Maths NCERT Exemplar Solutions Class 12th Chapter Five: Overview, Questions, Preparation

Maths NCERT Exemplar Solutions Class 12th Chapter Five 2025 ( Maths NCERT Exemplar Solutions Class 12th Chapter Five )

Vishal Baghel
Updated on Jul 28, 2025 12:17 IST

By Vishal Baghel, Executive Content Operations

Table of content
  • Continuity and Differentiability Questions and Answers
  • JEE Mains Solutions 2022,29th june , Maths, first shift
  • JEE Mains 2022
  • JEE Mains 2022
Maths NCERT Exemplar Solutions Class 12th Chapter Five Logo

Continuity and Differentiability Questions and Answers

Q1. Find the values of p  and  q  so that  f ( x ) = { x 2 + 3 x + p , x 1 q x + 2 , x > 1  is differentiable at  x = 1  .

Sol:

G i v e n t h a t f ( x ) = { x 2 + 3 x + p , x 1 q x + 2 , x > 1 a t x = 1 . L . H . L . f ' ( c ) = l i m x 1 f ( x ) f ( c ) x c f ' ( 1 ) = l i m x 1 f ( x ) f ( 1 ) x 1 = l i m x 1 ( x 2 + 3 x + p ) ( 1 + 3 + p ) x 1 = l i m h 0 [ ( 1 h ) 2 + 3 ( 1 h ) + p ] ( 1 + 3 + p ) 1 h 1 = l i m h 0 [ 1 + h 2 2 h + 3 3 h + p ] ( 4 + p ) h = l i m h 0 [ h 2 5 h + 4 + p ] [ 4 + p ] h = l i m h 0 h 2 5 h + 4 + p 4 p h = l i m h 0 h 2 5 h h = l i m h 0 h [ h 5 ] h = 5 R . H . L . f ' ( 1 ) = l i m x 1 + f ( x ) f ( 1 ) x 1 = l i m x 1 + ( q x + 2 ) ( 1 + 3 + p ) x 1 = l i m h 0 [ q ( 1 + h ) + 2 ] [ 4 + p ] 1 + h 1 = l i m h 0 q + q h + 2 4 p h = l i m h 0 q + q h 2 p h F o r e x i s t i n g t h e limit q 2 p = 0 q p = 0 ( 1 ) l i m h 0 q h 0 h = q I f L . H . L . f ' ( 1 ) = R . H . L . f ' ( 1 ) t h e n q = 5 . N o w p u t t i n g t h e v a l u e o f q i n e q n . ( 1 ) 5 p = 2 p = 3 H e n c e , t h e v a l u e o f p i s 3 a n d q i s 5 .

Q2. If x m y n = ( x + y ) m + n  , prove that

(i)  d y d x = y x

(ii)  d 2 y d x 2 = 0  .

Sol:

( i ) G i v e n t h a t x m . y n = ( x + y ) m + n T a k i n g l o g o n b o t h s i d e s , w e g e t , l o g x m . y n = l o g ( x + y ) m + n [ l o g x y = l o g x + l o g y ] l o g x m + l o g y n = ( m + n ) l o g ( x + y ) m l o g x + n l o g y = ( m + n ) l o g ( x + y ) D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . x m . d d x l o g x + n . d d x l o g y = ( m + n ) d d x l o g ( x + y ) m . 1 x + n . 1 y . d y d x = ( m + n ) 1 x + y ( 1 + d y d x ) m x + n y . d y d x = m + n x + y . ( 1 + d y d x ) m x + n y . d y d x = m + n x + y + m + n x + y . d y d x n y . d y d x m + n x + y . d y d x = m + n x + y m x ( n y m + n x + y ) . d y d x = m + n x + y m x ( n x + n y m y n y y ( x + y ) ) . d y d x = ( m x + n x m x m y x ( x + y ) ) ( n x m y y ( x + y ) ) . d y d x = ( n x m y x ( x + y ) ) d y d x = n x m y x ( x + y ) × y ( x + y ) n x m y = y x d y d x = y x H e n c e , p r o v e d .

( i i ) G i v e n t h a t d y d x = y x D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . x d d x ( d y d x ) = d d x ( y x ) d 2 y d x 2 = x . d y d x y . 1 x 2 d 2 y d x 2 = x . y x y x 2 [ d y d x = y x ] d 2 y d x 2 = y y x 2 = 0 x 2 = 0 H e n c e , d 2 y d x 2 = 0 H e n c e , p r o v e d .

Q3. If x = s i n t  and  y = s i n   p t  , prove that  ( 1 x 2 ) d 2 y d x 2 x d y d x +   p 2 y = 0

Sol:

G i v e n t h a t x = s i n t a n d y = s i n p t D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . t d x d t = c o s t a n d d y d t = c o s p t . p = p . c o s p t d y d x = d y d t d x d t = p . c o s p t c o s t d y d x = p . c o s p t c o s t A g a i n d i f f e r e n t i a t i n g b o t h s i d e s w . r . t . x d d x ( d y d x ) = p . d d x ( c o s p t c o s t ) d 2 y d x 2 = p . [ c o s t . d d x ( c o s p t ) c o s p t . d d x ( c o s t ) c o s 2 t ] d 2 y d x 2 = p . [ c o s t . ( s i n p t ) . p d t d x c o s p t . ( s i n t ) . d t d x c o s 2 t ] d 2 y d x 2 = p . [ p c o s t . s i n p t + c o s p t . s i n t c o s 2 t ] d t d x d 2 y d x 2 = p . [ p c o s t . s i n p t + c o s p t . s i n t c o s 2 t ] 1 c o s t d 2 y d x 2 = p . ( p c o s t . s i n p t + c o s p t . s i n t c o s 3 t ) N o w w e h a v e t o p r o v e t h a t ( 1 x 2 ) d 2 y d x 2 x d y d x +   p 2 y = 0 L . H . S . = ( 1 x 2 ) [ p . ( p c o s t . s i n p t + c o s p t . s i n t c o s 3 t ) ] x ( p . c o s p t c o s t ) +   p 2 y = ( 1 s i n 2 t ) [ p . ( p c o s t . s i n p t + c o s p t . s i n t c o s 3 t ) ] p . s i n t c o s p t c o s t +   p 2 . s i n p t = c o s 2 t [ p 2 c o s t . s i n p t + p c o s p t . s i n t c o s 3 t ] p . s i n t c o s p t c o s t +   p 2 . s i n p t = p 2 c o s t . s i n p t + p c o s p t . s i n t c o s t p . s i n t c o s p t c o s t +   p 2 . s i n p t = p 2 c o s t . s i n p t + p c o s p t . s i n t p . s i n t c o s p t + p 2 . s i n p t c o s t c o s t = 0 c o s t = 0 = R . H . S . H e n c e , p r o v e d .

Q4.

Sol:

 

Q&A Icon
Commonly asked questions
Q:  

Find the values of p and q so that f(x)={x2+3x+p,x1qx+2,x>1 is differentiable at x=1 .

A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t f ( x ) = { x 2 + 3 x + p , x 1 q x + 2 , x > 1 a t x = 1 . L . H . L . f ' ( c ) = l i m x 1 f ( x ) f ( c ) x c f ' ( 1 ) = l i m x 1 f ( x ) f ( 1 ) x 1 = l i m x 1 ( x 2 + 3 x + p ) ( 1 + 3 + p ) x 1 = l i m h 0 [ ( 1 h ) 2 + 3 ( 1 h ) + p ] ( 1 + 3 + p ) 1 h 1 = l i m h 0 [ 1 + h 2 2 h + 3 3 h + p ] ( 4 + p ) h = l i m h 0 [ h 2 5 h + 4 + p ] [ 4 + p ] h = l i m h 0 h 2 5 h + 4 + p 4 p h = l i m h 0 h 2 5 h h = l i m h 0 h [ h 5 ] h = 5 R . H . L . f ' ( 1 ) = l i m x 1 + f ( x ) f ( 1 ) x 1 = l i m x 1 + ( q x + 2 ) ( 1 + 3 + p ) x 1 = l i m h 0 [ q ( 1 + h ) + 2 ] [ 4 + p ] 1 + h 1 = l i m h 0 q + q h + 2 4 p h = l i m h 0 q + q h 2 p h Forexistingthelimit q 2 p = 0 q p = 0 ( 1 ) l i m h 0 q h 0 h = q I f L . H . L . f ' ( 1 ) = R . H . L . f ' ( 1 ) t h e n q = 5 . N o w p

Q:  

If xmyn=(x+y)m+n , prove that

(i) dydx=yx

(ii) d2ydx2=0 

A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

( i ) G i v e n t h a t x m . y n = ( x + y ) m + n T a k i n g l o g o n b o t h s i d e s , w e g e t , l o g x m . y n = l o g ( x + y ) m + n [ ? l o g x y = l o g x + l o g y ] l o g x m + l o g y n = ( m + n ) l o g ( x + y ) m l o g x + n l o g y = ( m + n ) l o g ( x + y ) D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . x m . d d x l o g x + n . d d x l o g y = ( m + n ) d d x l o g ( x + y ) m . 1 x + n . 1 y . d y d x = ( m + n ) 1 x + y ( 1 + d y d x ) m x + n y . d y d x = m + n x + y . ( 1 + d y d x ) m x + n y . d y d x = m + n x + y + m + n x + y . d y d x n y . d y d x m + n x + y . d y d x = m + n x + y m x ( n y m + n x + y ) . d y d x = m + n x + y m x ( n x + n y m y n y y ( x + y ) ) . d y d x = ( m x + n x m x m y x ( x + y ) ) ( n x m y y ( x + y ) ) . d y d x = ( n x m y x ( x + y ) ) d y d x = n x m y x ( x + y ) × y ( x + y ) n x m y = y x d y d x = y x H e n c e , p r o v e d .

( i i ) G i v e n t h a t d y d x = y x D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . x d d x ( d y d x ) = d d x ( y x ) d 2 y d x 2 = x . d y d x y . 1 x 2 d 2 y d x 2 = x . y x y x 2 [ ? d y d x = y x ] d 2 y d x 2 = y y x 2 = 0 x 2 = 0 H e n c e , d 2 y d x 2 = 0 H e n c e , p r o v e d .

Q:  

If x=sint and y=sin pt , prove that (1x2)d2ydx2xdydx+ p2y=0

A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatx=sintandy=sinptDifferentiatingbothsidesw.r.t.tdxdt=costanddydt=cospt.p=p.cosptdydx=dydtdxdt=p.cosptcostdydx=p.cosptcostAgaindifferentiatingbothsidesw.r.t.xddx(dydx)=p.ddx(cosptcost)d2ydx2=p.[cost.ddx(cospt)cospt.ddx(cost)cos2t]d2ydx2=p.[cost.(sinpt).pdtdxcospt.(sint).dtdxcos2t]d2ydx2=p.[pcost.sinpt+cospt.sintcos2t]dtdxd2ydx2=p.[pcost.sinpt+cospt.sintcos2t]1costd2ydx2=p.(pcost.sinpt+cospt.sintcos3t)Nowwehavetoprovethat(1x2)d2ydx2xdydx+ p2y=0L.H.S.=(1x2)[p.(pcost.sinpt+cospt.sintcos3t)]x(p.cosptcost)+ p2y=(1sin2t)[p.(pcost.sinpt+cospt.sintcos3t)]p.sintcosptcost+ p2.sinpt=cos2t[p2cost.sinpt+pcospt.sintcos3t]p.sintcosptcost+ p2.sinpt=p2cost.sinpt+pcospt.sintcostp.sintcosptcost+ p2.sinpt=p2cost.sinpt+pcospt.sintp.sintcospt+p2.sinptcostcost=0cost=0=R.H.S.Hence,proved.

Q:  

Kindly consider the following

A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

Q:  

Examine the continuity of the function
f(x)=x3+2x21 at x=1

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

W e k n o w t h a t y = f ( x ) w i l l b e c o n t i n u o u s a t x = a i f l i m x a f ( x ) = l i m x a f ( x ) = l i m x a + f ( x ) G i v e n f ( x ) = x 3 + 2 x 2 1 l i m x 1 f ( x ) = l i m h 0 ( 1 + h ) 3 + 2 ( 1 + h ) 2 1 = 1 + 2 1 = 2 l i m x 1 f ( x ) = ( 1 ) 3 + 2 ( 1 ) 2 1 = 1 + 2 1 = 2 l i m x 1 + f ( x ) = l i m h 0 ( 1 + h ) 3 + 2 ( 1 + h ) 2 1 = 1 + 2 1 = 2 l i m x 1 f ( x ) = l i m x 1 f ( x ) = l i m x 1 + f ( x ) = 2 . H e n c e , f ( x ) i s c o n t i n u o u s a t x = 1 .

Q:  

Find which of the functions in Exercises 2 to 10 is continuous or discontinuous at the indicated points:

f(x)={3x+5,if x2x2,if x<2

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

l i m x 2 + f ( x ) = 3 x + 5 = l i m h 0 3 ( 2 + h ) + 5 = 1 1 l i m x 2 f ( x ) = 3 x + 5 = 3 ( 2 ) + 5 = 1 1 l i m x 2 f ( x ) = x 2 = l i m h 0 ( 2 h ) 2 = l i m h 0 ( 2 ) 2 + h 2 4 h = ( 2 ) 2 = 4 Sincelimx2+f(x)=limx2f(x)limx2f(x) H e n c e , f ( x ) i s d i s c o n t i n u o u s a t x = 2 .

