 α ) ] = 3 [ ( c o s 2 α + s i n 2 α ) 2 2 s i n 2 α c o s 2 α ] 2 [ 1 3 c o s 2 α s i n 2 α ] = 3 [ 1 2 s i n 2 α c o s 2 α ] 2 [ 1 3 c o s 2 α s i n 2 α ] = 3 6 s i n 2 α c o s 2 α 2 + 6 c o s 2 α s i n 2 α = 3 2 = 1 Hence,thevalueofthegivenexpressionis1.

Q:  

If a c o s 2 θ + b s i n 2 θ = c ,   has α and β as its roots, then prove that t a n α + t a n β = 2 b a + c .

[Hint: Use the identities for c o s 2 θ = 1 t a n 2 θ 1 + t a n 2 θ and s i n 2 θ   =   2 t a n θ 1 + t a n 2 θ ]

Read more
A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t : a c o s 2 θ + b s i n 2 θ = c a [ 1 t a n 2 θ 1 + t a n 2 θ ] + b [ 2 t a n θ 1 + t a n 2 θ ] = c a a t a n 2 θ + 2 b t a n θ = c ( 1 + t a n 2 θ ) [ ? c o s 2 θ = 1 t a n 2 θ 1 + t a n 2 θ , s i n 2 θ = 2 t a n θ 1 + t a n 2 θ ] a a t a n 2 θ + 2 b t a n θ c t a n 2 θ c = 0 ( a + c ) t a n 2 θ + 2 b t a n θ + ( a c ) = 0 ( a + c ) t a n 2 θ 2 b t a n θ + ( c a ) = 0 Sinceαandβaretherootsofthisequation t a n α + t a n β = ( 2 b ) a + c t a n α + t a n β = 2 b a + c . H e n c e p r o v e d .

Q:  

If θ lies in the first quadrant and c o s θ = 8 1 7 , then find the value of c o s ( 3 0 + θ ) + c o s ( 4 5 θ ) + c o s ( 1 2 0 θ ) .  

A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t : c o s θ = 8 1 7 s i n θ = 1 ( 8 1 7 ) 2 = 1 6 4 2 8 9 = 2 8 9 6 4 2 8 9 = 2 2 5 2 8 9 = 1 5 1 7 B u t θ l i e s i n I q u a d r a n t . s i n θ = 1 5 1 7 N o w c o s ( 3 0 0 + θ ) + c o s ( 4 5 0 θ ) + c o s ( 1 2 0 0 θ ) = c o s 3 0 0 c o s θ s i n 3 0 0 s i n θ + c o s 4 5 0 c o s θ + s i n 4 5 0 s i n θ + c o s 1 2 0 0 c o s θ + s i n 1 2 0 0 s i n θ = 3 2 c o s θ 1 2 s i n θ + 1 2 c o s θ + 1 2 s i n θ 1 2 c o s θ + 3 2 s i n θ = ( 3 2 c o s θ + 3 2 s i n θ ) 1 2 ( s i n θ + c o s θ ) + 1 2 ( c o s θ + s i n θ ) = 3 2 ( c o s θ + s i n θ ) 1 2 ( s i n θ + c o s θ ) + 1 2 ( c o s θ + s i n θ ) = ( 3 2 1 2 + 1 2 ) ( c o s θ + s i n θ ) = ( 3 1 2 + 1 2 ) ( 8 1 7 + 1 5 1 7 ) = ( 3 1 2 + 1 2 ) ( 2 3 1 7 ) = 2 3 1 7 ( 3 1 2 + 1 2 ) . H e n c e , t h e r e q u i r e d s o l u t i o n = 2 3 1 7 ( 3 1 2 + 1 2 ) .

Q:  

Find the value of the expression c o s 4 ( π 8 ) + c o s 4 ( 3 π 8 ) + c o s 4 ( 5 π 8 ) + c o s 4 ( 7 π 8 ) .

Hint : Simplify the expression to 2 ( c o s 4 ( π 8 ) + c o s 4 ( 3 π 8 ) = 2 [ ( c o s 2 π 8 + c o s 2 3 π 8 ) 2 c o s 2 π 8 c o s 2 3 π 8 .

Read more
A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

c o s 4 ( π 8 ) + c o s 4 ( 3 π 8 ) + c o s 4 ( 5 π 8 ) + c o s 4 ( 7 π 8 ) . = c o s 4 ( π 8 ) + c o s 4 ( 3 π 8 ) + c o s 4 ( π 3 π 8 ) + c o s 4 ( π π 8 ) = c o s 4 π 8 + c o s 4 3 π 8 + c o s 4 3 π 8 + c o s 4 π 8 = 2 c o s 4 π 8 + 2 c o s 4 3 π 8 = 2 [ c o s 4 π 8 + c o s 4 3 π 8 ] = 2 [ c o s 4 π 8 + c o s 4 ( π 2 π 8 ) ] = 2 [ c o s 4 π 8 + s i n 4 π 8 ] = 2 [ c o s 4 π 8 + s i n 4 π 8 + 2 s i n 2 π 8 . c o s 2 π 8 2 s i n 2 π 8 . c o s 2 π 8 ] = 2 [ ( c o s 2 π 8 + s i n 2 π 8 ) 2 2 s i n 2 π 8 . c o s 2 π 8 ] = 2 [ 1 2 s i n 2 π 8 . c o s 2 π 8 ] = 2 4 s i n 2 π 8 . c o s 2 π 8 = 2 ( 2 s i n π 8 . c o s π 8 ) 2 = 2 ( s i n π 4 ) 2 = 2 ( 1 2 ) 2 = 2 1 2 = 3 2 Hence,therequiredvalueoftheexpression=32.

Q:  

Find the general solution of the equation 5 c o s 2 θ + 7 s i n 2 θ 6 = 0 .

Read more
A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

5 c o s 2 θ + 7 s i n 2 θ 6 = 0 5 c o s 2 θ + 7 ( 1 c o s 2 θ ) 6 = 0 5 c o s 2 θ + 7 7 c o s 2 θ 6 = 0 2 c o s 2 θ + 1 = 0 2 c o s 2 θ + 1 = 0 c o s 2 θ = 1 2 c o s 2 θ = c o s 2 π 4 θ = n π ± π 4 [ ? I f c o s 2 θ = c o s 2 α θ = n π ± α ] H e n c e , t h e g e n e r a l s o l u t i o n o f θ = n π ± π 4 , n Z .

Q:  

 Find the general solution of the equation s i n x 3 s i n 2 x + s i n 3 x = c o s x 3 c o s 2 x + c o s 3 x .