Q:  

Kindly consider the following

f(x)={1cos2xx2,if x05,if x=0  at x=2 , x=0

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

l i m x 0 f ( x ) = 1 c o s 2 x x 2 = l i m h 0 1 c o s 2 ( 0 h ) ( 0 h ) 2 = l i m h 0 1 c o s ( 2 h ) h 2 = l i m h 0 1 c o s ( 2 h ) h 2 = l i m h 0 2 s i n 2 h h 2 [ ? 1 c o s θ = 2 s i n 2 θ 2 ] = l i m h 0 2 s i n h h . s i n h h = 2 . 1 . 1 = 2 [ l i m x 0 s i n x x = 1 ] l i m x 0 + f ( x ) = 1 c o s 2 x x 2 = l i m h 0 1 c o s 2 ( 0 + h ) ( 0 + h ) 2 = l i m h 0 1 c o s ( 2 h ) h 2 = l i m h 0 2 s i n 2 h h 2 = l i m h 0 2 s i n h h . s i n h h = 2 . 1 . 1 = 2 l i m x 0 f ( x ) = 5 A s l i m x 0 f ( x ) = l i m x 0 + f ( x ) l i m x 0 f ( x ) H e n c e , f ( x ) i s d i s c o n t i n u o u s a t x = 0 .

Q:  

Kindly consider the following
f(x)={2x23x+2x2,x25,x=2

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

f(x)=2x23x2x2=2x24x+x2x2=2x(x2)+1(x2)x2=(2x+1)(x2)x2=2x+1limx2f(x)=2x+1=limh02(2h)+1=4+1=5limx2+f(x)=2x+1=limh02(2+h)+1=4+1=5limx2f(x)=5Aslimx2f(x)=limx2+f(x)=limx2f(x)=5Hence,f(x)iscontinuousatx=2.

Q:  

Kindly consider the following
f(x)={|x4|2(x4),x40,x=4 at x=2 , x=4

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

l i m x 4 f ( x ) = | x 4 | 2 ( x 4 ) [ f o r x < 4 , | x 4 | = ( x 4 ) f o r x > 4 , | x 4 | = ( x 4 ) ] = l i m h 0 [ 4 h 4 ] 2 [ 4 h 4 ] = l i m h 0 h 2 h = 1 2 l i m x 4 + f ( x ) = | x 4 | 2 ( x 4 ) = l i m h 0 [ 4 + h 4 ] 2 [ 4 + h 4 ] = l i m h 0 h 2 h = 1 2 l i m x 4 f ( x ) = 0 l i m x 4 f ( x ) l i m x 4 + f ( x ) l i m x 4 f ( x ) H e n c e , f ( x ) i s d i s c o n t i n u o u s a t x = 4 .

Q:  

Kindly consider the following

f(x)={|x|cos1x,ifx00,if x=0

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

l i m x 0 f ( x ) = | x | c o s 1 x = l i m h 0 | 0 h | c o s 1 ( 0 h ) = l i m h 0 h . c o s 1 h = 0 [ ? c o s 1 x o s c i l l a t e b e t w e e n 1 a n d 1 ] l i m x 0 + f ( x ) = | x | c o s 1 x = l i m h 0 | 0 + h | c o s 1 ( 0 + h ) = l i m h 0 h . c o s 1 h = 0 l i m x 0 f ( x ) = 0 l i m x 0 f ( x ) = l i m x 0 + f ( x ) = l i m x 0 f ( x ) = 0 H e n c e , f ( x ) i s c o n t i n u o u s a t x = 0 .

Q:  

Kindly consider the following

f(x)={|xa|sin1xa,xa0,x=a at x=0 , x=a

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

limxaf(x)=|xa|sin1xa=limh0|aha|sin1(aha)=limh0h.sin1h=limh0h.sin1h[?sin(θ)=sinθ]=0×[anumberoscillatebetween1and1]=0limxa+f(x)=|xa|sin1xa=limh0|a+ha|.sin1(a+ha)=limh0h.sin1h=0×[anumberoscillatebetween1and1]=0limxaf(x)=0Aslimxaf(x)=limxa+f(x)=limxaf(x)=0Hence,f(x)iscontinuousatx=a.

Q:  

Kindly consider the following

f(x)={e1x1+e1x,if x00,if x=0

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

limx0f(x)=e1/x1+e1/x=limh0e10h1+e10h=limh0e1/h1+e1/h=limh01e1/h(1e1/h)=limh01e1/h1=limh01e1/01=limh01e1=limh0101=1[?e=0]limx0+f(x)=e1/x1+e1/x=limh0e10+h1+e10+h=limh0e1/h1+e1/h=limh01e1/h(1+e1/h)=limh01e1/h+1=limh01e1/0+1=limh01e+1=limh010+1=1[?e=0]limx0f(x)=0Aslimx0f(x)limx0+f(x)limx0f(x)Hence,f(x)isdiscontinuousatx=0.

Q:  

Kindly consider the following

f(x)={x22,if0x12x23x+32,if 1<x2 at x=0 , x=1

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

l i m x 1 f ( x ) = x 2 2 = l i m h 0 ( 1 h ) 2 2 = 1 2 l i m x 1 f ( x ) = x 2 2 = ( 1 ) 2 2 = 1 2 l i m x 1 + f ( x ) = 2 x 2 3 x + 3 2 = 2 ( 1 ) 2 3 ( 1 ) + 3 2 = 2 3 + 3 2 = 1 2 A s l i m x 1 f ( x ) = l i m x 1 + f ( x ) = l i m x 1 f ( x ) = 1 2 H e n c e , f ( x ) i s c o n t i n u o u s a t x = 1 .

Q:  

Kindly consider the following
f(x)=|x|+|x1| at x=1

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

limx1f(x)=|x|+|x1|=limh0|1h|+|1h1|=|10|+|101|=1+0=1limx1f(x)=|x|+|x1|=|1|+|11|=1+0=1limx1+f(x)=|x|+|x1|=limh0|1+h|+|1+h1|=|1+0|+|1+01|=1+0=1Aslimx1f(x)=limx1+f(x)=limx1f(x)Hence,f(x)iscontinuousatx=1.

Q:  

Find the value of k in each of the Exercises 11 to 14 so that the function f is continuous at the indicated point:

f(x)={3x8,if x52k,if x>5 at x=5

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

l i m x 5 f ( x ) = 3 x 8 = l i m h 0 3 ( 5 h ) 8 = 1 5 8 = 7 l i m x 5 + f ( x ) = 2 k A s t h e f u n c t i o n i s c o n t i n u o u s a t x = 5 l i m x 1 f ( x ) = l i m x 5 + f ( x ) 7 = 2 k k = 7 2 A s l i m x 1 f ( x ) = l i m x 1 + f ( x ) = l i m x 1 f ( x ) H e n c e , t h e v a l u e o f k i s 7 2 .

Q:  

Kindly consider the following

f(x)={2x+2164x16,if x2k,if x=2  at x=2

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

f(x)=2x+2164x16=22.2x16(2x)2(4)2=4(2x4)(2x4)(2x+4)=4(2x+4)limx2f(x)=limh04(22h+4)=422+4=44+4=48=12limx2f(x)=kAsthefunctioniscontinuousatx=2limx2f(x)=limx2f(x)k=12Hence,thevalueofkis12.

Q:  

Kindly consider the following

f(x)={1coskxxsinx,if x012,if x=0 at x=0

A: 

Kindly go through the solution

Sol:

l i m x 0 f ( x ) = 1 c o s k x x s i n x = l i m h 0 1 c o s k ( 0 h ) ( 0 h ) s i n ( 0 h ) = l i m h 0 1 c o s ( k h ) ( h ) s i n ( h ) = l i m h 0 1 c o s k h h s i n h [ ? s i n ( θ ) = s i n θ c o s ( θ ) = c o s θ ] = l i m h 0 2 s i n 2 k h 2 h s i n h = l i m h 0 k h 0 2 s i n k h 2 k h 2 × k h 2 × s i n k h 2 k h 2 × k h 2 . 1 h . s i n h h . h = 2 . 1 . k h 2 . 1 . k h 2 . 1 h 2 . 1 [ l i m h 0 s i n h h = 1 a n d l i m k h 0 s i n k h k h = 1 ] = k 2 2 l i m x 0 f ( x ) = 1 2 l i m x 0 f ( x ) = l i m x 0 f ( x ) k 2 2 = 1 2 k 2 = 1 k = ± 1 H e n c e , t h e v a l u e o f k i s ± 1 .

Q:  

Prove that the function f defined by f(x)={x|x|+2x2,x0k,x=0 remains discontinuous at x=0 , regardless of the choice of k .

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

l i m x 0 f ( x ) = x | x | + 2 x 2 = l i m h 0 0 h | 0 h | + 2 ( 0 h ) 2 = l i m h 0 h h + 2 h 2 = l i m h 0 h h ( 1 + 2 h ) = l i m h 0 1 1 + 2 h = 1 1 + 2 ( 0 ) = 1 l i m x 0 + f ( x ) = x | x | + 2 x 2 = l i m h 0 0 + h | 0 + h | + 2 ( 0 + h ) 2 = l i m h 0 h h + 2 h 2 = l i m h 0 h h ( 1 + 2 h ) = 1 1 + 0 = 1 A s l i m x 0 f ( x ) l i m x 0 + f ( x ) H e n c e , f ( x ) i s d i s c o n t i n u o u s a t x = 0 r e g a r d l e s s t h e c h o i c e o f k .

Q:  

Find the values of a and b such that the function f defined by

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

l i m x 4 f ( x ) = x 4 | x 4 | + a = l i m h 0 4 h 4 | 4 h 4 | + a = l i m h 0 h h + a = 1 + a l i m x 4 f ( x ) = a + b l i m x 4 + f ( x ) = x 4 | x 4 | + b = l i m h 0 4 + h 4 | 4 + h 4 | + b = l i m h 0 h h + b = 1 + b A s t h e f u n c t i o n i s c o n t i n u o u s a t x = 4 . l i m x 4 f ( x ) = l i m x 4 f ( x ) = l i m x 4 + f ( x ) 1 + a = a + b = 1 + b 1 + a = a + b b = 1 1 + b = a + b a = 1 H e n c e , t h e v a l u e o f a = 1 a n d b = 1 .

Q:  

Given the function f(x)=1x+2 . Find the points of discontinuity of the composite function y=f(f(x))

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

f ( x ) = 1 x + 2 f [ f ( x ) ] = 1 f ( x ) + 2 = 1 1 x + 2 + 2 = 1 1 + 2 x + 4 x + 2 = x + 2 2 x + 5 f [ f ( x ) ] = x + 2 2 x + 5 T h i s f u n c t i o n w i l l n o t b e d e f i n e d a n d c o n t i n u o u s w h e r e 2 x + 5 = 0 x = 5 2 . Hence,x=52isthepointofdiscontinuity.

Q:  

Find all points of discontinuity of the function f(t)=1t2+t2  where t=1x1

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Wehavef(x)=1t2+t2f(t)=1(1x1)2+1x12[Puttingt=1x1]=11+x12(x1)2(x1)2=(x1)2x2x22+4x=(x1)22x2+5x2=(x1)2(2x25x+2)=(x1)2[2x24xx+2]=(x1)2[2x(x2)1(x2)]=(x1)2(x2)(2x1)=(x1)2(2x)(2x1)So,iff(t)isdiscontinuous,then2x=0x=2and2x1=0x=12Hence,therequiredofdiscontinuityare2and12.

Q:  

Show that the function f(x)=|sinx+cosx| is continuous at x=π .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t f ( x ) = | s i n x + c o s x | a t x = π P u t g ( x ) = s i n x + c o s x a n d h ( x ) = | x | h [ g ( x ) ] = h ( s i n x + c o s x ) = | s i n x + c o s x | Now,g(x)=sinx+cosxisacontinuousfunctionsincesinxandcosxaretwocontinuous f u n c t i o n s a t x = π . Weknowthateverymodulusfunctionisacontinuousfunctioneverywhere. H e n c e , f ( x ) = | s i n x + c o s x | i s a c o n t i n u o u s f u n c t i o n a t x = π .

Q:  

Examine the differentiability of f , where f is defined by

f(x)={x[x],0x<2(x1)x,2x<3  at x=2 .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Weknowthatafunctionfisdifferentiableatapoint'a'initsdomainif L f ' ( c ) = R f ' ( c ) w h e r e L f ' ( c ) = l i m h 0 f ( a h ) f ( a ) h a n d R f ' ( c ) = l i m h 0 f ( a + h ) f ( a ) h H e r e , f ( x ) = { x [ x ] , i f 0 x 2 ( x 1 ) x , i f 2 x 2 a t x = 2 . L f ' ( c ) = l i m h 0 f ( 2 h ) f ( 2 ) h = l i m h 0 ( 2 h ) [ 2 h ] ( 2 1 ) 2 h = l i m h 0 ( 2 h ) . 1 2 h [ ? [ 2 h ] = 1 ] = l i m h 0 2 h 2 h = 1 R f ' ( c ) = l i m h 0 f ( 2 + h ) f ( 2 ) h = l i m h 0 ( 2 + h 1 ) ( 2 + h ) ( 2 1 ) . 2 h = l i m h 0 ( 1 + h ) ( 2 + h ) 2 h = l i m h 0 2 + h + 2 h + h 2 2 h = l i m h 0 3 h + h 2 h = l i m h 0 h ( 3 + h ) h = 3 L f ' ( c ) R f ' ( c ) H e n c e , f ( x ) i s n o t d i f f e r e n t i a b l e a t x = 2 .

Q:  

Examine the differentiability of f , where f is defined by

f(x)={x2sinx1x,if x00,if x=0 at x=0 

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t f ( x ) = { x 2 s i n 1 x , i f x 0 0 , i f x = 0 a t x = 0 . F o r d i f f e r e n t i a b i l i t y w e k n o w t h a t L f ' ( c ) = R f ' ( c ) L f ' ( c ) = l i m h 0 f ( 0 h ) f ( 0 ) h = l i m h 0 ( 0 h ) 2 s i n 1 ( 0 h ) 0 h = h 2 s i n ( 1 h ) h = l i m h 0 h . s i n ( 1 h ) = 0 × [ 1 s i n ( 1 h ) 1 ] = 0 R f ' ( c ) = l i m h 0 f ( 0 + h ) f ( 0 ) h = l i m h 0 ( 0 + h ) 2 s i n 1 ( 0 + h ) 0 h = l i m h 0 h 2 s i n ( 1 h ) h = l i m h 0 h . s i n ( 1 h ) = 0 × [ 1 s i n ( 1 h ) 1 ] = 0 S o , L f ' ( c ) = R f ' ( c ) = 0 H e n c e , f ( x ) i s d i f f e r e n t i a b l e a t x = 0 .

Q:  

Examine the differentiability of f , where f is defined by

f(x)={1+x,if x25x,if x>2 at x=2

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

f ( x ) i s d i f f e r e n t i a b l e a t x = 2 i f L f ' ( 2 ) = R f ' ( 2 ) L f ' ( c ) = l i m h 0 f ( 2 h ) f ( 2 ) h = l i m h 0 ( 1 + 2 h ) ( 1 + 2 ) h = l i m h 0 3 h 3 h = h h = 1 R f ' ( c ) = l i m h 0 f ( 2 + h ) f ( 2 ) h = l i m h 0 [ 5 ( 2 + h ) ] ( 1 + 2 ) h = l i m h 0 3 h 3 h = h h = 1 S o , L f ' ( c ) R f ' ( c ) H e n c e , f ( x ) i s n o t d i f f e r e n t i a b l e a t x = 2 .

Q:  

Show that f(x)=x5 is continuous but not differentiable at x=5 .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

W e h a v e f ( x ) = | x 5 | f ( x ) = { ( x 5 ) i f x 5 < 0 o r x < 5 x 5 i f x 5 > 0 o r x > 5 F o r c o n t i n u i t y a t x = 5 L . H . L . l i m h 5 f ( x ) = ( x 5 ) = l i m h 0 ( 5 h 5 ) = l i m h 0 h = 0 R . H . L . l i m h 5 + f ( x ) = x 5 = l i m h 0 ( 5 + h 5 ) = l i m h 0 h = 0 L . H . L . = R . H . L . S o , f ( x ) i s c o n t i n u o u s a t x = 5 . N o w , f o r d i f f e r e n t i a b i l i t y L f ' ( c ) = l i m h 0 f ( 5 h ) f ( 5 ) h = l i m h 0 ( 5 h 5 ) ( 5 5 ) h = l i m h 0 h h = h h = 1 R f ' ( 5 ) = l i m h 0 f ( 5 + h ) f ( 5 ) h = l i m h 0 ( 5 + h 5 ) ( 5 5 ) h = l i m h 0 h 0 h = h h = 1 S o , L f ' ( 5 ) R f ' ( 5 ) H e n c e , f ( x ) i s n o t d i f f e r e n t i a b l e a t x = 5 .

Q:  

A function f:RR satisfies the equation f(x+y)=f(x)f(y)  for all x,yR , where f(x)0 . Suppose that the function is differentiable at x=0 and f(0)=2 .
Prove that f(x)=2f(x) .

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t f : R R s a t i s f i e s t h e e q u a t i o n f ( x + y ) = f ( x ) . f ( y ) x , y R , f ( x ) 0 . Letustakeanypointx=0atwhichthefunctionf(x)isdifferentiable. f ' ( 0 ) = l i m h 0 f ( 0 + h ) f ( 0 ) h 2 = l i m h 0 f ( 0 ) . f ( h ) f ( 0 ) h [ ? f ( 0 ) = f ( h ) ] ( 1 ) 2 = l i m h 0 f ( 0 ) . [ f ( h ) 1 ] h N o w , f ' ( x ) = l i m h 0 f ( x + h ) f ( x ) h = l i m h 0 f ( x ) . f ( h ) f ( x ) h [ ? f ( x + y ) = f ( x ) . f ( y ) ] = l i m h 0 f ( x ) . [ f ( h ) 1 ] h = 2 f ( x ) [ F r o m e q ( 1 ) ] H e n c e , f ' ( x ) = 2 f ( x )

Q:  

Differentiate each of the following w.r.t. x (Exercises 25 to 43): 

2cos2x

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

L e t y = 2 c o s 2 x T a k i n g l o g o n b o t h s i d e s , w e g e t l o g y = l o g 2 c o s 2 x D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . x 1 y . d y d x = l o g 2 . d d x c o s 2 x 1 y . d y d x = l o g 2 . [ 2 c o s x . d d x c o s x ] 1 y . d y d x = l o g 2 . [ 2 c o s x ( s i n x ) ] 1 y . d y d x = l o g 2 ( s i n 2 x ) d y d x = y . l o g 2 s i n 2 x H e n c e , d y d x = 2 c o s 2 x ( l o g 2 s i n 2 x )

Q:  

Kindly consider the following

8xx8

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Lety=8xx8Takinglogonbothsides,weget,logy=log8xx8logy=log8xlogx8logy=xlog88logxDifferentiatingbothsidesw.r.t.x1y.dydx=log8.18x1y.dydx=y[log88x]Hence,dydx=8xx8[log88x]

Q:  

Kindly consider the following

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Q:  

Kindly consider the following

log[log(logx5)]

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

L e t y = l o g [ l o g ( l o g x 5 ) ] D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . x d y d x = d d x l o g [ l o g ( l o g x 5 ) ] =1log(logx5)×ddxlog(logx5) = 1 log(logx5) × 1 l o g ( x 5 ) × d d x l o g x 5 = 1 log(logx5) × 1 l o g ( x 5 ) × 1 x 5 . d d x x 5 = 1 log(logx5) × 1 l o g ( x 5 ) × 1 x 5 . 5 x 4 = 5 xlog(x5).loglog(x5) H e n c e , d y d x = 5 xlog(x5).loglog(x5) .

Q:  

Kindly consider the following

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Q:  

Kindly consider the following

sin2(ax2+bx+c)

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Lety=sinn(ax2+bx+c)Differentiatingbothsidesw.r.t.xdydx=ddxsinn(ax2+bx+c)=n.sinn1(ax2+bx+c).ddxsin(ax2+bx+c)=n.sinn1(ax2+bx+c).cos(ax2+bx+c).ddx(ax2+bx+c)=n.sinn1(ax2+bx+c).cos(ax2+bx+c).(2ax+b)Hence,dydx=n(2ax+b).sinn1(ax2+bx+c).cos(ax2+bx+c).

Q:  

Kindly consider the following

cos(tan√x+1)

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Q:  

Kindly consider the following

sinx2+sin2x+sin2(x2)

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

L e t y = s i n x 2 + s i n 2 x + s i n 2 ( x 2 ) D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . x d y d x = d d x s i n ( x 2 ) + 2 s i n x . d d x ( s i n x ) + 2 s i n ( x 2 ) d d x s i n ( x 2 ) = c o s x 2 . d d x ( x 2 ) + 2 s i n x . d d x ( s i n x ) + 2 s i n ( x 2 ) d d x s i n ( x 2 ) = c o s x 2 . 2 x + 2 s i n x . c o s x + 2 s i n x 2 . c o s x 2 . d d x ( x 2 ) = 2 x . c o s x 2 + s i n 2 x + 2 s i n x 2 . c o s x 2 . 2 x = 2 x . c o s x 2 + s i n 2 x + 2 x s i n 2 x 2 H e n c e , d y d x = 2 x . c o s x 2 + s i n 2 x + 2 x s i n 2 x 2

Q:  

Kindly consider the following

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Q:  

Kindly consider the following

(sinx)cosx

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Lety=(sinx)cosxTakinglogonbothsides,logy=log(sinx)cosxlogy=cosx.log(sinx)Differentiatingbothsidesw.r.t.x1y.dydx=ddxcosx.log(sinx)1y.dydx=cosx.ddxlog(sinx)+log(sinx).ddxcosx1y.dydx=cosx.1sinx.ddx(sinx)+log(sinx).(sinx)1y.dydx=cotx.cosxsinx.log(sinx)dydx=y[cotx.cosxsinx.log(sinx)]Hence,dydx=(sinx)cosx[cos2xsinxsinx.log(sinx)]

Q:  

Kindly consider the following

sinmxcosnx

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

L e t y = s i n m x c o s n x D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . x d y d x = d d x ( s i n m x c o s n x ) = s i n m x . d d x ( c o s n x ) + c o s n x . d d x ( s i n m x ) = s i n m x . n . c o s n 1 x d d x ( c o s x ) + c o s n x . m . s i n m 1 x d d x ( s i n x ) = n . s i n m x . c o s n 1 x . ( s i n x ) + m . c o s n x . s i n m 1 x . c o s x = n . s i n m + 1 x . c o s n 1 x + m . c o s n + 1 x . s i n m 1 x = s i n m x . c o s n x [ n s i n x c o s x + m . c o s x s i n x ] H e n c e , d y d x = s i n m x . c o s n x [ n t a n x + m . c o t x ]

Q:  

Kindly consider the following

(x+1)2(x+2)3(x+3)4

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Lety=(x+1)2(x+2)3(x+3)4Takinglogonbothsides,logy=log[(x+1)2.(x+2)3.(x+3)4]logy=log(x+1)2+log(x+2)3+log(x+3)4[?logxy=logx+logy]logy=2log(x+1)+3log(x+2)+4log(x+3)[?logxy=ylogx]Differentiatingbothsidesw.r.t.x1y.dydx=2.ddxlog(x+1)+3.ddxlog(x+2)+4.ddxlog(x+3)1y.dydx=2.1x+1+3.1x+2+4.1x+3dydx=y[2x+1+3x+2+4x+3]=(x+1)2(x+2)3(x+3)4[2x+1+3x+2+4x+3]=(x+1)2(x+2)3(x+3)4[2(x+2)(x+3)+3(x+1)(x+3)+4(x+1)(x+2)(x+1)(x+2)(x+3)]=(x+1)(x+2)2(x+3)3[2x2+10x+12+3x2+12x+9+4x2+12x+8]=(x+1)(x+2)2(x+3)3[9x2+34x+29]Hence,dydx=(x+1)(x+2)2(x+3)3[9x2+34x+29]

Q:  

Kindly consider the following

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Q:  

Kindly consider the following

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Q:  

Kindly consider the following

tan1(secx+tanx),π2<x<π2

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

L e t y = t a n 1 ( s e c x + t a n x ) D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . x d y d x = d d x [ t a n 1 ( s e c x + t a n x ) ] = 1 1 + ( s e c x + t a n x ) 2 . d d x ( s e c x + t a n x ) = 1 1 + s e c 2 x + t a n 2 x + 2 s e c x t a n x . ( s e c x t a n x + s e c 2 x ) = 1 ( 1 + t a n 2 x ) + s e c 2 x + 2 s e c x t a n x . s e c x ( t a n x + s e c x ) = 1 s e c 2 x + s e c 2 x + 2 s e c x t a n x . s e c x ( t a n x + s e c x ) = 1 2 s e c 2 x + 2 s e c x t a n x . s e c x ( t a n x + s e c x ) = 1 2 s e c x ( s e c x + t a n x ) . s e c x ( t a n x + s e c x ) = 1 2 H e n c e , d y d x = 1 2

Q:  

Kindly consider the following

tan1(acosxbsinxbcosx+asinx),π2<xπ2andabtanx1

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

L e t y = t a n 1 ( a c o s x b s i n x b c o s x + a s i n x ) y = t a n 1 [ a c o s x b c o s x b s i n x b c o s x b c o s x b c o s x + a s i n x b c o s x ] y = t a n 1 [ a b t a n x 1 + a b t a n x ] y = t a n 1 a b t a n 1 ( t a n x ) [ ? t a n 1 ( x y 1 + x y ) = t a n 1 x t a n 1 y ] y = t a n 1 a b x D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . x d y d x = d d x [ t a n 1 a b ] d d x ( x ) = 0 1 = 1 H e n c e , d y d x = 1

Q:  

Kindly consider the following

sec1(14x33x),0<x<1√2

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Q:  