A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

           G i v e n t h a t : s i n x 3 s i n 2 x + s i n 3 x = c o s x 3 c o s 2 x + c o s 3 x ( s i n 3 x + s i n x ) 3 s i n 2 x = ( c o s 3 x + c o s x ) 3 c o s 2 x 2 s i n ( 3 x + x 2 ) . c o s ( 3 x x 2 ) 3 s i n 2 x = 2 c o s ( 3 x + x 2 ) . c o s ( 3 x x 2 ) 3 c o s 2 x 2 s i n 2 x . c o s x 3 s i n 2 x = 2 c o s 2 x . c o s x 3 c o s 2 x 2 s i n 2 x . c o s x 2 c o s 2 x . c o s x = 3 s i n 2 x 3 c o s 2 x 2 c o s x ( s i n 2 x c o s 2 x ) 3 ( s i n 2 x c o s 2 x ) = 0 ( s i n 2 x c o s 2 x ) ( 2 c o s x 3 ) = 0 s i n 2 x c o s 2 x = 0 a n d 2 c o s x 3 0 [ ? 1 c o s x 1 ] s i n 2 x c o s 2 x 1 = 0 t a n 2 x = 1 t a n 2 x = t a n π 4 2 x = n π + π 4 x = n π 2 + π 8 H e n c e , t h e g e n e r a l s o l u t i o n o f t h e e q u a t i o n i s x = n π 2 + π 8 , n Z .

Q:  

Find the general solution of the equation

( 3 1 ) c o s θ + ( 3 + 1 ) s i n θ = 2 .

[Hint: Put   3 1 = r s i n α ,   3 + 1 = r c o s α w h i c h   g i v e s . ] t a n α = t a n ( π 4 π 6 ) α = π 1 2 ]

Read more
A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t : ( 3 1 ) c o s θ + ( 3 + 1 ) s i n θ = 2 P u t 3 1 = r s i n α , 3 + 1 = r c o s α S q u a r i n g a n d a d d i n g , w e g e t r 2 = 3 + 1 2 3 + 3 + 1 + 2 3 r 2 = 8 r = ± 2 2 N o w t h e g i v e n e q u a t i o n c a n b e w r i t t e n a s r s i n α c o s θ + r c o s α s i n θ = 2 r ( s i n α c o s θ + c o s α s i n θ ) = 2 2 2 s i n ( α + θ ) = 2 s i n ( α + θ ) = 2 2 2 = 1 2 s i n ( α + θ ) = s i n π 4 α + θ = n π + ( 1 ) n . π 4 ( i ) N o w r s i n α r c o s α = 3 1 3 + 1 t a n α = t a n π 3 t a n π 4 1 + t a n π 4 . t a n π 3 t a n α = t a n ( π 3 π 4 ) t a n α = t a n π 1 2 α = π 1 2 P u t t i n g t h e v a l u e o f α i n e q n . ( i ) w e g e t π 1 2 + θ = n π + ( 1 ) n . π 4 θ = n π + ( 1 ) n . π 4 π 1 2 H e n c e , t h e g e n e r a l s o l u t i o n o f t h e e q u a t i o n i s θ = n π + ( 1 ) n . π 4 π 1 2 , n Z .

 

Maths NCERT Exemplar Solutions Class 11th Chapter Three Logo

Trigonometric Functions Objective Type Questions

 

Choose the correct answer from the given four options in each of the Exercises 30 to 59:

1. If s i n θ + c o s e c θ = 2 , then s i n 2 θ + c o s e c 2 θ is equal to:

(a) 1

(b) 4

(c) 2

(d) None of these

Sol:

G i v e n t h a t : s i n θ + c o s e c θ = 2 S q u a r i n g b o t h s i d e s , w e g e t ( s i n θ + c o s e c θ ) 2 = ( 2 ) 2 s i n 2 θ + c o s e c 2 θ + 2 s i n θ c o s e c θ = 4 s i n 2 θ + c o s e c 2 θ + 2 s i n θ × 1 s i n θ = 4 s i n 2 θ + c o s e c 2 θ + 2 = 4 s i n 2 θ + c o s e c 2 θ = 2 H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

 

2. If f ( x ) = c o s 2 x + s e c 2 x , then:

(a) f ( x ) < 1

(b) f ( x ) = 1

(c) 2 < f ( x ) < 1

(d) f(x) 2

 [Hint: A.M ≥ G.M.]

 

Sol:

G i v e n t h a t : f ( x ) = c o s 2 x + se c 2 x W e k n o w t h a t A M G M c o s 2 x + se c 2 x 2 c o s 2 x . se c 2 x c o s 2 x + se c 2 x 2 1 c o s 2 x + se c 2 x 2 f ( x ) 2 H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q&A Icon
Commonly asked questions
Q:  

Choose the correct answer from the given four options in each of the Exercises 30 to 59:

If s i n θ + c o s e c θ = 2 , then s i n 2 θ + c o s e c 2 θ is equal to:

(a) 1

(b) 4

(c) 2

(d) None of these

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t : s i n θ + c o s e c θ = 2 S q u a r i n g b o t h s i d e s , w e g e t ( s i n θ + c o s e c θ ) 2 = ( 2 ) 2 s i n 2 θ + c o s e c 2 θ + 2 s i n θ c o s e c θ = 4 s i n 2 θ + c o s e c 2 θ + 2 s i n θ × 1 s i n θ = 4 s i n 2 θ + c o s e c 2 θ + 2 = 4 s i n 2 θ + c o s e c 2 θ = 2 H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Q:  

If f ( x ) = c o s 2 x + s e c 2 x , then:

(a) f ( x ) < 1

(b) f ( x ) = 1

(c) 2 < f ( x ) < 1

(d) f(x)2

 [Hint: A.M ≥ G.M.]

A: 

This is a Objective Type Questions as classified in NCERT Exemplar

Sol:

Giventhat:f(x)=cos2x+sec2x W e k n o w t h a t A M G M cos2x+sec2x 2 cos2x.sec2x cos2x+sec2x21cos2x+sec2x2 f ( x ) 2 H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q:  

If t a n θ = 1 2 = and t a n ϕ = 1 / 3   , then the value of θ + ϕ is:

(a) π 6

(b) π

(c) 0

(d) π 4

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

            W e k n o w t h a t t a n ( θ + ? ) = t a n θ + t a n ? 1 t a n θ t a n ? = 1 2 + 1 3 1 1 2 × 1 3 = 5 6 5 6 = 1 t a n ( θ + ? ) = t a n π 4 θ + ? = π 4 . H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q:  

Which of the following is not correct?