Kindly consider the following

tan1(3a2xx3a33ax2),−1√3
<x/a<1√3

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

L e t y = t a n 1 [ 3 a 2 x x 3 a 3 3 a x 2 ] P u t x = a t a n θ θ = t a n 1 x a y = t a n 1 [ 3 a 2 a t a n θ a 3 t a n 3 θ a 3 3 a . a 2 t a n 2 θ ] y = t a n 1 [ 3 a 3 t a n θ a 3 t a n 3 θ a 3 3 a 3 t a n 2 θ ] y = t a n 1 [ 3 t a n θ t a n 3 θ 1 3 t a n 2 θ ] y = t a n 1 ( t a n 3 θ ) [ ? t a n 3 θ = 3 t a n θ t a n 3 θ 1 3 t a n 2 θ ] y = 3 θ y = 3 t a n 1 x a D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . x d y d x = 3 . d d x ( t a n 1 x a ) = 3 . 1 1 + x 2 a 2 . d d x . ( x a ) = 3 . a 2 a 2 + x 2 . 1 a = 3 a a 2 + x 2 H e n c e , d y d x = 3 a a 2 + x 2

Q:  

Kindly consider the following

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Q:  

Find dydx of each of the functions expressed in parametric form in Exercises from 44 to 48.

x=t+1t,y=t1t

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t x = t + 1 t , y = t 1 t D i f f e r e n t i a t i n g b o t h t h e g i v e n p a r a m e t r i c f u n c t i o n s w . r . t . t d x d t = 1 1 t 2 , d y d t = 1 + 1 t 2 d y d x = d y d t d x d t = 1 + 1 t 2 1 1 t 2 = t 2 + 1 t 2 1 H e n c e , d y d x = t 2 + 1 t 2 1

Q:  

Kindly consider the following

x=eθ(θ+1θ),y=eθ(θ1θ)

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t x = e θ ( θ + 1 θ ) , y = e θ ( θ 1 θ ) D i f f e r e n t i a t i n g b o t h t h e p a r a m e t r i c f u n c t i o n s w . r . t . θ d x d θ = e θ ( 1 1 θ 2 ) + ( θ + 1 θ ) . e θ d x d θ = e θ ( 1 1 θ 2 + θ + 1 θ ) e θ ( θ 2 1 + θ 3 + θ θ 2 ) = e θ ( θ 3 + θ 2 + θ 1 ) θ 2 y = e θ ( θ 1 θ ) d y d θ = e θ ( 1 + 1 θ 2 ) + ( θ 1 θ ) . ( e θ ) d y d θ = e θ ( 1 + 1 θ 2 θ + 1 θ ) e θ ( θ 2 + 1 θ 3 + θ θ 2 ) = e θ ( θ 3 + θ 2 + θ + 1 ) θ 2 d y d x = d y d θ d x d θ = e θ ( θ 3 + θ 2 + θ + 1 ) θ 2 e θ ( θ 3 + θ 2 + θ 1 ) θ 2 = e 2 θ ( θ 3 + θ 2 + θ + 1 θ 3 + θ 2 + θ 1 ) H e n c e , d y d x = e 2 θ ( θ 3 + θ 2 + θ + 1 θ 3 + θ 2 + θ 1 )

Q:  

Kindly consider the following

x=3cosθ2cos3θ,y=3sinθ2sin3θ  .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t x = 3 c o s θ 2 c o s 3 θ , y = 3 s i n θ 2 s i n 3 θ D i f f e r e n t i a t i n g b o t h t h e g i v e n p a r a m e t r i c f u n c t i o n s w . r . t . θ d x d θ = 3 s i n θ 6 c o s 2 θ . d d θ ( c o s θ ) = 3 s i n θ 6 c o s 2 θ . ( s i n θ ) = 3 s i n θ + 6 c o s 2 θ . s i n θ d y d θ = 3 c o s θ 6 s i n 2 θ . d d θ ( s i n θ ) = 3 c o s θ 6 s i n 2 θ . c o s θ d y d x = d y d θ d x d θ = 3 c o s θ 6 s i n 2 θ . c o s θ 3 s i n θ + 6 c o s 2 θ . s i n θ = c o s θ ( 3 6 s i n 2 θ ) s i n θ ( 3 + 6 c o s 2 θ ) = c o s θ [ 3 6 ( 1 c o s 2 θ ) ] s i n θ [ 3 + 6 c o s 2 θ ] = c o t θ ( 3 6 + 6 c o s 2 θ 3 + 6 c o s 2 θ ) = c o t θ ( 3 + 6 c o s 2 θ 3 + 6 c o s 2 θ ) = c o t θ H e n c e , d y d x = c o t θ

Q:  

Kindly consider the following

sinx=2t1+t2,tan y=2t1t2

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

N o w , t a k i n g t a n y = 2 t 1 t 2 D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . t , w e g e t d d t ( t a n y ) = d d t ( 2 t 1 t 2 ) s e c 2 y . d y d t = ( 1 t 2 ) . d d t ( 2 t ) 2 t . d d t ( 1 t 2 ) ( 1 t 2 ) 2 s e c 2 y . d y d t = 2 . ( 1 t 2 ) 2 t . ( 2 t ) ( 1 t 2 ) 2 s e c 2 y . d y d t = 2 2 t 2 + 4 t 2 ( 1 t 2 ) 2 d y d t = 2 + 2 t 2 ( 1 t 2 ) 2 × 1 s e c 2 y d y d t = 2 ( 1 + t 2 ) ( 1 t 2 ) 2 × 1 1 + t a n 2 y d y d t = 2 ( 1 + t 2 ) ( 1 t 2 ) 2 × 1 1 + ( 2 t 1 t 2 ) 2 d y d t = 2 ( 1 + t 2 ) ( 1 t 2 ) 2 × 1 ( 1 t 2 ) 2 + 4 t 2 ( 1 t 2 ) 2 d y d t = 2 ( 1 + t 2 ) ( 1 t 2 ) 2 × ( 1 t 2 ) 2 1 + t 4 2 t 2 + 4 t 2 d y d t = 2 ( 1 + t 2 ) ( 1 t 2 ) 2 × ( 1 t 2 ) 2 1 + t 4 + 2 t 2 d y d t = 2 ( 1 + t 2 ) ( 1 t 2 ) 2 × ( 1 t 2 ) 2 ( 1 + t 2 ) 2 d y d t = 2 1 + t 2 d y d x = d y d t d x d t = 2 1 + t 2 2 1 + t 2 = 1 H e n c e , d y d x = 1

Q:  

Kindly consider the following

x=1+logtt2,y=3+2logtt

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatx=1+logtt2,y=3+2logttDifferentiatingboththeparametricfunctionsw.r.t.t,wegetdxdt=t2.ddt(1+logt)(1+logt).ddt(t2)t4=t2.(1t)(1+logt).2tt4=t(1+logt).2tt4=t[122logt]t4=[12logt]t3dxdt=(1+2logt)t3Now,y=3+2logttdydt=t.ddt(3+2logt)(3+2logt).ddt(t)t2=t.(2t)(3+2logt).1t2=232logtt2=(1+2logt)t2dydx=dydtdxdt=(1+2logt)t2(1+2logt)t3=t3t2=tHence,dydx=t

Q:  

If x=ecos2t and y=esin2t , prove that dydx=ylogxxlogy

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t x = e c o s 2 t , y = e s i n 2 t c o s 2 t = l o g x a n d s i n 2 t = l o g y D i f f e r e n t i a t i n g b o t h t h e p a r a m e t r i c f u n c t i o n s w . r . t . t , w e g e t d x d t = e c o s 2 t . d d t ( c o s 2 t ) = e c o s 2 t ( s i n 2 t ) . d d t ( 2 t ) = e c o s 2 t ( s i n 2 t ) . 2 = 2 e c o s 2 t s i n 2 t N o w , y = e s i n 2 t d y d t = e s i n 2 t . d d t ( s i n 2 t ) = e s i n 2 t ( c o s 2 t ) . d d t ( 2 t ) = e s i n 2 t ( c o s 2 t ) . 2 = 2 e s i n 2 t c o s 2 t d y d x = d y d t d x d t = 2 e s i n 2 t c o s 2 t 2 e c o s 2 t s i n 2 t = e s i n 2 t c o s 2 t e c o s 2 t s i n 2 t = y c o s 2 t x s i n 2 t = y l o g x x l o g y [ ? c o s 2 t = l o g x s i n 2 t = l o g y ] H e n c e , d y d x = y l o g x x l o g y

Q:  

If x=asin2t(1+cos2t) and y=bcos2t(1cos2t) , show that (dydx)at t=π4=ba

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatx=asin2t(1+cos2t),y=bcos2t(1cos2t)Differentiatingboththeparametricfunctionsw.r.t.t,wegetdxdt=a[sin2t.ddt(1+cos2t)+(1+cos2t).ddt(sin2t)]=a[sin2t.(sin2t).2+(1+cos2t)(cos2t).2]=a[2sin22t+2cos2t+2cos22t]=a[2(cos22tsin22t)+2cos2t]=a[2cos4t+2cos2t][?cos2x=cos2xsin2x]=2a[cos4t+cos2t]Now,y=bcos2t(1cos2t)dydt=b[cos2t.ddt(1cos2t)+(1cos2t).ddt(cos2t)]=b[cos2t.(sin2t).2+(1cos2t)(sin2t).2]=b[2sin2tcos2t2sin2t+2sin2tcos2t]=b[sin4t2sin2t+sin4t][?sin2x=2sinxcosx]=b[2sin4t2sin2t]=2b(sin4tsin2t)dydx=dydtdxdt=2b[sin4tsin2t]2a[cos4t+cos2t]=ba[sin4tsin2tcos4t+cos2t]Putt=π4(dydx)att=π4=ba[sin4(π4)sin2(π4)cos4(π4)+cos2(π4)]=ba[sinπsinπ2cosπ+cosπ2]&thi

Q:  

If x=3sintsin3t,y=3costcos3t , find dydx at t=π3 .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Q:  

Differentiate xsinx w.r.t. sinx .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

L e t y = x s i n x a n d z = s i n x D i f f e r e n t i a t i n g b o t h t h e p a r a m e t r i c f u n c t i o n s w . r . t . x d y d x = s i n x . d d x ( x ) x . d d x ( s i n x ) ( s i n x ) 2 = s i n x . 1 x . c o s x ( s i n 2 x ) = s i n x x . c o s x s i n 2 x d z d x = c o s x d y d z = d y d x d z d x = s i n x x . c o s x s i n 2 x c o s x = s i n x x c o s x s i n 2 x c o s x = s i n x s i n 2 x c o s x x c o s x s i n 2 x c o s x = t a n x s i n 2 x x s i n 2 x = t a n x x s i n 2 x H e n c e , d y d z = t a n x x s i n 2 x

Q:  

Kindly consider the following

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Q:  

Find dydx when x and y are connected by the relation given in each of the Exercises 54 to 57.

sin(xy)+xy=x2y

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t s i n x y + x y = x 2 y D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . x d d x s i n ( x y ) + d d x ( x y ) = d d x ( x 2 ) d d x ( y ) c o s x y . d d x ( x y ) + y . d d x ( x ) x . d y d x y 2 = 2 x d y d x c o s x y [ x . d y d x + y . 1 ] + y . 1 y 2 x y 2 d y d x = 2 x d y d x x c o s x y . d y d x + y c o s x y + 1 y x y 2 d y d x = 2 x d y d x x c o s x y . d y d x x y 2 d y d x + d y d x = 2 x y c o s x y 1 y [ x c o s x y x y 2 + 1 ] d y d x = 2 x y c o s x y 1 y [ x y 2 c o s x y x + y 2 y 2 ] d y d x = 2 x y y 2 c o s x y 1 y d y d x = 2 x y y 2 c o s x y 1 y × y 2 x y 2 c o s x y x + y 2 = 2 x y 2 y 3 c o s ( x y ) y x y 2 c o s ( x y ) x + y 2 H e n c e , d y d x = 2 x y 2 y 3 c o s ( x y ) y x y 2 c o s ( x y ) x + y 2

Q:  

Kindly consider the following

sec(x+y)=xy

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t s e c ( x + y ) = x y D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . x d d x s e c ( x + y ) = d d x ( x y ) s e c ( x + y ) . t a n ( x + y ) . d d x ( x + y ) = x . d y d x + y . 1 s e c ( x + y ) . t a n ( x + y ) . ( 1 + d y d x ) = x . d y d x + y s e c ( x + y ) . t a n ( x + y ) + s e c ( x + y ) . t a n ( x + y ) . d y d x = x . d y d x + y s e c ( x + y ) . t a n ( x + y ) . d y d x x . d y d x = y s e c ( x + y ) . t a n ( x + y ) [ s e c ( x + y ) . t a n ( x + y ) x ] d y d x = y s e c ( x + y ) . t a n ( x + y ) d y d x = y s e c ( x + y ) . t a n ( x + y ) s e c ( x + y ) . t a n ( x + y ) x H e n c e , d y d x = y s e c ( x + y ) . t a n ( x + y ) s e c ( x + y ) . t a n ( x + y ) x

Q:  

Kindly consider the following

tan1(x2+y2)=a

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t t a n 1 ( x 2 + y 2 ) = a x 2 + y 2 = t a n a D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . x d d x ( x 2 + y 2 ) = d d x ( t a n a ) 2 x + 2 y . d y d x = 0 2 y . d y d x = 2 x d y d x = 2 x 2 y = x y H e n c e , d y d x = x y

Q:  

Kindly consider the following

(x2+y2)2=xy

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhat(x2+y2)2=xyx4+y4+2x2y2=xyDifferentiatingbothsidesw.r.t.xddx(x4)+ddx(y4)+2.ddx(x2y2)=ddx(xy)4x3+4y3.dydx+2[x2.2y.dydx+y2.2x]=x.dydx+y.14x3+4y3.dydx+4x2y.dydx+4xy2=x.dydx+y4y3.dydx+4x2y.dydxx.dydx=y4x34xy2[4y3+4x2yx]dydx=y4x34xy2dydx=y4x34xy24y3+4x2yxHence,dydx=y4x34xy24y3+4x2yx

Q:  

Kindly consider the following

If ax2+2hxy+by2+2gx+2fy+c=0 , then show that dydxdxdy=1 .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t a x 2 + 2 h x y + b y 2 + 2 g x + 2 f y + c = 0 D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . x d d x ( a x 2 + 2 h x y + b y 2 + 2 g x + 2 f y + c ) = d d x ( 0 ) a . 2 x + 2 h ( x . d y d x + y . 1 ) + b . 2 y . d y d x + 2 g . 1 + 2 f . d y d x + 0 = 0 2 a x + 2 h x . d y d x + 2 h y + 2 b y . d y d x + 2 g + 2 f . d y d x = 0 2 h x . d y d x + 2 b y . d y d x + 2 f . d y d x = 2 a x 2 h y 2 g ( 2 h x + 2 b y + 2 f ) . d y d x = 2 ( a x + h y + g ) d y d x = 2 ( a x + h y + g ) 2 ( h x + b y + f ) = ( a x + h y + g ) ( h x + b y + f ) d y d x = ( a x + h y + g ) ( h x + b y + f ) N o w , d i f f e r e n t i a t i n g b o t h s i d e s w . r . t . y d d y ( a x 2 + 2 h x y + b y 2 + 2 g x + 2 f y + c ) = d d y ( 0 ) 2 a x . d x d y + 2 h ( y . d x d y + x . 1 ) + 2 b y + 2 g . d x d y + 2 f . 1 + 0 = 0 2 a x . d x d y + 2 h y . d x d y + 2 h x + 2 b y + 2 g . d x d y + 2 f = 0 2 a x d x d y + 2 h y . d x d y + 2 g . d x d y = 2 h x 2 b y 2 f ( 2 a x + 2 h y + 2 g ) . d x d y = 2 ( h x + b y + f ) d x d y = 2 ( h x + b y + f ) 2 ( a x + h y + g ) = ( h x + b y + f ) ( a x + h y + g ) d x d y = ( h x + b y + f ) ( a x + h y + g ) d y d x . d x d y = [ ( a x + h y + g ) ( h x + b y + f ) ] . [ ( h x + b y + f ) ( a x + h y + g ) ] = 1 H e n c e , d y d x . d x d y = 1 . H e n c e , p r o v e d .

Q:  

Kindly consider the following

If x=exy , prove that dydx=xyxlogx

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t x = e x y T a k i n g l o g o n b o t h t h e s i d e s , l o g x = l o g e x y l o g x = x y l o g e l o g x = x y [ ? l o g e = 1 ] ( 1 ) D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . x d d x l o g x = d d x ( x y ) 1 x = y . 1 x . d y d x y 2 y 2 = x ( y x . d y d x ) y 2 = x y x 2 . d y d x x 2 . d y d x = y 2 x y d y d x = y 2 x y x 2 = y 2 + x y x 2 = y ( x y ) x 2 d y d x = y x . ( x y ) x = 1 l o g x . ( x y x ) [ ? l o g x = x y f r o m e q n ( 1 ) ] H e n c e , d y d x = x y x l o g x . H e n c e , p r o v e d .

Q:  

Kindly consider the following

If xy=eyx , prove that dydx=(1+logy)2logy

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t y x = e y x T a k i n g l o g o n b o t h t h e s i d e s , l o g y x = l o g e y x x l o g y = ( y x ) l o g e x l o g y = y x [ ? l o g e = 1 ] x l o g y + x = y x ( l o g y + 1 ) = y x = y l o g y + 1 D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . y d x d y = d d y ( y l o g y + 1 ) = ( l o g y + 1 ) . 1 y . d d y ( l o g y + 1 ) ( l o g y + 1 ) 2 = ( l o g y + 1 ) y . 1 y ( l o g y + 1 ) 2 = l o g y + 1 1 ( l o g y + 1 ) 2 = l o g y ( l o g y + 1 ) 2 W e k n o w t h a t H e n c e , d y d x = 1 d x d y = 1 l o g y ( l o g y + 1 ) 2 = ( l o g y + 1 ) 2 l o g y H e n c e , p r o v e d .

Q:  

Kindly consider the following

If y=(cosx)(cosx)(cosx) , show that dydx=y2tanxylogcosx1

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t y = ( c o s x ) ( c o s x ) ( c o s x ) y = ( c o s x ) y [ ? y = ( c o s x ) ( c o s x ) ( c o s x ) ] T a k i n g l o g o n b o t h t h e s i d e s , l o g y = y . l o g ( c o s x ) D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . x 1 y . d y d x = y . d d x l o g ( c o s x ) + l o g ( c o s x ) . d y d x 1 y . d y d x = y . 1 c o s x . d d x ( c o s x ) + l o g ( c o s x ) . d y d x 1 y . d y d x = y . 1 c o s x . ( s i n x ) + l o g ( c o s x ) . d y d x 1 y . d y d x l o g ( c o s x ) . d y d x = y t a n x [ 1 y l o g ( c o s x ) ] d y d x = y t a n x d y d x = y t a n x 1 y l o g ( c o s x ) = y 2 t a n x y l o g c o s x 1 H e n c e , d y d x = y 2 t a n x y l o g c o s x 1 H e n c e , p r o v e d .

Q:  

Kindly consider the following

If xsin(a+y)+sina cos(a+y)=0 , prove that

dydx=2sin2(a+y)sin a

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Q:  

Kindly consider the following

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Q:  

Kindly consider the following

If y=tan1x , find d2ydx2 in terms of y alone.

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t y = t a n 1 x x = t a n y D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . y dxdy=sec2ydydx=1sec2y=cos2y A g a i n d i f f e r e n t i a t i n g b o t h s i d e s w . r . t . x d d x ( d y d x ) = d d x ( cos2y ) d 2 y d x 2 = 2 c o s y ( s i n y ) . d y d x d2ydx2=2sinycosy.cos2y d2ydx2=2sinycos3y

Q:  

Verify Rolle's theorem for each of the functions in Exercises 65 to 69.

f(x)=x(x1)2 in [0,1]

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t f ( x ) = x ( x 1 ) 2 i n [ 0 , 1 ] (i)f(x)=x(x1)2,beinganalgebraicpolynomial,iscontinuousin[0,1]. ( i i ) f ' ( x ) = x . 2 ( x 1 ) + ( x 1 ) 2 . 1 = 2 x 2 2 x + x 2 + 1 2 x = 3 x 2 4 x + 1 w h i c h e x i s t s i n ( 0 , 1 ) ( i i i ) f ( x ) = x ( x 1 ) 2 = 0 ( 0 1 ) 2 = 0 ; f ( 1 ) = 1 ( 1 1 ) 2 = 0 f ( 0 ) = f ( 1 ) = 0 Astheaboveconditionsaresatisfied,thentheremustexistatleastonepoint c(0,1)suchthatf'(c)=0 f ' ( c ) = 3 c 2 4 c + 1 = 0 3 c 2 3 c c + 1 = 0 3 c ( c 1 ) 1 ( c 1 ) = 0 ( c 1 ) ( 3 c 1 ) = 0 c 1 = 0 c = 1 3 c 1 = 0 3 c = 1 c = 1 3 ( 0 , 1 ) H e n c e , R o l l e ' s T h e o r e m i s v e r i f i e d .

Q:  

Kindly consider the following

f(x)=sin4x+cos4x in [0,π2]

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t f ( x ) = s i n 4 x + c o s 4 x i n [ 0 , π 2 ] (i)f(x)=sin4x+cos4x,beingsineandcosinefunctions,f(x)iscontinuousin[0,π2]. ( i i ) f ' ( x ) = 4 s i n 3 x . c o s x + 4 c o s 3 x ( s i n x ) = 4 s i n 3 x . c o s x 4 s i n x c o s 3 x = 4 s i n x . c o s x ( s i n 2 x c o s 2 x ) = 4 s i n x . c o s x ( c o s 2 x s i n 2 x ) = 2 . 2 s i n x . c o s x c o s 2 x [ ? c o s 2 x = c o s 2 x s i n 2 x s i n 2 x = 2 s i n x c o s x ] = 2 s i n 2 x . c o s 2 x = s i n 4 x w h i c h e x i s t s i n ( 0 , π 2 ) S o f ( x ) i s d i f f e r e n t i a b l e i n ( 0 , π 2 ) . ( i i i ) f ( 0 ) = s i n 4 ( 0 ) + c o s 4 ( 0 ) = 1 f ( π 2 ) = s i n 4 ( π 2 ) + c o s 4 ( π 2 ) = 1 f ( 0 ) = f ( π 2 ) = 1 Astheaboveconditionsaresatisfied,thentheremustexistatleastonepoint c(0,π2)suchthatf'(c)=0 f ' ( c ) = 0 s i n 4 c = 0 s i n 4 c = 0 s i n 4 c = s i n 0 4 c = n π c = n π 4 , n I F o r n = 1 , c = π 4 ( 0 , π 2 ) H e n c e , R o l l e ' s T h e o r e m i s v e r i f i e d .

Q:  

Kindly consider the following

f(x)=log(x2+2)log3 in [1,1]

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t f ( x ) = l o g ( x 2 + 2 ) l o g 3 i n [ 1 , 1 ] (i)f(x)=log(x2+2)log3,beingalogarithmfunctions,f(x)iscontinuousin[1,1]. ( i i ) f ' ( x ) = 1 x 2 + 2 . 2 x 0 = 2 x x 2 + 2 w h i c h e x i s t s i n ( 1 , 1 ) S o f ( x ) i s d i f f e r e n t i a b l e i n ( 1 , 1 ) . ( i i i ) f ( 1 ) = l o g ( 1 + 2 ) l o g 3 l o g 3 l o g 3 = 0 f ( 1 ) = l o g ( 1 + 2 ) l o g 3 l o g 3 l o g 3 = 0 f ( 1 ) = f ( 1 ) = 0 Astheaboveconditionsaresatisfied,thentheremustexistatleastonepoint c(1,1)suchthatf'(c)=0 2 c c 2 + 2 = 0 2 c = 0 c = 0 ( 1 , 1 ) H e n c e , R o l l e ' s T h e o r e m i s v e r i f i e d .

Q:  

Kindly consider the following

f(x)=x(x+3)ex/2 in [3,0] .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t f ( x ) = x ( x + 3 ) e x / 2 i n [ 3 , 0 ] (i)Algebraicfunctionsandexponentialfunctionsarecontinuousintheirdomains. f ( x ) i s c o n t i n u o u s i n [ 3 , 0 ] . ( i i ) f ' ( x ) = x ( x + 3 ) . d d x e x / 2 + x . e x / 2 . d d x ( x + 3 ) + ( x + 3 ) . e x / 2 d d x . x = x ( x + 3 ) . e x / 2 . ( 1 2 ) + x . e x / 2 . 1 + ( x + 3 ) . e x / 2 . 1 = e x / 2 [ x ( x + 3 ) 2 + x + x + 3 ] = e x / 2 [ x ( x + 3 ) 2 + 2 x + 3 ] = e x / 2 [ x 2 3 x + 4 x + 6 2 ] = e x / 2 [ x 2 + x + 6 2 ] w h i c h e x i s t s i n ( 3 , 0 ) S o f ( x ) i s d i f f e r e n t i a b l e i n ( 3 , 0 ) . ( i i i ) f ( 3 ) = ( 3 ) ( 3 + 3 ) e 3 / 2 = 0 f ( 0 ) = ( 0 ) ( 0 + 3 ) e 0 / 2 = 0 f ( 3 ) = f ( 0 ) = 0 Astheaboveconditionsaresatisfied,thentheremustexistatleastonepoint c(3,0)suchthatf'(c)=0 e c / 2 [ c 2 + c + 6 2 ] = 0 e c / 2 2 [ ( c 3 ) ( c + 2 ) ] = 0 e c / 2 0 ( c 3 ) ( c + 2 ) = 0 c = 3 , 2 c = 3 , 2 ( 3 , 0 ) H e n c e , R o l l e ' s T h e o r e m i s v e r i f i e d .

Q:  

Kindly consider the following

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Q:  

Discuss the applicability of Rolle’s theorem on the function given by f(x)={x2+1,0x13x,1x2

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

(i)f(x)beinganalgebraicpolynomialiscontinuouseverywhere. ( i i ) f ( x ) m u s t b e d i f f e r e n t i a b l e a t x = 1 L . H . L . = l i m x 1 f ( x ) f ( 1 ) x 1 = l i m x 1 ( x 2 + 1 ) ( 1 + 1 ) x 1 = l i m x 1 x 2 + 1 2 x 1 = l i m x 1 x 2 1 x 1 = l i m x 1 ( x 1 ) ( x + 1 ) x 1 = l i m x 1 ( x + 1 ) = ( 1 + 1 ) = 2 R . H . L . = l i m x 1 + f ( x ) f ( 1 ) x 1 = l i m x 1 ( 3 x ) ( 1 + 1 ) x 1 = l i m x 1 ( 3 x ) 2 x 1 = l i m x 1 1 x x 1 = 1 L . H . L . R . H . L . S o , f ( x ) i s n o t d i f f e r e n t i a b l e a t x = 1 . H e n c e , R o l l e ' s T h e o r e m i s n o t a p p l i c a b l e i n [ 0 , 2 ] .