(a) s i n θ = 1 5  

(b) c o s θ = 1  

(c)  s e c θ = 2  

(d) t a n θ = 2 0  

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exempar

Sol:

sinθ=15iscorrect.?1sinθ1So(a)iscorrect.cosθ=1iscorrect.?cos00=1So(b)iscorrect.secθ=12cosθ=2isnotcorrect.?1cosθ1Hence,thecorrectoptionis(c).

s i n θ = 1 5 i s c o r r e c t . ? 1 s i n θ 1 S o ( a ) i s c o r r e c t . c o s θ = 1 i s c o r r e c t . ? c o s 0 0 = 1 S o ( b ) i s c o r r e c t . s e c θ = 1 2 c o s θ = 2 i s n o t c o r r e c t . ? 1 c o s θ 1 H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Q:  

The value of t a n 1 t a n 2 t a n 3 t a n 8 9 is:

(a)  0

(b)  1

(c)   2

(d)  Not defined

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t : t a n 1 0 t a n 2 0 t a n 3 0 t a n 8 9 0 = t a n 1 0 t a n 2 0 t a n 3 0 t a n 4 5 0 . t a n ( 9 0 4 4 ) 0 . t a n ( 9 0 4 3 ) 0 t a n ( 9 0 1 ) 0 = t a n 1 0 c o t 1 0 . t a n 2 0 c o t 2 0 . t a n 3 0 c o t 3 0 t a n 8 9 0 . c o t 8 9 0 = 1 . 1 . 1 . 1 1 . 1 = 1 H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

The value of 1 t a n 2 1 5 1 + t a n 2 1 5 is:

(a) 1

(b) 3  

(c) 3 2  

(d) 2

 

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t : 1 t a n 2 1 5 0 1 + t a n 2 1 5 0 L e t θ = 1 5 0 2 θ = 3 0 0 c o s 2 θ = 1 t a n 2 θ 1 + t a n 2 θ c o s 3 0 0 = 1 t a n 2 1 5 0 1 + t a n 2 1 5 0 3 2 = 1 t a n 2 1 5 0 1 + t a n 2 1 5 0 H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Q:  

The value of c o s 1 c o s 2 c o s 3 c o s 1 7 9 is:

(a)  1 2

(b)  0

(c)  1

(d)  -1

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

         G i v e n t h a t : c o s 1 0 . c o s 2 0 . c o s 3 0 c o s 1 7 9 0 = c o s 1 0 . c o s 2 0 . c o s 3 0 c o s 9 0 0 . c o s 9 1 0 c o s 1 7 9 0 = 0 [ ? c o s 9 0 0 = 0 ] H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

If t a n θ = 3 and θ lies in the third quadrant, then the value of s i n θ is:

(a) 1 1 0  

(b) 1 1 0  

(c)   3 1 0  

(d) 3 1 0  

Read more
A: 
This is an Objective Type Questions as classified in NCERT Exemplar
Sol:
             t a n θ = 3 , θ l i e s i n t h i r d q u a d r a n t s i n θ = 3 1 0 w h e r e θ l i e s i n t h i r d q u a d r a n t H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

 

Q:  

The value of t a n 7 5 c o t 7 5 is equal to:

(a) 2 3

(b) 2 + 3  

(c)  2 3  

(d)  1

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Givenexpressionistan750cot750 t a n 7 5 0 c o t 7 5 0 = t a n 7 5 0 c o t ( 9 0 1 5 ) 0 = t a n 7 5 0 t a n 1 5 0 = s i n 7 5 0 c o s 7 5 0 s i n 1 5 0 c o s 1 5 0 = s i n 7 5 0 c o s 1 5 0 c o s 7 5 0 s i n 1 5 0 c o s 7 5 0 c o s 1 5 0 = s i n ( 7 5 0 1 5 0 ) 1 2 × 2 c o s 7 5 0 c o s 1 5 0 = 2 s i n 6 0 0 c o s ( 7 5 0 + 1 5 0 ) + c o s ( 7 5 0 1 5 0 ) = 2 × 3 2 c o s 9 0 0 c o s 6 0 0 = 3 0 + 1 2 = 2 3 H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q:  

Which of the following is correct?

(a) s i n 1 > s i n 1  

(b) s i n 1 < s i n 1  

(c) s i n 1 = s i n 1  

(d) s i n 1 = π 1 8 0

Hint 1 radian = π 1 8 0 0 = 5 7 0 3 0 '   a p p r o x  

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

          W e k n o w t h a t i f θ i n c r e a s e s t h e n t h e v a l u e o f s i n θ a l s o i n c r e a s e s . S o , s i n 1 0 < s i n 1 [ ? 1 r a d i a n = π 1 8 0 s i n 1 ] H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

If t a n α = m m + 1 and t a n β = 1 m + 2 , then α + β is equal to:

(a) π 2  

(b) π 3  

(c) π 6  

(d) π 4  

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

          G i v e n t h a t t a n α = m m + 1 a n d t a n β = 1 2 m + 1 t a n ( α + β ) = t a n α + t a n β 1 t a n α . t a n β = m m + 1 + 1 2 m + 1 1 m m + 1 × 1 2 m + 1 = 2 m 2 + m + m + 1 ( m + 1 ) ( 2 m + 1 ) ( m + 1 ) ( 2 m + 1 ) m ( m + 1 ) ( 2 m + 1 ) = 2 m 2 + 2 m + 1 2 m 2 + 2 m + m + 1 m = 2 m 2 + 2 m + 1 2 m 2 + 2 m + 1 = 1 t a n ( α + β ) = t a n π 4 α + β = π 4 H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q:  

The minimum value of 3 c o s x + 4 s i n x + 8 is:

(a)  5

(b)  9

(c)   7

(d)  3

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

          Givenexpressionis3cosx+4sinx+8 L e t y = 3 c o s x + 4 s i n x + 8 y 8 = 3 c o s x + 4 s i n x M i n i m u m v a l u e o f y 8 = ( 3 ) 2 + ( 4 ) 2 y 8 = 9 + 1 6 = 5 y = 8 5 = 3 So,theminimumvalueofthegivenexpressionis3. H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q:  

The value of tan 3A -tan2A-tanA is equal to

(a)  tan3Atan2AtanA

(b) -tan3Atan2AtanA

(c)  tanAtan2A-tan2Atan3A-tan3AtanA

(d) None of these

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

           Givenexpressionistan3Atan2AtanA t a n 3 A = t a n ( 2 A + A ) t a n 3 A = t a n 2 A + t a n A 1 t a n 2 A . t a n A t a n 3 A ( 1 t a n 2 A . t a n A ) = t a n 2 A + t a n A t a n 3 A t a n 3 A t a n 2 A t a n A = t a n 2 A + t a n A t a n 3 A t a n 2 A t a n A = t a n 3 A t a n 2 A t a n A H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q:  

The value of s i n ( 4 5 + θ ) c o s ( 4 5 θ ) is:

(a) 2 c o s θ  

(b) 2 s i n θ  

(c) 1

(d) 0

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Givenexpressionissin(450+θ)cos(450θ) s i n ( 4 5 0 + θ ) = s i n 4 5 0 c o s θ + c o s 4 5 0 s i n θ = 1 2 c o s θ + 1 2 s i n θ c o s ( 4 5 0 θ ) = c o s 4 5 0 c o s θ + s i n 4 5 0 s i n θ = 1 2 c o s θ + 1 2 s i n θ s i n ( 4 5 0 + θ ) c o s ( 4 5 0 θ ) = 1 2 c o s θ + 1 2 s i n θ 1 2 c o s θ 1 2 s i n θ = 0 H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q:  