Q:  

Find the points on the curve y=cosx1 in [0,2π] , where the tangent is parallel to the x-axis.

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t y = c o s x 1 o n [ 0 , 2 π ] Firstly,wehavetofindapointconthegivencurvey=cosx1on[0,2π]suchthatthetangentat c=0[0,2π]isparalleltoxaxisi.e.,f'(c)=0wheref'(c)istheslopeofthetangent. S o , w e h a v e t o v e r i f y t h e R o l l e ' s T h e o r e m . (i)y=cosx1,isthecombinationofcosineandconstantfunctions.So,itiscontinuouson[0,2π]. ( i i ) d y d x = s i n x w h i c h e x i s t s i n ( 0 , 2 π ) S o i t i s d i f f e r e n t i a b l e o n ( 0 , 2 π ) . ( i i i ) L e t f ( x ) = c o s x 1 f ( 0 ) = c o s 0 1 1 1 = 0 f ( 2 π ) = c o s 2 π 1 1 1 = 0 f ( 0 ) = f ( 2 π ) = 0 Astheaboveconditionsaresatisfied,thenthereliesapointc(0,2π)suchthatf'(c)=0 s i n c = 0 s i n c = 0 c = n π , n I c = π ( 0 , 2 π ) Hence,c=πisthepointonthecurvein(0,2π)atwhichthetangentisparalleltoxaxis.

Q:  

Using Rolle’s theorem, find the point on the curve y=x(x4) , x[0,4] , where the tangent is parallel to the x-axis.

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t y = x ( x 4 ) , x [ 0 , 4 ] L e t f ( x ) = x ( x 4 ) , x [ 0 , 4 ] (i)f(x)beinganalgebraicpolynomialiscontinuousfunctioneverywhere. S o , f ( x ) = x ( x 4 ) i s c o n t i n u o u s x i n [ 0 , 4 ] . ( i i ) f ' ( x ) = 2 x 4 w h i c h e x i s t s i n ( 0 , 4 ) S o , f ( x ) i s d i f f e r e n t i a b l e . ( i i i ) f ( 0 ) = 0 ( 0 4 ) = 0 f ( 4 ) = 0 ( 4 4 ) = 0 f ( 0 ) = f ( 4 ) = 0 Astheaboveconditionsaresatisfied,thentheremustexistatleastonepointc(0,4)suchthatf'(c)=0 2 c 4 = 0 c = 2 ( 0 , 4 ) Hence,c=2isthepointin(0,4)onthegivencurveatwhichthetangentisparalleltothexaxis.

Q:  

Verify the Mean Value Theorem for each of the functions given in Exercises 73 to 76.

f(x)=14x1 in [1,4] .

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Q:  

Kindly consider the following

f(x)=x32x2x+3 in [0,1] .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatf(x)=x32x2x+3in[0,1](i)f(x)isanfunction,soitiscontinuousin[0,1].(ii)f'(x)=3x24x1whichexistsin(0,1)So,f(x)isdifferentiable.Astheaboveconditionsaresatisfied,thentheremustexistatleastone(0,1)suchthatf'(c)=f(b)f(a)ba3c24c1=[(1)32(1)2(1)+3][0003]103c24c1=(121+3)(3)13c24c1=133c24c1=23c24c+1=03c23cc+1=03c(c1)1(c1)=0(c1)(3c1)=0c1=0c=13c1=0c=13(0,1)Hence,MeanValueTheoremisverified.

Q:  

Kindly consider the following

f(x)=sinxsin2x in [0,π] .

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Q:  

Kindly consider the following

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Q:  

Find a point on the curve y=(x3)2 , where the tangent is parallel to the chord joining the points (3,0) and (4,1) .

 

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Q:  

Using the Mean Value Theorem, prove that there is a point on the curve y=2x25x+3 between the points A(1,0) and B(2,1) , where the tangent is parallel to the chord AB . Also, find that point.

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhaty=2x25x+3Letf(x)=2x25x+3(i)Beinganpolynomial,f(x)iscontinuousin[1,2].(ii)f'(x)=4x5whichexistsin(1,2).Hence,bymeanvaluetheorem,theremustexista(1,2)A(1,0)andB(2,1)f'(c)=f(b)f(a)ba4c5=(810+3)(25+3)214c5=101=14c=5+1=6c=64=32y=2(32)25(32)+3=2×94152+3=92152+3=915+62=0Hence,(32,0)istheA(1,0)andB(2,1).

Q:  

Choose the correct answer from given four options in each of the Exercises from 83 to 96.

If f(x)=2x and g(x)=x22+1 , then which of the following can be a discontinuous function:

(A) f(x)+g(x)

(B) f(x)g(x)

(C) f(x)g(x)

(D) g(x)f(x)

Read more
A: 

This is an Objective Answer Type Questions as classified in NCERT Exemplar

Sol:

Weknowthatthealgebraicpolynomialsarecontinuousfunctionseverywhere. f ( x ) + g ( x ) i s c o n t i n u o u s [ ? S u m , d i f f e r e n c e a n d p r o d u c t o f t w o c o n t i n u o u s f u n c t i o n s i s a l s o c o n t i n u o u s ] f ( x ) g ( x ) i s c o n t i n u o u s f ( x ) . g ( x ) i s c o n t i n u o u s g ( x ) f ( x ) i s o n l y c o n t i n u o u s i f g ( x ) 0 f ( x ) g ( x ) = 2 x x 2 2 + 1 = 4 x x 2 + 2 H e r e , g ( x ) f ( x ) = x 2 2 + 1 2 x = x 2 + 2 4 x w h i c h i s d i s c o n t i n u o u s a t x = 0 . H e n c e , t h e c o r r e c t o p t i o n i s ( d )

Q:  

The function f(x)=4x24xx3 is

(A) Discontinuous at only one point

(B) Discontinuous at exactly two points

(C) Discontinuous at exactly three points

(D) None of these

Read more
A: 

This is an Objective Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t f ( x ) = 4 x 2 4 x x 3 F o r d i s c o n t i n u o u s f u n c t i o n 4 x x 3 = 0 4 ( x x 2 ) = 0 x ( 2 x ) ( 2 + x ) = 0 x = 0 , x = 2 , x = 2 Hence,thegivenfuctionisdiscontinuousexactlyatthreepoints. H e n c e , t h e c o r r e c t o p t i o n i s ( c )

Q:  

The set of points where the function f(x)=√2 - sinx is differentiable is

(A) R

(B) R{12}

(C) (0,)

(D) None of these

Read more
A: 

This is an Objective Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t f ( x ) = | 2 x 1 | s i n x C l e a r l y , f ( x ) i s n o t d i f f e r e n t i a b l e a t x = 1 2 R . H . L . = f ' ( 1 2 ) = l i m h 0 f ( 1 2 + h ) f ( 1 2 ) h = l i m h 0 | 2 ( 1 2 + h ) 1 | s i n ( 1 2 + h ) 0 h = l i m h 0 | 2 h | s i n ( 1 + 2 h 2 ) h = 2 s i n ( 1 2 ) A l s o , L . H . L . = f ' ( 1 2 ) = l i m h 0 f ( 1 2 h ) f ( 1 2 ) h = l i m h 0 | 2 ( 1 2 h ) 1 | [ s i n ( 1 2 h ) ] 0 h = l i m h 0 | 2 h | [ s i n ( 1 2 h ) ] h = 2 s i n ( 1 2 ) L . H . L . R . H . L . S o , t h e g i v e n f u n c t i o n f ( x ) i s n o t d i f f e r e n t i a b l e a t x = 1 2 . f ( x ) i s d i f f e r e n t i a b l e i n R { 1 2 } H e n c e , t h e c o r r e c t o p t i o n i s ( b )

Q:  

The function f(x)=cotx is discontinuous on the set

(A) {x=nπ:n}

(B) {x=2nπ:n}

(C) {x=(2n+1)π2:n}

(D) {x=nπ2:n}

A: 

This is an Objective Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t f ( x ) = c o t x f ( x ) = c o s x s i n x W e k n o w t h a t s i n x = 0 i f f ( x ) i s d i s c o n t i n u o u s . I f s i n x = 0 x = n π , n n π . S o , t h e g i v e n f u n c t i o n f ( x ) i s d i s c o n t i n u o u s o n t h e s e t { x = n π ; n Z } . H e n c e , t h e c o r r e c t o p t i o n i s ( a )

Q:  

The function f(x)=e|x| is

(A) Continuous everywhere but not differentiable at x=0

(B) Continuous and differentiable everywhere

(C) Not continuous at x=0

(D) None of these

Read more
A: 

This is an Objective Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t f ( x ) = e | x | Weknowthatmodulusfunctioniscontinuousbutnotdifferentiableinitsdomain. L e t g ( x ) = | x | a n d t ( x ) = e | x | f ( x ) = g o t ( x ) = g [ t ( x ) ] = e | x | Sinceg(x)andt(x)botharecontinuousatx=0butf(x)isnotdifferentiableatx=0. H e n c e , t h e c o r r e c t o p t i o n i s ( a )

Q:  

If f(x)=x21xsinx , where x0 , then the value of the function f at x=0 , so that the function is continuous at x=0 , is

(A) 0

(B) -1

(C) 1

(D) None of these

Read more
A: 

This is an Objective Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t f ( x ) = x 2 s i n 1 x w h e r e x 0 . S o , t h e V a l u e o f t h e f u n c t i o n f a t x = 0 , s o t h a t f ( x ) i s c o n t i n u o u s i s 0 . H e n c e , t h e c o r r e c t o p t i o n i s ( a )

Q:  

If f(x)={mx+1,xπ2sinx+n,x>π2 is continuous at x=π2 , then

(A) m=1,n=0

(B) m=nπ2+1

(C) n=mπ2

(D) m=n=π2

A: 

This is an Objective Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t f ( x ) = { m x + 1 , x π 2 s i n x + n , x > π 2 i s c o n t i n u o u s a t x = π 2 R . H . L . = l i m x π 2 + ( s i n x + n ) = l i m h 0 [ s i n ( π 2 + h ) + n ] = l i m h 0 c o s h + n = 1 + n A l s o , L . H . L . = l i m x π 2 ( m x + 1 ) = l i m h 0 [ m ( π 2 h ) + 1 ] = m π 2 + 1 W h e n f ( x ) i s c o n t i n u o u s a t x = π 2 . L . H . L . = R . H . L . m π 2 + 1 = 1 + n n = m π 2 H e n c e , t h e c o r r e c t o p t i o n i s ( c )

Q:  

Let f(x)=sin x . Then

(A) f is everywhere differentiable

(B) f is everywhere continuous but not differentiable at x=nπ,n .

(C) f is everywhere continuous but not differentiable at x=(2n+1)π2 ,n .

(D) None of these

Read more
A: 

This is an Objective Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t f ( x ) = | s i n x | L e t g ( x ) = | s i n x | a n d t ( x ) = | x | f ( x ) = t o g ( x ) = t [ g ( x ) ] = t ( s i n x ) = | s i n x | w h e r e g ( x ) a n d t ( x ) b o t h a r e c o n t i n u o u s . f ( x ) = g o t ( x ) i s c o n t i n u o u s b u t t ( x ) i s n o t d i f f e r e n t i a b l e a t x = 0 . S o , f ( x ) i s n o t c o n t i n u o u s a t s i n x = 0 x = n π , n Z . H e n c e , t h e c o r r e c t o p t i o n i s ( b )

Q:  

If y=log(1x21+x2) , then dydx is equal to

(A) 4x31x4

(B) 4x1x4

(C) 14x4

(D) 4x31x4

A: 

This is an Objective Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t y = l o g ( 1 x 2 1 + x 2 ) y = l o g ( 1 x 2 ) l o g ( 1 + x 2 ) [ ? l o g x y = l o g x l o g y ] D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . x d y d x = 1 1 x 2 . d d x ( 1 x 2 ) 1 1 + x 2 . d d x ( 1 + x 2 ) = 2 x 1 x 2 2 x 1 + x 2 = 2 x 2 x 3 2 x + 2 x 3 ( 1 x 2 ) ( 1 + x 2 ) = 4 x ( 1 x 4 ) H e n c e , t h e c o r r e c t o p t i o n i s ( b )

Q:  

If y=√sinx+y , then dydx is equal to

(A) x2y1

(B) x12y

(C) x12y

(D) x2y1

A: 

This is an Objective Answer Type Questions as classified in NCERT Exemplar

Sol:

Q:  

Kindly consider the following

A: 

This is an Objective Answer Type Questions as classified in NCERT Exemplar

Sol:

Q:  

If x=t2,y=t3 , then d2ydx2 is

(A) 32

(B) 34t

(C) 32t

(D) 34

A: 

This is an Objective Answer Type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t x = t 2 a n d y = t 3 D i f f e r e n t i a t i n g b o t h f u n c t i o n s w . r . t . t d x d t = 2 t a n d d y d t = 3 t 2 d y d x = d y / d t d x / d t = 3 t 2 2 t = 3 t 2 D i f f e r e n t i a t i n g a g a i n w . r . t . x d d x ( d y d x ) = 3 2 . d t d x d 2 y d x 2 = 3 2 . 1 2 t = 3 4 t H e n c e , t h e c o r r e c t o p t i o n i s ( b )

Q:  

The value of c in Rolle's theorem for the function f(x)=x33x in the interval [0,√3] is

(A) 1

(B) -1

(C) 32

(D) 13

Read more
A: 

This is an Objective Answer Type Questions as classified in NCERT Exemplar

Sol:

Q:  

For the function f(x)=x+1x , x[1,3] , the value of c for the Mean Value Theorem is

(A) 1

(B) 3

(C) 2

(D) None of these

Read more
A: 

This is an Objective Answer Type Questions as classified in NCERT Exemplar

Sol:

Q:  

An example of a function which is continuous everywhere but fails to be differentiable exactly at two points is __________.

Read more
A: 

This is a Fill in the Blanks Type questions as classified in NCERT Exemplar

Sol:

|x|=|x+1|isthefunctionwhichiscontinuouseverywherebutfailstobedifferentiableatx=0andx=1.

Q:  

Derivative of x2 w.r.t. x3 is __________.

A: 

This is a Fill in the Blanks Type questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t y = x 2 a n d t = x 3 D i f f e r e n t i a t i n g b o t h f u n c t i o n s w . r . t . x d y d x = 2 x a n d d t d x = 3 x 2 d y d t = d y / d x d t / d x = 2 x 3 x 2 = 2 3 x S o , t h e d e r i v a t i v e o f x 2 w . r . t . x 3 i s 2 3 x

Q:  

If f(x)=cosx , then f(π4)= __________.

A: 

This is a Fill in the Blanks Type questions as classified in NCERT Exemplar

Sol:

Q:  

Kindly consider the following

A: 

This is a Fill in the Blanks Type questions as classified in NCERT Exemplar

Sol:

Q:  

State True or False for the statements in each of the Exercises 102 to 106:

Rolle’s theorem is applicable for the function f(x)=x1 in [0,2] .

Read more
A: 

This is a True or False Type questions as classified in NCERT Exemplar

Sol:

False.Giventhatf (x)=|x1|in [0, 2]Weknowthatthefunctionisnotdifferentiable.So.itisfalse.

Q:  

If f is continuous on its domain D , then ?f? is also continuous on D .

A: 

This is a True or False Type questions as classified in NCERT Exemplar

Sol: True.Weknowthatthefunctioniscontinuousfunctiononitsdomain.

Q:  

The composition of two continuous functions is a continuous function.

A: 

This is a True or False Type questions as classified in NCERT Exemplar

Sol: True.Weknowthatthesumanddifferenceoftwoormorefunctionsisalwayscontinuous.

Q:  

Trigonometric and inverse-trigonometric functions are differentiable in their respective domains.

A: 

This is a True or False Type questions as classified in NCERT Exemplar

Sol: True.

Q:  

If fg is continuous at x=a , then f and g are separately continuous at x=a.

Read more
A: 

This is a True or False Type questions as classified in NCERT Exemplar

Sol:

F a l s e . L e t u s t a k e a n e x a m p l e : f ( x ) = s i n x a n d g ( x ) = c o t x f ( x ) . g ( x ) = s i n x . c o t x = s i n x . c o s x s i n x = c o s x w h i c h i s c o n t i n u o u s a t x = 0 b u t c o t x i s n o t c o n t i n u o u s a t x = 0 .

Maths NCERT Exemplar Solutions Class 12th Chapter Five Logo

JEE Mains Solutions 2022,29th june , Maths, first shift

JEE Mains Solutions 2022,29th june , Maths, first shift

Q&A Icon
Commonly asked questions
Q:  

The probability that a randomly chosen 2 × 2 matrix with all the entries from the set of first 10 primes, is singular, is equal to:

Read more
A: 

Set of first 10 prime numbers

= {2,3,5,7,11,13,17,19,23,29,31}

So sample space = 104.

Favourable cases

So required probability

=10+4×10? C2104=10+4×10.92104=191000

Q:  

Let the solution curve of the differential equation

xdydxy=y2+16x2,y(1)=3bey=y(x). Then y(2) is equal to:

A: 

 dydx=yx+y2+16x2x

Put y = Vx

differentiable worst = x

dydx=V+xdVdx

V + xdVdx=V+V2+16

xdVdx=V2+16

apply variable separable method

dVV2+16=dxx+lnC

ln|V+V2+16|=lnCx

yx+y2+16x2x=Cx

Given y(1) = 3 C = 8

Now at x = 2

y2+y2+16.42=8.2

y2 + 64 = (32 – y)2

y = 15

Q:  

If the mirror image of the point (2, 4,7) in the plane 3x – y + 4z = 2 is (a, b, c), then 2a + b + 2c is equal to:

Read more
A: 

Image of pt (2,4,7) in the plane 3x – y + 4z = 2 is

x23=y41=z74=2 (64+282)32+ (1)2+42

Let x23=y41=z74=2813=λ

x=3λ+2y=λ+4z=4λ+7

Now according to the question

(a, b, c) =  (3λ+2, λ+4, 4λ+7)

Now 2a+b+2c=6λ+4λ+4+8λ+14

13λ+22

= 28 + 22 [Use λ=2813 ]

= 6

Q:  

Let f : R R be a function defined by:

f ( x ) = [ m a x ( t 3 3 t ) ; t x ; x 2 x 2 + 2 x 6 ; 2 < x < 3 [ x 3 ] + 9 ; 3 x 5 2 x + 1 ; x > 5

where [t] is the greatest integer less than or equal to t. Let me be the number of points where f is not differentiable and I=22f(x)dx. Then the ordered pair (m, I) is equal to:

Read more
A: 

Draw g(t) = t3 – 3t

g’(t) = 3(t2 – 1)

g(1) is maximum in (-2, 2)

So, maximum (t3 – 3t) = {t33t;2<t<12;1<t<2

I=22f(x)dx

21(t33t)dt+122dt

I = 274

again rewrite the f(x)

f(x)={x33x2;x11<x2x2+2x69;2<x<33x<410112x+1;4x<5x=5x>5}

f'(x)={3x23;x<10;1<x<22x+2;2<x<30;3<x<40;4<x<52;x>5}

So f(x) is not differentiable at x = 2, 3, 4, 5

so m = 4

Q:  

Let a=αi^a+3j^k^,b=3i^βj^+4k^andc=i^+2j^2k^whereα,βR, be three vectors. If the projection of aoncis103andb×c=6i^+10j^+7k^, then the value of + is equal to:

A: 

 ac^=α+6+21+4+4

103=8+α3α=2

b×c=i^ (2β8)+j^ (10)+k^ (6+β)

=6i^+10j^+7k^

So = 1

Q:  

The area enclosed by y2 = 8x and y = 2x that lies outside the triangle formed by y = 2x, x = 1, y=22, is equal to:

Read more
A: 

Area of ΔABC

12ABBC

=1221

=12

now required area

=04 (222x)dx12

=3223=8212

=1326

Q:  

If the system of linear equations

2x + y – z = 7

x – 3y + 2z = 1

x + 4y + δz=k, where δ,kR

has infinitely many solutions, then δ+k is equal to:

Read more
A: 

=|21113214δ|=0δ=3

and Δ1=|711132k43|=0k=6

Q:  

Let a and b be the roots of the equation x2 + (2i – 1) = 0. Then, the value of   | α 8 + β 8 | is equal to:

Read more
A: 

x2 = 1 – 2i

so 2 = 1 – 2i = 2

8 = 8

now |α8+β8|=2|α8|

=2| (α2)|4

=2|α2|4

=2|12i|4

=2×25

 

Q:  

Let Δ{,,,} be such that (pq)Δ((pq)q) is a tautology. Then Δ is equal to:

A: 

(pq)q

(pq)q

(pq)q

(pq) (qq)

pq

now  (pq)Δ (pq)istautolog? y

pq pq pq  (pq)Δ (pq)

TTTTT

TFFFT

FTFTT

FFFTT

So,  Δ=

Q:  

Let A = [aij] be a square matrix of order 3 such that aij = 2ji, for all I, j = 1, 2, 3. Then, the matrix A2+A3+...+A10 is equal to:

Read more
A: 

 A=[124121214121]

A2= [124121214121][124121214121]

=3[124121214121]

A2 = 3A

 A3 = 3A2

A3 = 32A

A4 = 33A

An = 3n-1A

now, A2 + A3 +….+A10

= 3A + 32 A +….. + 39A

= 3A (1 + 3 +….+ 38

=3A(391)31

=31032A

Q:  

Let a set A = A1  A2  ….  Ak, where Ai  Aj = ? for ij,1i,jk. Define the reaction R from A to A by R = {(x,y):yAiifandonlyifxAi,1ik}. Then, R is:

Read more
A: 

Use aRb = a is related to b, belongs to A iff a belongs to A.

In simple terms, aRb is true if both a & b belongs to the same set.

For reflexive

aRa, a A, so it is true.

For symmetric

Let aRb be true

Þ a & b belongs to the same set.

Þ b & a also belongs to the same set

Þ bRa will be true

For transitive

Let aRb and bRc be true.

aRb Þ a, b belongs to the same set

bRc Þ b, c belongs to the same set

Þ (a, c) belongs to the same set

Þ so aRc will be true.

So R is an equivalence relation.

Q:  

Let {an}n=0 be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n0. Then, n=2an7n is equal to:

Read more
A: 

an+2=2an+1an+1

a2=2a1a0+1

a2 = 1

a3 = 3

a4 = 6

So for n 2,an=n(n1)2

n=2n(n1)27n=172+373+674+......

Let S = 172+373+674+.....

S7=173+374+....SS7=172+273+374+....

67S17=173+273+....67S649S=172+173+....

3649S=172117

S=172×76×4936

S=7216

Q:  

The distance between the two points A and A’ which lie on y = 2 such that both the line segments AB and A’B (where B is the point (2, 3)) subtend angle π4 at the origin, is equal to:

Read more
A: 

Let A, A’ be (, 2) AB and A’B subtends π4 angle at (0, 0) slope of OA = 2α

 

slope of OB = 32

tanπ4=|2α321+2α32|

1+3α=± (43α2α)

α+3α=± (43α2α)α=10, 25

now distance between A’A, (10, 2) &  (25, 2)is525

Q:  

A wire of length 22m is to be cut into two pieces. One of the pieces is to be made into a square and the other into an equilateral triangle. Then, the length of the side of the equilateral triangle, so that the combined area of the square and the equilateral triangle is minimum, is:

Read more
A: 

Let perimeter of Δ is x and that of square is 22 – x

 

now area =34 (x3)2+ (22x4)2

for maximum or minimum,  dAdx=0

=2233+4

now side of a Δ=x3

=2233 (3+4)

=669+4

Q:  

The domain of the function cos(2sin1(14x21)π)is:

A: 

Case 1: 1 14x211

4x2 – 1 1or4x211

x224orx20

So x  (, 12] [12, ) {0}

Q:  

If the constant term in the expansion of (3x32x2+5x5)10is2k.l, where l is an odd integer, then the value of k is equal to:

Read more
A: 

(3x32x2+5x5)10

General term 10!(3x3)α(2x)β(5x5)γα!β!γ!

=10!3α(2)β5γx3α+2β5γα!β!γ!

Now for constant term 3 + 2 5γ=0 …………..(i)

α+β+γ=10 …………(ii)

From equation (i) & (ii)

3α+2(10αγ)=5γ

α+20=7γ

= 1, γ = 3, = 6

Constant term 10!31(2)6533!6!=29325471

Q:  

  0 5 c o s ( π ( x [ x 2 ] ) ) d x , where [t] denotes greatest integer less than or equal to t, is equal to:

A: 

 I=05cos (πxπ [x2])dx

I=02cos (πx)dx+24cos (πxπ)dx+45cos (πx2π)dx

I=sinπxπ|02+sin (πxπ)π|24+sin (πx2π)π|45=0

Q:  

Let PQ be a focal chord of the parabola y2 = 4x such that it subtends an angle of π2 at the point (3, 0). Let the line segment PQ be also a focal chord of the ellipse E: x2a2+y2b2=1, a2>b2. If e is the eccentricity of the ellipse E, then the value of 1e2 is equal to:

Read more
A: 

 APBP

M1 M2 = 1

2tt23×2/631t2=1

t = 1

So, A (1, 2) and B (1, 2) they must be end pts of focal chord.