The value of  is: c o t ( π 4 + θ ) c o t ( π 4 θ )

(a)  1

(b) 0

(c) 1  

(d)   Not defined

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Givenexpressioniscot(π4+θ).cot(π4θ) = c o t π 4 c o t θ 1 c o t θ + c o t π 4 × c o t π 4 c o t θ + 1 c o t θ c o t π 4 = 1 . c o t θ 1 c o t θ + 1 × 1 . c o t θ + 1 c o t θ 1 = c o t θ 1 c o t θ + 1 × c o t θ + 1 c o t θ 1 = 1 H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Q:  

c o s 2 θ c o s 2 ϕ + s i n 2 ( θ ϕ ) s i n 2 ( θ + ϕ ) is equal to:

(a) s i n 2 ( θ + ϕ )  

(b) c o s 2 ( θ + ϕ )  

(c) s i n 2 ( θ ϕ )

(d) c o s 2 ( θ ϕ )  

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t : c o s 2 θ c o s 2 ? + s i n 2 ( θ ? ) s i n 2 ( θ + ? ) c o s 2 θ c o s 2 ? + s i n 2 ( θ ? ) s i n 2 ( θ + ? ) = c o s 2 θ c o s 2 ? + s i n ( θ ? + θ + ? ) . s i n ( θ ? θ ? ) [ ? s i n 2 A s i n 2 B = s i n ( A + B ) . s i n ( A B ) ] = c o s 2 θ c o s 2 ? + s i n 2 θ . s i n ( 2 ? ) = c o s 2 θ c o s 2 ? s i n 2 θ . s i n 2 ? [ ? s i n ( θ ) = s i n θ ] = c o s ( 2 θ + 2 ? ) = c o s 2 ( θ + ? ) H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

The value of c o s 1 2 ? + c o s 8 4 ? + c o s 1 5 6 ? + c o s 1 3 2 ? is:

(a)  1 2  

(b)  1  

(c)   1 8  

(d)  1 2  

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

        G i v e n t h a t : c o s 1 2 0 + c o s 8 4 0 + c o s 1 5 6 0 + c o s 1 3 2 0 = ( c o s 1 3 2 0 + c o s 1 2 0 ) + ( + c o s 1 5 6 0 + c o s 8 4 0 ) = ( 2 c o s 1 3 2 0 + 1 2 0 2 . c o s 1 3 2 0 1 2 0 2 ) + ( 2 c o s 1 5 6 0 + 8 4 0 2 . c o s 1 5 6 0 8 4 0 2 ) = 2 c o s 7 2 0 . c o s 6 0 0 + 2 c o s 1 2 0 0 . c o s 3 6 0 = 2 c o s 7 2 0 × 1 2 + 2 × ( 1 2 ) c o s 3 6 0 = c o s 7 2 0 c o s 3 6 0 = c o s ( 9 0 0 1 8 0 ) c o s 3 6 0 = s i n 1 8 0 c o s 3 6 0 = 5 1 4 5 + 1 4 [ ? s i n 1 8 0 = 5 1 4 , c o s 3 6 0 = 5 + 1 4 ] = 5 1 5 1 4 = 1 2 H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Q:  

If  t a n A = 1 2 and t a n B = 1 3 , then t a n ( 2 A + B ) is equal to:

(a)  1

(b)  2

(c)  3

(d)  4

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

         G i v e n t h a t : t a n A = 1 2 a n d t a n B = 1 3 t a n 2 A = 2 t a n A 1 t a n 2 A = 2 × 1 2 1 ( 1 2 ) 2 = 1 1 1 4 = 1 3 4 = 4 3 S o , t a n 2 A = 4 3 a n d t a n B = 1 3 t a n ( 2 A + B ) = t a n 2 A + t a n B 1 t a n 2 A . t a n B = 4 3 + 1 3 1 4 3 × 1 3 = 5 3 9 4 9 = 5 3 × 9 5 = 3 H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Q:  

The value of s i n π 1 0 s i n 1 3 π 1 0 is:

(a) 1 2

(b) 1 2  

(c) 1 4  

(d)  1

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t : s i n π 1 0 . s i n 1 3 π 1 0 = s i n π 1 0 . s i n ( π + 3 π 1 0 ) =sinπ10.(sin3π10)=sin 180.sin 540 =sin 180.sin (900360)=sin 180.cos360 = ( 5 1 4 ) ( 5 + 1 4 ) [ ?sin 180= 514,cos360=5+14 ] = ( 5 1 1 6 ) = 1 4 H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Q:  

The value of s i n 5 0 s i n 7 0 + s i n 1 0  is equal to:

(a)  1

(b)  0

(c) 1 4

(d)  1

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

          Giventhat:sin 500sin 700+sin 100 (sin 500sin 700)+sin 100=2cos500+7002.sin5007002+sin 100 =2cos600.(sin 100)+sin 100 =2×12sin 100+sin 100 =sin 100+sin 100=0 H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

If s i n θ + c o s θ = 1 , then the value of s i n 2 θ is:

(a) 1

(b) 1 2  

(c)  0

(d) -1

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t : s i n θ + c o s θ = 1 ( s i n θ + c o s θ ) 2 = ( 1 ) 2 s i n 2 θ + c o s 2 θ + 2 s i n θ c o s θ = 1 1 + s i n 2 θ = 1 s i n 2 θ = 1 1 = 0 . H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Q:  

If α + β = π 4 , then the value of ( 1 + t a n α ) ( 1 + t a n β )  is:

(a) 1

(b) 2

(c)  -2

(d)  Not defined

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

           G i v e n t h a t : α + β = π 4 W e k n o w t h a t t a n ( α + β ) = t a n α + t a n β 1 t a n α . t a n β t a n α + t a n β = 1 t a n α . t a n β t a n α + t a n β + t a n α . t a n β = 1 1 + t a n α + t a n β + t a n α . t a n β = 1 + 1 1 ( 1 + t a n α ) + t a n β ( 1 + t a n α ) = 2 ( 1 + t a n α ) ( 1 + t a n β ) = 2 H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

If s i n θ = 2 5 and θ lies in the third quadrant, then the value of c o s θ is:

(a)  1 5

(b) 2 1 5  

(c)   1 5  

(d) 2 1 5  

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t : s i n θ = 4 5 , θ l i e s i n t h i r d q u a d r a n t c o s θ = 1 s i n 2 θ = 1 ( 4 5 ) 2 = 1 1 6 2 5 = 9 2 5 = + 3 5 c o s θ = 3 5 , θ l i e s i n t h i r d q u a d r a n t c o s θ = 2 c o s 2 θ 2 1 [ ? π < θ < 3 π 2 , π 2 < θ 2 < 3 π 4 ] 3 5 = 2 c o s 2 θ 2 1 2 c o s 2 θ 2 = 1 3 5 = 2 5 c o s 2 θ 2 = 2 5 × 2 = 1 5 c o s θ 2 = ± 1 5 c o s θ 2 = 1 5 [ ? π 2 < θ 2 < 3 π 4 ] H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Q:  