Length of latus rectum =2b2a

4=2b2a

b2 = 2a and ae = 1

Eccentricity of ellipse (Horizontal)

b2 = a2 (1 – e2)

2a = a2 (1 – e2)

2 = 1e (1e2)

e2 + 2e – 1 = 0

e=2±4+42

e=1+2

now 1e2=3+2

Q:  

Let the tangent to the circle C1 : x2 + y2 = 2 at the point M(1, 1) intersect the circle C2:(x3)2 + (y2)2=5, at two distinct points A and B. If the tangents to C2 at the points A and B intersect at N, then the area of the triangle ANB is equal to:

Read more
A: 

Tangent to C1 at (-1, 1) is T = 0                                                           

 x(-1) + 4(1) = 2

-x + y = 2

find OP by dropping  from (3, 2) to centre

OP = |32+22|=32

AP = r2OP2

=592=12

tanθ=OPAP=3/21/2=3

area of ΔABN=12AN2sin2θ

AN = 53

=1259(2tanθ1+tan2θ)

=52.9×2.31+32=16

sin = APAN

Q:  

Let the mean and the variance of 5 observations x1,x2,x3,x4,x5be245and19425 respectively. If the mean and variance of the first 4 observation are 72 and a respectively, then (4a + x5) is equal to:

Read more
A: 

  x1+x2+x3+x44=72

x1+x2+x3+x4=14

and x1+x2+x3+x4+x55=245

x5 = 10

Variance i=14xi24(Σxi4)2=a

x12+x22+x32+x424494=a

x12+x22+x32+x42=4a+49

and x12+x22+x52+x42+x525(245)2=19425

4a+49+x525=576+19425

49 + 49 + x52=7705

49 +x52+49=154

4a + 149 = 154

4a = 5

now 4a + x5 = 15

Q:  

Let S = {zC:|z2|1,z(1+i)+z¯(1i)2}.Let|z4i| attains minimum and maximum values, respectively, at z1Sandz2S. If 5(|z1|2+|z2|2)=α+β5, where and are integers, then the value of + is equal to……………

Read more
A: 

Let z = x + iy

|z2|1|x2+iy|1

(x – 2)2 + y2 1

z(1+i)+z¯(1i)2

(x+iy)(1+i)+(xiy)(1i)2

x+ix+iyy+xixiyy2

x – y 1

PD will be least as CP – r = DP, general pts on circle with centre (2, 0) is (2 + r cos, 0 + r sin )

here r = 1, (2 + cos , sin ) now slope of CP is 4002=2

tan = 2

so D point will be (215,25)AP will be the greatest. A(1, 0)

now |z12|+|z22|

=|1+0i|2+|215+2i5|2

=1+(215)2+45

=645

now 5(|z1|2+|z2|2)=α+β5

5(645)=α+β5

= 30, = 4

+ = 26

Q:  

Let y = y(x) be the solution of the differential equation

dydx+2y2cos4xcos2x=xetan1(2cot2x), 0<x<π2withy(π4)=π232.

A: 

2cos4 x – cos2x = 2(1+cos2x2)2cos2x

=1+cos22x2

22dx1+cos22x=22sec22xdx2+tan22x

=212tan1(tanx2)

now IF = ePdx

e22sec22xdx2+tan22x=etan1(tan2x2)

Solution: yetan1(tan2x2)=x.etan1(2cot2x)etan1(tan2x2)dx

yetan1(tan2x2)=x22eπ/2+C

at x=π4,y=π232,C=0

at x=π3,y=π218etan1α

yetan1(tan2π3)2=π218eπ/2

π218etan1αetan1(32)=π218eπ/2

tan-1 a + tan-1 (3/2)=π2

cot-1a = tan-1 (32)

tan-1 1α=tan1(32)

1α=3/2

2 = 23

Q:  

Let d be the distance between the foot of perpendiculars of the points P(1, 2, -1) and Q(2, -1, 3) on the plane -x + y + z = 1. Then d2 is equal to…………..

Read more
A: 

Let πx+y+z1=0

1 2 > 0 as both pt.lies on same side

now P1=|1+2113|=13

P2 = |2+ (1)+313|=13

as P1 = P2 so distance between foot of perpendicular will be same as distance between the points

d =  (12)2+ (2+1)2+ (13)2

1+9+16=

Q:  

The number of elements in the set

S={θ[4π,4π]:3cos22θ+6cos2θ10cos2θ+5=0} is…………….

A: 

3cos22θ + 6cos2θ -   1 0 ( 1 + c o s 2 θ ) 2 + 5 = 0

c o s 2 θ ( 3 c o s 2 θ + 1 ) = 0

 Þ cos2θ = 0,     1 3

Draw y = cos2θ, y = 0 and y =  1 3 ,  find the pt. of intersection.

Q:  

The number of solutions of the equation 2θ - cos2θ + 2 = 0 in R is equal to………..

A: 

Draw y = cos2x and y = 2x + 2

Q:  

50tan(3tan1(12)+2cos1(15))+42tan(12tan(22)) is equal to……………..

A: 

 cos115=cot112

tan (2 (tan112+cot112))+tan1 (12)=tan (π+tan112)=12

tan2α=222tanα1tan2α=22

2tan2α+tanα2=0

tanα=12, (2)rejected

Q:  

Let c,kR.Iff(x)=(c+1)x2+(1c2)x+2k and f(x+y)=f(x)+f(y)xy, for all x, y  R, then the value of |2(f(1)+f(2)+f(3)+....+f(20))| is equal to………….

Read more
A: 

f (x) = (c + 1)x2 + (1 – c2)x + 2k

f' (x)= ( (c+1))2x+ (1c2)............. (i)

f' (x)=limy0If (x+y)f (x)x+yx

=limy0f (y)xyy

f' (x)=limy0f (y)yx

x+f' (x)=limy0f (y)f (0)y0asf (c)=0

Q:  

Let H:x2a2y2b2=1,a>0,b>0, be a hyperbola such that the sum of lengths of the transverse and the conjugate axes is 4(22+14). If the eccentricity H is 112, then the value of a2 + b2 is equal to………….

Read more
A: 

Given 2a + 2b = 4 (22+14)

=42 (2+7)

b2=a2 (1141)

4b2 = 7a2

b = 72a

Q:  

Let P1:r.(2i^+j^3k^)=4 be a plane. Let P2 be another plane which passes through the points (2,3,2),(2,2,3)and(1,4,2) . If the direction ratios of the line of intersection of P1 and P2 be 16, , then the value of + is equal to……………

Read more
A: 

2x + y – 3z = 4

π2=|x2y+3z2015110|=0

π2:5x+5y+z+23=0

now line lying in both the planes have DR.

a1+15=b152=c10+5

a16=b13=c15

So direction ratio’s a : b : c = 16 : 13 : 15

x+f'(x)=f'(0)

f'(0)=1c2fromequation(i)

x+f'(x)=1c2

x22+f(x)=(1c2)x+d

f(0) = 0

f(x)=x2α+(1c2)x

c = 3/2

f"(x)=1=2(c+1)

f(x)=x22+(54)x

now (f(1)+f(2)+.......f(20))

=12(12+22+......+202)54(1+2+....+20)

=20212(8215)12

now 2|f(1)+f(2)+....+f(20)|

=20219712=3395

Q:  

Let b1 b2 b3 b4 be a 4-element permutation with bi{1,2,3,....,100}for1i4andbibj for ij, such that either b1, b2, b3 are consecutive integers or b2, b3, b4 are consecutive integers. Then the number of such permutations b1 b2 b3 b4 is equal to……………

Read more
A: 

Three consecutive integers belong to 98 sets and four consecutive integers belongs to 97 sets.

Þ Number of permutations of b1 b2 b3 b4 = number of permutations when b1 b2 b3 are consecutive + number of permutations when b2, b3, b4 are consecutive – b1 b2 b3 b4 are consecutive = 98 * 97 * 98 * 97 – 97 = 18915

Maths NCERT Exemplar Solutions Class 12th Chapter Five Logo

JEE Mains 2022

JEE Mains 2022

Maths NCERT Exemplar Solutions Class 12th Chapter Five Logo

JEE Mains 2022

JEE Mains 2022

Q&A Icon
Commonly asked questions
Q:  

Consider a matrix A = [ α β γ α 2 β 2 γ 2 β + γ γ + α α + β ]  , where , , γ   are three distinct natural numbers.

If d e t ( a d j ( a d j ( a d j ( a d j A ) ) ) ) ( α β ) 1 6 ( β γ ) 1 6 ( γ α ) 1 6 = 2 3 2 × 3 1 6 ,  then the number of such 3 – tuples (, , γ  ) is…………

Read more
A: 

Kindly consider the following figure

Q:  

The number of functions f, from the set A = { x N : x 2 1 0 x + 9 0 }  to the set B = { n 2 : n N }  such that f(x) (x – 3)2 + 1, for every x  A, is…………

Read more
A: 

  x 2 1 0 x + 9 0

  ( x 1 ) ( x 9 ) 0              

A = {1, 2, 3, ……, 9}

for set B,   f ( x ) ( x 3 ) 2 + 1

total number of such function = 2 × 1 × 1 × 1 × 2 × 3 × 4 × 5 × 6 = 2 × 6! = 1440

Q:  

Let for the 9th term in the binomial expansion of ( 3 + 6 x ) n , in the increasing powers of 6x, to be the greatest for x = 3 2 , the least value of n is n0. If k is the ratio of the coefficient of x6 to the coefficient of x3, then k + n0 is equal to:

Read more
A: 

Kindly consider the following figure

Q:  

  2 3 1 3 1 × 7 + 4 3 3 + 2 3 1 3 2 × 1 1 + 6 3 5 3 + 4 3 + 2 3 1 3 3 × 1 5 + . . . . . . . +

3 0 3 2 9 3 + 2 8 3 2 7 3 + . . . . + 2 3 1 3 1 5 × 6 3 i s e q u a l t o . . . . . . . . . . . . .

Read more
A: 

t n = 2 ( 2 3 + 4 3 + 6 3 + . . . . + ( 2 n ) 3 ) ( 1 3 2 3 + 3 3 + . . . . . ( 2 n ) 3 ) n ( 4 n + 3 )

2 × 2 3 × ( n × ( n + 1 ) 2 ) 2 ( 2 n × ( 2 n + 1 ) 2 ) 2 n ( 4 n + 3 )

tn = n

n o w n = 1 1 5 T n = 1 5 . 1 6 2

Q:  

A water tank has the shape of a right circular cone with axis vertical and vertex downwards. Its semi-vertical angle is t a n 1 3 4 .  Water is poured in it a constant rate of 6 cubic meter per hour. The rate (in square meter per hour), at which the wet curved surface area of the tank is increasing, when the depth of water in the tank is 4 meters, is………..

Read more
A: 

V = 1 3 π r 2 h

V = π 8 h 3 t a n 2 α

d v d t = π h 2 t a n 2 α . d h d t

CSA = π r l

d ( C S A ) d t = 1 5 1 6 π 2 h . d h d t

1 5 8 × 2 3 = 5 m 2 / h r s

Q:  

For the curve C : ( x 2 + y 2 3 ) + ( x 2 y 2 1 ) 5 = 0 ,  the value of 3 y ' y 3 y " ,  at the point (a, a), a > 0, on C, is equal to………..

Read more
A: 

Find a, α

( α 2 + α 2 3 ) + ( α 2 α 2 1 ) 5 = 0                

α = 2      

zx differentiate the curve

2 x + 2 y . y 1 + 5 ( x 2 y 2 1 ) 4 ( 2 x 2 y ) = 0 ……. (i)

differentiate equation (i)

( α , α ) y ' ' = 2 3 4 2          

Q:  

Let f(x) = m i n { [ x 1 ] , [ x 2 ] , . . . . , [ x 1 0 ] }  where [t] denotes the greatest integer  t. Then 0 1 0 f ( x ) d x + 0 1 0 ( f ( x ) ) 2 d x + 0 1 0 | f ( x ) | d x  is equal to………..

Read more
A: 

Use [x + n] = n + [x], where n z  f (x) = [x] – 10 will be minimum for x [ 0 , 1 0 ]  break the limits as G.I.F. is discontinuous at integral points.

0 1 0 f ( x ) d x = 1 0 9 . . . . 1    

= 1 0 . 1 1 2

0 1 0 | f ( x ) | d x = 1 0 + 9 + . . . . + 1

Q:  

Let f be a differentiable function satisfying f(x) = 2 3 0 3 f ( λ 2 x 3 ) d λ , x > 0 and f(1) = 3 . If y = f(x) passes through the point (a, 6), then a is equal to………….

Read more
A: 

f ( x ) = 2 3 0 3 f ( λ 2 x 3 ) d λ

Substitute λ 2 x 3 = t

f ( x ) = 1 x 0 x f ( t ) t d t

differentiate using leibneitz rule

x . f ' ( x ) + f ( x ) . 1 2 x = f ( x ) x

f (1) = 3 f ( x ) = 3 x

 

Q:  

A common tangent T to the curves C 1 : x 2 4 + y 2 9 = 1  and C2 = x 2 4 2 y 2 1 4 3 = 1  does not pass through the fourth quadrant.  If T touches C1 at (x1, y1) and C2 at (x2, y2), then | 2 x 1 + x 2 | is equal to………

Read more
A: 

Common tangents

T 1 : y = m x ± 4 m 2 + 9      

T 2 : y = m x ± 4 2 m 2 1 3    

So, 4m2 + 9 = 42 m2 – 13 Þ m =   ± 2

  c = ± 5              

So tangent  y = ± 2 x ± 5

y = 2x + 5 does not pass through 4th quadrant compare this tangent with T = 0 to get pt. of intersection

x x 2 4 2 y y 2 1 4 3 = 1 x 2 = 8 4 5

Q:  

Let a , b , c  be three non-coplanar vectors such that a × b = 4 c , b × c = 9 a  and c × a = α b , α > 0 .  If | a | + | b | + | c | = 1 3 6 ,  then a is equal to…….

Read more
A: 

Data contradiction.

qna

Maths NCERT Exemplar Solutions Class 12th Chapter Five Exam

Student Forum

chatAnything you would want to ask experts?
Write here...