Number of solutions of the equation t a n x + s e c x = 2 c o s x lying in the interval [ 0 , 2 π ] is:

(a) 0

(b) 1

(c) 2

(d) 3

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

           G i v e n t h a t : t a n x + s e c x = 2 c o s x s i n x c o s x + 1 c o s x = 2 c o s x 1 + s i n x = 2 c o s 2 x 2 c o s 2 x s i n x 1 = 0 2(1sin2x)sinx1=022sin2xsinx1=0 2sin2xsinx+1=02sin2x+sinx1=0 Sincetheequationisquadraticequationinsinx.Soitwillhave2solutions. H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Q:  

The value of s i n 2 π 1 8 + s i n 5 π 1 8 + s i n 7 π 1 8 + s i n 4 π 9 is given by:

(a)  1

(b) -1

(c)  c o s 3 π 9 + s i n π 1 8  

(d) c o s 2 π 9 + s i n π 1 8  

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Givenexpressionissinπ18+sinπ9+sin2π9+sin5π18 = ( s i n 5 π 1 8 + s i n π 1 8 ) + ( s i n 2 π 9 + s i n π 9 ) = 2 s i n ( 5 π 1 8 + π 1 8 2 ) . c o s ( 5 π 1 8 π 1 8 2 ) + 2 s i n ( 2 π 9 + π 9 2 ) . c o s ( 2 π 9 π 9 2 ) = 2 s i n π 6 . c o s π 9 + 2 s i n π 6 . c o s π 1 8 = 2 × 1 2 c o s π 9 + 2 × 1 2 c o s π 1 8 = c o s π 9 + c o s π 1 8 = s i n ( π 2 π 9 ) + s i n ( π 2 π 1 8 ) = s i n 7 π 1 8 + s i n 8 π 1 8 = s i n 7 π 1 8 + s i n 4 π 9 . H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q:  

If A lies in the second quadrant and 3 t a n A + 4 = 0 , then the value of 2 c o t A 5 c o s A + s i n A is equal to:

(a)   5 3 1 0  

(b) 2 3 1 0  

(c)   3 7 1 0  

(d) None

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Giventhat:3tanA+4=0,Aliesinsecondquadrant t a n A = 4 3 c o s A = 3 5 [ Aliesinsecondquadrant ] a n d s i n A = 4 5 a n d c o t A = 3 4 2 c o t A 5 c o s A + s i n A = 2 ( 3 4 ) 5 ( 3 5 ) + 4 5 = 3 2 + 3 + 4 5 = 1 5 + 3 0 + 8 1 0 = 2 3 1 0 H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

The value of c o s 2 4 8 ? s i n 2 1 2 ? is:

(a)   5 + 1 4  

(b) 5 + 1 4  

(c)  1 2  

(d) 1 2  

Hint : Use of c o s 2 A s i n 2 B = c o s ( A + B ) C o s ( A B )

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

           Givenexpressioniscos2480sin2120 c o s 2 4 8 0 s i n 2 1 2 0 = c o s ( 4 8 0 + 1 2 0 ) . c o s ( 4 8 0 1 2 0 ) [ ? c o s 2 A s i n 2 B = c o s ( A + B ) . c o s ( A B ) ] = c o s 6 0 0 . c o s 3 6 0 = 1 2 × 5 + 1 4 = 5 + 1 8 H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q:  

If t a n α = 1 7 , t a n β = 1 3   , then c o s 2 α  is equal to:

(a)  s i n 2 β  

(b)  s i n 4 β  

(c)  s i n 3 β  

(d) c o s 2 β  

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t : t a n α = 1 7 a n d t a n β = 1 3 c o s 2 α = 1 t a n 2 α 1 + t a n 2 α = 1 ( 1 7 ) 2 1 + ( 1 7 ) 2 = 1 1 4 9 1 + 1 4 9 = 4 8 5 0 = 2 4 2 5 t a n 2 β = 2 t a n β 1 t a n 2 β = 2 × 1 3 1 1 9 = 2 3 8 9 = 2 3 × 9 8 = 3 4 t a n 2 β = 3 4 s i n 4 β = 2 t a n 2 β 1 + t a n 2 2 β = 2 × 3 4 1 + ( 3 4 ) 2 = 3 2 1 + 9 1 6 = 3 2 × 1 6 2 5 = 2 4 2 5 c o s 2 α = s i n 4 β = 2 4 2 5 H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

If t a n θ = a b , then b c o s 2 θ + a s i n 2 θ is equal to:

(a)  a

(b)  b

(c)  b a  

(d)   None

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t : t a n θ = a b b c o s 2 θ + a s i n 2 θ = b [ 1 t a n 2 θ 1 + t a n 2 θ ] + a [ 2 t a n θ 1 + t a n 2 θ ] = b [ 1 a 2 b 2 1 + a 2 b 2 ] + a [ 2 a b 1 + a 2 b 2 ] = b [ b 2 a 2 b 2 + a 2 ] + [ 2 a 2 b b 2 + a 2 b 2 ] = b 3 a 2 b b 2 + a 2 + 2 a 2 b b 2 + a 2 = b 3 a 2 b + 2 a 2 b b 2 + a 2 = b 3 + a 2 b b 2 + a 2 = b ( b 2 + a 2 ) b 2 + a 2 = b H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

If c o s θ = x x + 1 , then θ is:

(a)   An acute angle

(b)   A right angle

(c)   An obtuse angle

(d)   Not possible

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t : c o s θ = x + 1 x c o s θ = x 2 + 1 x x 2 + 1 = x c o s θ x 2 x c o s θ + 1 = 0 F o r r e a l v a l u e o f x , b 2 4 a c 0 ( c o s θ ) 2 4 × 1 × 1 0 c o s 2 θ 4 0 c o s 2 θ 4 c o s θ ± 2 [ 1 c o s θ 1 ] S o , t h e v a l u e o f θ i s n o t p o s s i b l e . H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Maths NCERT Exemplar Solutions Class 11th Chapter Three Logo

Trigonometric Functions Fill in the blanks Type Questions

1. The value of s i n 5 0 s i n 1 3 0 is ___.

Sol:

          s i n 5 0 0 s i n 1 3 0 0 = s i n 5 0 0 s i n ( 1 8 0 0 5 0 0 ) = s i n 5 0 0 s i n 5 0 0 = 1 H e n c e , t h e v a l u e o f f i l l e r i s 1 .

 

2. If k = s i n π 1 8 s i n 5 π 1 8 s i n 7 π 1 8 , then the numerical value of k is ___.

Sol:

G i v e n t h a t : k = s i n ( π 1 8 ) s i n ( 5 π 1 8 ) s i n ( 7 π 1 8 ) k = s i n 1 0 0 . s i n 5 0 0 . s i n 7 0 0 k = s i n 1 0 0 . s i n ( 9 0 0 4 0 0 ) . s i n ( 9 0 0 2 0 0 ) k = s i n 1 0 0 . c o s 4 0 0 . c o s 2 0 0 k = s i n 1 0 0 . 1 2 [ 2 c o s 4 0 0 . c o s 2 0 0 ] k = s i n 1 0 0 . 1 2 [ c o s ( 4 0 0 + 2 0 0 ) + c o s ( 4 0 0 2 0 0 ) ] k = 1 2 s i n 1 0 0 [ c o s 6 0 0 + c o s 2 0 0 ] k = 1 2 s i n 1 0 0 [ 1 2 + c o s 2 0 0 ] k = 1 4 s i n 1 0 0 + 1 2 s i n 1 0 0 c o s 2 0 0 k = 1 4 s i n 1 0 0 + 1 4 ( 2 s i n 1 0 0 c o s 2 0 0 ) k = 1 4 s i n 1 0 0 + 1 4 [ s i n ( 1 0 0 + 2 0 0 ) + s i n ( 1 0 0 2 0 0 ) ] k = 1 4 s i n 1 0 0 + 1 4 [ s i n 3 0 0 + s i n ( 1 0 0 ) ] k = 1 4 s i n 1 0 0 + 1 4 s i n 3 0 0 1 4 s i n 1 0 0 k = 1 4 s i n 3 0 0 = 1 4 × 1 2 = 1 8 . H e n c e , t h e v a l u e o f f i l l e r i s 1 8 .

Q&A Icon
Commonly asked questions
Q:  

The value of s i n 5 0 s i n 1 3 0 is ___.

A: 

This is an Fill in the blanks Type Questions as classified in NCERT Exemplar

Sol:

          s i n 5 0 0 s i n 1 3 0 0 = s i n 5 0 0 s i n ( 1 8 0 0 5 0 0 ) = s i n 5 0 0 s i n 5 0 0 = 1 H e n c e , t h e v a l u e o f f i l l e r i s 1 .

Q:  

If k = s i n π 1 8 s i n 5 π 1 8 s i n 7 π 1 8 , then the numerical value of k is ___.

A: 

This is an Fill in the blanks Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t : k = s i n ( π 1 8 ) s i n ( 5 π 1 8 ) s i n ( 7 π 1 8 ) k = s i n 1 0 0 . s i n 5 0 0 . s i n 7 0 0 k = s i n 1 0 0 . s i n ( 9 0 0 4 0 0 ) . s i n ( 9 0 0 2 0 0 ) k = s i n 1 0 0 . c o s 4 0 0 . c o s 2 0 0 k = s i n 1 0 0 . 1 2 [ 2 c o s 4 0 0 . c o s 2 0 0 ] k = s i n 1 0 0 . 1 2 [ c o s ( 4 0 0 + 2 0 0 ) + c o s ( 4 0 0 2 0 0 ) ] k = 1 2 s i n 1 0 0 [ c o s 6 0 0 + c o s 2 0 0 ] k = 1 2 s i n 1 0 0 [ 1 2 + c o s 2 0 0 ] k = 1 4 s i n 1 0 0 + 1 2 s i n 1 0 0 c o s 2 0 0 k = 1 4 s i n 1 0 0 + 1 4 ( 2 s i n 1 0 0 c o s 2 0 0 ) k = 1 4 s i n 1 0 0 + 1 4 [ s i n ( 1 0 0 + 2 0 0 ) + s i n ( 1 0 0 2 0 0 ) ] k = 1 4 s i n 1 0 0 + 1 4 [ s i n 3 0 0 + s i n ( 1 0 0 ) ] k = 1 4 s i n 1 0 0 + 1 4 s i n 3 0 0 1 4 s i n 1 0 0 k = 1 4 s i n 3 0 0 = 1 4 × 1 2 = 1 8 . H e n c e , t h e v a l u e o f f i l l e r i s 1 8 .

Q:  

If t a n A = 1 c o s B s i n B , then t a n 2 A is ___.

A: 

This is an Fill in the blanks Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t : t a n A = 1 c o s B s i n B t a n 2 A = 2 t a n A 1 t a n 2 A = 2 ( 1 c o s B s i n B ) 1 ( 1 c o s B s i n B ) 2 = 2 ( 2 s i n 2 B / 2 2 s i n B / 2 c o s B / 2 ) 1 ( 2 s i n 2 B / 2 2 s i n B / 2 c o s B / 2 ) 2 [ ? 1 c o s B = 2 s i n 2 B / 2 s i n B = 2 s i n B / 2 c o s B / 2 ] = 2 ( s i n B / 2 c o s B / 2 ) 1 ( s i n B / 2 c o s B / 2 ) 2 = 2 t a n B / 2 1 t a n 2 B / 2 = t a n B S o , t a n 2 A = t a n B H e n c e , t h e v a l u e o f f i l l e r i s t a n B .

Q:  

If s i n x + c o s x = a , then:

i. s i n 6 x + c o s 6 x =  ___
ii. s i n x c o s x =
___

A: 

This is an Fill in the blanks Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t : s i n x + c o s x = a ( s i n x + c o s x ) 2 = a 2 s i n 2 x + c o s 2 x + 2 s i n x c o s x = a 2 1 + 2 s i n x c o s x = a 2 s i n x c o s x = a 2 1 2 ( i ) ( i ) s i n 6 x + c o s 6 x = ( s i n 2 x ) 3 + ( c o s 2 x ) 3 = ( s i n 2 x + c o s 2 x ) 3 3 s i n 2 x c o s 2 x ( s i n 2 x + c o s 2 x ) = ( 1 ) 3 3 ( a 2 1 2 ) 2 . 1 = 1 3 ( a 2 1 ) 2 4 = 1 4 [ 4 3 ( a 2 1 ) 2 ] H e n c e , t h e v a l u e o f t h e f i l l e r i s 1 4 [ 4 3 ( a 2 1 ) 2 ] . ( i i ) | s i n x c o s x | 2 = s i n 2 x + c o s 2 x 2 s i n x c o s x = 1 2 ( a 2 1 2 ) = 1 ( a 2 1 ) = 1 a 2 + 1 = 2 a 2 | s i n x c o s x | = 2 a 2 [ ? | s i n x c o s x | > 0 ] H e n c e , t h e v a l u e o f t h e f i l l e r i s 2 a 2 .

Q:  

In a triangle A B C with C = 9 0 , the equation whose roots are t a n A and t a n B is ___.

Hint :If A + B = 9 0 0 t a n A t a n B = 1   , then t a n A + t a n B = 2 S i n A  ___.

Read more
A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

Sol:

G i v e n a Δ A B C w i t h C = 9 0 0 S o , t h e e q u a t i o n w h o s e r o o t s a r e t a n A a n d t a n B i s x 2 ( t a n A + t a n B ) x + t a n A . t a n B = 0 A + B = 9 0 0 [ ? C = 9 0 0 ] t a n ( A + B ) = t a n 9 0 0 t a n A + t a n B 1 t a n A . t a n B = 1 0 1 t a n A . t a n B = 0 t a n A . t a n B = 1 ( i ) N o w t a n A + t a n B = s i n A c o s A + s i n B c o s B = s i n A c o s B + c o s A s i n B c o s A c o s B = s i n ( A + B ) c o s A c o s B = s i n 9 0 0 c o s A . c o s ( 9 0 0 A ) = 1 c o s A s i n A t a n A + t a n B = 2 2 c o s A s i n A = 2 s i n 2 A ( i i ) F r o m ( i ) a n d ( i i ) w e g e t x 2 ( 2 s i n 2 A ) x + 1 = 0 H e n c e , t h e v a l u e o f t h e f i l l e r i s x 2 ( 2 s i n 2 A ) x + 1 = 0 .

Q:  

3 ( s i n x c o s x ) 4 + 6 ( s i n x + c o s x ) 2 + 4 ( s i n 6 x + c o s 6 x ) = ___.

A: 

This is an Fill in the blanks Type Questions as classified in NCERT Exemplar

Sol:

           Givenexpressionis 3 ( s i n x c o s x ) 4 + 6 ( s i n x + c o s x ) 2 + 4 ( s i n 6 x + c o s 6 x ) = 3 [ s i n 2 x + c o s 2 x 2 s i n x c o s x ] 2 + 6 [ s i n 2 x + c o s 2 x + 2 s i n x c o s x ] + 4 [ ( s i n 2 x ) 3 + ( c o s 2 x ) 3 ] = 3 [ 1 2 s i n x c o s x ] 2 + 6 [ 1 + 2 s i n x c o s x ] + 4 [ ( s i n 2 x + c o s 2 x ) 3 3 s i n 2 x c o s 2 x ( s i n 2 x + c o s 2 x ) ] = 3 [ 1 + 4 s i n 2 x c o s 2 x 4 s i n x c o s x ] + 6 ( 1 + 2 s i n x c o s x ) + 4 [ 1 3 s i n 2 x c o s 2 x ] = 3 + 1 2 s i n 2 x c o s 2 x 1 2 s i n x c o s x + 6 + 1 2 s i n x c o s x + 4 1 2 s i n 2 x c o s 2 x = 3 + 6 + 4 = 1 3 H e n c e , t h e v a l u e o f t h e f i l l e r i s 1 3 .

Q:  

Given x > 0 , the values of f ( x ) = 3 c o s 2 x + 3 x lie in the interval ___.

A: 

This is an Fill in the blanks Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t : f ( x ) = 3 c o s 3 + x + x 2 P u t 3 + x + x 2 = y f ( x ) = 3 c o s y ? 1 c o s y 1 3 3 c o s y 3 3 3 c o s y 3 3 3 c o s 3 + x + x 2 3 , x > 0 H e n c e , t h e v a l u e o f t h e f i l l e r i s [ 3 , 3 ] .

Q:  

The maximum distance of a point on the graph of the function y = 3 s i n x + c o s x from the x   -axis is ___.

Read more
A: 

This is an Fill in the blanks Type Questions as classified in NCERT Exemplar

Sol:

          G i v e n t h a t : y = 3 s i n x + c o s x ( i ) Themaximumdistancefromapointonthegraphofeqn.(i)fromxaxis = ( 3 ) 2 + ( 1 ) 2 = 3 + 1 = 2 . H e n c e , t h e v a l u e o f t h e f i l l e r i s 2 .

Maths NCERT Exemplar Solutions Class 11th Chapter Three Logo

Trigonometric Functions True or False Type Questions

1. If t a n A = 1 c o s B s i n B , then t a n 2 A = t a n B .

Sol:

G i v e n t h a t : t a n A = 1 c o s B s i n B = 2 s i n 2 B / 2 2 s i n B / 2 c o s B / 2 = t a n B 2 t a n 2 A = 2 t a n A 1 t a n 2 A = 2 t a n B / 2 1 t a n 2 B / 2 t a n 2 A = t a n B H e n c e , t h e s t a t e m e n t i s ' T r u e ' .

 

2. The equality s i n A + s i n 2 A + s i n 3 A = 3 holds for some real value of A .

Sol: 

G i v e n t h a t : s i n A + s i n 2 A + s i n 3 A = 3 Since t h e maximum v a l u e o f s i n A i s 1 b u t f o r s i n 2 A a n d s i n 3 A i t i s n o t e q u a l t o 1 . S o i t i s n o t p o s s i b l e . H e n c e , t h e s t a t e m e n t i s ' F a l s e ' .

Q&A Icon
Commonly asked questions
Q:  

If t a n A = 1 c o s B s i n B , then t a n 2 A = t a n B .

A: 

This is an True or False Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t : t a n A = 1 c o s B s i n B = 2 s i n 2 B / 2 2 s i n B / 2 c o s B / 2 = t a n B 2 t a n 2 A = 2 t a n A 1 t a n 2 A = 2 t a n B / 2 1 t a n 2 B / 2 t a n 2 A = t a n B H e n c e , t h e s t a t e m e n t i s ' T r u e ' .

Q:  

The equality s i n A + s i n 2 A + s i n 3 A = 3 holds for some real value of A .

A: 

This is an True or False Type Questions as classified in NCERT Exemplar

Sol: 

G i v e n t h a t : s i n A + s i n 2 A + s i n 3 A = 3 SincethemaximumvalueofsinAis1butforsin2Aandsin3Aitisnotequalto1. S o i t i s n o t p o s s i b l e . H e n c e , t h e s t a t e m e n t i s ' F a l s e ' .

Q:  

s i n 1 0 is greater than c o s 1 0 .

A: 

This is an True or False Type Questions as classified in NCERT Exemplar

Sol:  

          I f s i n 1 0 0 > c o s 1 0 0 s i n 1 0 0 > c o s ( 9 0 0 8 0 0 ) s i n 1 0 0 > s i n 8 0 0 w h i c h i s n o t p o s s i b l e . H e n c e , t h e s t a t e m e n t i s ' F a l s e ' .

Q:  

. c o s π 1 5 c o s 4 π 1 5 c o s 8 π 1 5 c o s 1 6 π 1 5 = 1 1 6

A: 

This is an True or False Type Questions as classified in NCERT Exemplar

Sol:

L . H . S . c o s 2 π 1 5 . c o s 4 π 1 5 . c o s 8 π 1 5 . c o s 1 6 π 1 5 = c o s 2 4 0 . c o s 4 8 0 . c o s 9 6 0 . c o s 1 9 2 0 = 1 1 6 s i n 2 4 0 [ ( 2 s i n 2 4 0 c o s 2 4 0 ) ( 2 c o s 4 8 0 ) ( 2 c o s 9 6 0 ) ( 2 c o s 1 9 2 0 ) ] = 1 1 6 s i n 2 4 0 [ s i n 4 8 0 . 2 c o s 4 8 0 ( 2 c o s 9 6 0 ) ( 2 c o s 1 9 2 0 ) ] = 1 1 6 s i n 2 4 0 [ 2 s i n 4 8 0 c o s 4 8 0 ( 2 c o s 9 6 0 ) ( 2 c o s 1 9 2 0 ) ] = 1 1 6 s i n 2 4 0 [ s i n 9 6 0 ( 2 c o s 9 6 0 ) ( 2 c o s 1 9 2 0 ) ] = 1 1 6 s i n 2 4 0 [ 2 s i n 9 6 0 c o s 9 6 0 ( 2 c o s 1 9 2 0 ) ] = 1 1 6 s i n 2 4 0 [ s i n 1 9 2 0 ( 2 c o s 1 9 2 0 ) ] = 1 1 6 s i n 2 4 0 [ 2 s i n 1 9 2 0 c o s 1 9 2 0 ] = 1 1 6 s i n 2 4 0 s i n 3 8 4 0 = 1 1 6 s i n 2 4 0 s i n ( 3 6 0 0 + 2 4 0 ) = 1 1 6 s i n 2 4 0 × s i n 2 4 0 [ ? s i n ( 3 6 0 0 + θ ) = s i n θ ] = 1 1 6 R . H . S . H e n c e , t h e s t a t e m e n t i s ' T r u e ' .

Q:  

One value of θ which satisfies the equation s i n 4 θ 2 s i n 2 θ 1 = 0 lies between 0 and 2 π   .

Read more
A: 

This is an True or False Type Questions as classified in NCERT Exemplar

Sol:

G i v e n e q u a t i o n i s s i n 4 θ 2 s i n 2 θ 1 = 0 s i n 2 θ = ( 2 ) ± ( 2 ) 2 4 × 1 × 1 2 × 1 = 2 ± 4 + 4 2 = 2 ± 8 2 = 2 ± 2 2 2 = 1 ± 2 s i n 2 θ = ( 1 + 2 ) o r ( 1 2 ) 1 s i n θ 1 s i n 2 θ 1 b u t s i n 2 θ = ( 1 + 2 ) o r ( 1 2 ) W h i c h i s n o t p o s s i b l e . H e n c e , t h e s t a t e m e n t i s ' F a l s e ' .

Q:  

If c o s e c x = 1 + c o t x , then x = 2 n π , 2 n π + π 2   .

A: 

This is a True or False Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t : c o s e c x = 1 + c o t x 1 s i n x = 1 + c o s x s i n x 1 s i n x = s i n x + c o s x s i n x s i n x + c o s x = 1 1 2 s i n x + 1 2 c o s x = 1 2 s i n π 4 s i n x + c o s π 4 c o s x = 1 2 c o s ( x π 4 ) = 1 2 c o s ( x π 4 ) = c o s π 4 x = 2 n π + π 4 + π 4 x = 2 n π + π 2 o r x = 2 n π + π 4 π 4 x = 2 n π H e n c e , t h e s t a t e m e n t i s ' T r u e ' .

Q:  

If t a n θ + t a n 2 θ + 3 t a n θ t a n 2 θ = 3 , then θ = n π 3 + π 9   .

A: 

This is a True or False Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t : t a n θ + t a n 2 θ + 3 t a n θ t a n 2 θ = 3 t a n θ + t a n 2 θ = 3 3 t a n θ t a n 2 θ t a n θ + t a n 2 θ = 3 ( 1 t a n θ t a n 2 θ ) t a n θ + t a n 2 θ 1 t a n θ t a n 2 θ = 3 t a n ( θ + 2 θ ) = 3 t a n 3 θ = t a n π 3 3 θ = n π + π 3 S o , θ = n π 3 + π 9 H e n c e , t h e s t a t e m e n t i s ' T r u e ' .

Q:  

If t a n ( π c o s θ ) = c o t ( π s i n θ ) , then c o s ( θ π 4 ) = ± 1 2 2 .

Read more
A: 

This is a True or False Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t : t a n ( π c o s θ ) = c o t ( π s i n θ ) t a n ( π c o s θ ) = t a n ( π 2 π s i n θ ) π c o s θ = π 2 π s i n θ π c o s θ + π s i n θ = π 2 c o s θ + s i n θ = 1 2 1 2 c o s θ + 1 2 s i n θ = 1 2 2 c o s π 4 c o s θ + s i n π 4 s i n θ = 1 2 2 c o s ( θ π 4 ) = ± 1 2 2 [ ? c o s ( θ π 4 ) o r c o s ( π 4 θ ) ] H e n c e , t h e s t a t e m e n t i s ' T r u e ' .

Q:  

Match the following items under column  to their correct answers under column :

i.  s i n ( x + y ) s i n ( x y )                       (i) c o s 2 x s i n 2 y  

ii.  c o s ( x + y ) c o s ( x y )                     (ii) 1 t a n θ 1 + t a n θ  

iii. c o t ( π 4 + θ )                                        (iii) 1 + t a n θ 1 t a n θ  

iv. t a n ( π 4 + θ )                                        (iv) s i n 2 x s i n 2 y  

Read more
A: 

This is a True or False Type Questions as classified in NCERT Exemplar

Sol:

( a ) s i n ( x + y ) s i n ( x y ) = s i n 2 x s i n 2 y ( a ) ( i v ) ( b ) c o s ( x + y ) c o s ( x y ) = c o s 2 x c o s 2 y ( b ) ( i ) ( c ) c o t ( π 4 + θ ) = c o t π 4 c o t θ 1 c o t θ + c o t π 4 = c o t θ 1 c o t θ + 1 = 1 t a n θ 1 + t a n θ ( c ) ( i i ) ( d ) t a n ( π 4 + θ ) = t a n π 4 + t a n θ 1 t a n π 4 t a n θ = 1 + t a n θ 1 t a n θ ( d ) ( i i i ) H e n c e , ( a ) ( i v ) , ( b ) ( i ) , ( c ) ( i i ) a n d ( d ) ( i i i ) .

Maths NCERT Exemplar Solutions Class 11th Chapter Three Logo

JEE Mains 2020

JEE Mains 2020

Try these practice questions

Q1:

Let a be root of the equation 1 + x2 + x4 = 0. Then the value of a1011 + a2022 - a3033 is equal to:

qna

Maths NCERT Exemplar Solutions Class 11th Chapter Three Exam

Student Forum

chatAnything you would want to ask experts?
Write here...