Maths NCERT Exemplar Solutions Class 11th Chapter Eight: Overview, Questions, Preparation

Maths NCERT Exemplar Solutions Class 11th Chapter Eight 2025 ( Maths NCERT Exemplar Solutions Class 11th Chapter Eight )

Vishal Baghel
Updated on Jul 23, 2025 15:30 IST

By Vishal Baghel, Executive Content Operations

CCCCC

Table of contents
  • Binomial Theorem Long Answer Type Questions
  • Binomial Theorem Short Answer Type Questions
  • Binomial Theorem Objective Type Questions
  • Binomial Theorem Fill in the Blanks
  • Binomial Theorem True or False Type Questions
  • JEE Mains
Maths NCERT Exemplar Solutions Class 11th Chapter Eight Logo

Binomial Theorem Long Answer Type Questions

If  p  is a real number and if the middle term in the expansion of  ( p 2   + 2 ) 8  is 1120, find  p  .
G i v e n expression i s ( P 2 + 2 ) 8 N u m b e r o f t e r m s = 8 + 1 = 9 ( o d d ) M i d d l e t e r m ( n + 1 2 ) t h t e r m = 9 + 1 2 = 1 0 2 = 5 t h t e r m T 5 = T 4 + 1 = C 4 8 ( P 2 ) 8 4 ( 2 ) 4 = C 4 8 P 4 2 4 × 2 4 = C 4 8 P 4 N o w C 4 8 P 4 = 1 1 2 0 8 × 7 × 6 × 5 4 × 3 × 2 × 1 . P 4 = 1 1 2 0 7 0 P 4 = 1 1 2 0 P 4 = 1 1 2 0 7 0 = 1 6 P 4 = 2 4 P = ± 2 H e n c e , t h e r e q u i r e d v a l u e o f P = ± 2 .
Show that the middle term in the expansion of (x – 1/x)2n is 1 × 3 × 5 × … (2n -1)/n × (-2)n.
G i v e n expression i s ( x 1 x ) 2 n N u m b e r o f t e r m s = 2 n + 1 = 9 ( o d d ) M i d d l e t e r m ( n + 1 2 ) t h t e r m = 2 n + 1 + 1 2 = ( n + 1 ) t h t e r m . G e n e r a l T e r m   T r + 1 = C r n x n r y r T n + 1 = C n 2 n ( x ) 2 n n ( 1 x ) n = C n 2 n ( x ) n ( 1 ) n . 1 x n = ( 1 ) n . C n 2 n = ( 1 ) n . 2 n ! n ! ( 2 n n ) ! = ( 1 ) n . 2 n ! n ! n ! = ( 1 ) n . 2 n ( 2 n 1 ) ( 2 n 2 ) ( 2 n 3 ) 1 n ! n ( n 1 ) ( n 2 ) ( n 3 ) 1 = ( 1 ) n . 2 n ( 2 n 1 ) . 2 ( n 1 ) ( 2 n 3 ) 1 n ! n ( n 1 ) ( n 2 ) ( n 3 ) 1 = ( 1 ) n . 2 n . [ n ( n 1 ) ( n 1 ) ] . [ ( 2 n 1 ) . ( 2 n 3 ) 5 . 3 . 1 ] n ! . n ( n 1 ) ( n 2 ) 1 = ( 2 ) n [ ( 2 n 1 ) . ( 2 n 3 ) 5 . 3 . 1 ] n ! = 1 × 3 × 5 × ( 2 n 1 ) n ! × ( 2 ) n H e n c e , t h e m i d d l e t e r m = 1 × 3 × 5 × ( 2 n 1 ) n ! × ( 2 ) n
Q&A Icon
Commonly asked questions
Q:  

If p is a real number and if the middle term in the expansion of (p2 +2)8 is 1120, find p .

Read more
A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar
Sol:

Givenexpressionis(P2+2)8 N u m b e r o f t e r m s = 8 + 1 = 9 ( o d d ) M i d d l e t e r m ( n + 1 2 ) t h t e r m = 9 + 1 2 = 1 0 2 = 5 t h t e r m T 5 = T 4 + 1 = C 4 8 ( P 2 ) 8 4 ( 2 ) 4 = C 4 8 P 4 2 4 × 2 4 = C 4 8 P 4 N o w C 4 8 P 4 = 1 1 2 0 8 × 7 × 6 × 5 4 × 3 × 2 × 1 . P 4 = 1 1 2 0 7 0 P 4 = 1 1 2 0 P 4 = 1 1 2 0 7 0 = 1 6 P 4 = 2 4 P = ± 2 H e n c e , t h e r e q u i r e d v a l u e o f P = ± 2 .

Q:  

Show that the middle term in the expansion of (x – 1/x)2n is 1 × 3 ×  5 × … (2n -1)/n × (-2)n.

A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar
Sol:

Givenexpressionis(x1x)2n N u m b e r o f t e r m s = 2 n + 1 = 9 ( o d d ) M i d d l e t e r m ( n + 1 2 ) t h t e r m = 2 n + 1 + 1 2 = ( n + 1 ) t h t e r m . G e n e r a l T e r m   T r + 1 = C r n x n r y r T n + 1 = C n 2 n ( x ) 2 n n ( 1 x ) n = C n 2 n ( x ) n ( 1 ) n . 1 x n = ( 1 ) n . C n 2 n = ( 1 ) n . 2 n ! n ! ( 2 n n ) ! = ( 1 ) n . 2 n ! n ! n ! = ( 1 ) n . 2 n ( 2 n 1 ) ( 2 n 2 ) ( 2 n 3 ) 1 n ! n ( n 1 ) ( n 2 ) ( n 3 ) 1 = ( 1 ) n . 2 n ( 2 n 1 ) . 2 ( n 1 ) ( 2 n 3 ) 1 n ! n ( n 1 ) ( n 2 ) ( n 3 ) 1 = ( 1 ) n . 2 n . [ n ( n 1 ) ( n 1 ) ] . [ ( 2 n 1 ) . ( 2 n 3 ) 5 . 3 . 1 ] n ! . n ( n 1 ) ( n 2 ) 1 = ( 2 ) n [ ( 2 n 1 ) . ( 2 n 3 ) 5 . 3 . 1 ] n ! = 1 × 3 × 5 × ( 2 n 1 ) n ! × ( 2 ) n H e n c e , t h e m i d d l e t e r m = 1 × 3 × 5 × ( 2 n 1 ) n ! × ( 2 ) n

Q:  

Find n in the binomial expansion , if the ratio of the 7th term from the beginning to the 7th term from the end is 16.

 
Read more
A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar
Sol:

Thegivenexpressionis(+1)n = ( 2 1 / 3 + 1 3 1 / 3 ) n G e n e r a l T e r m   T r + 1 = C r n x n r y r T 7 = T 6 + 1 = C 6 n ( 2 1 3 ) n 6 ( 1 3 1 3 ) 6 = C 6 n ( 2 ) n 6 3 . ( 1 3 2 ) = C 6 n ( 2 ) n 6 3 . ( 3 ) 2 7 t h t e r m f r o m t h e e n d = ( n 7 + 2 ) t h t e r m f r o m t h e b e g i n n i n g = ( n 5 ) t h t e r m f r o m t h e b e g i n n i n g S o , T n 6 + 1 = C n 6 n ( 2 1 3 ) n n + 6 ( 1 3 1 3 ) n 6 = C n 6 n ( 2 ) 2 . ( 1 3 n 6 3 ) = C n 6 n ( 2 ) 2 . ( 3 ) 6 n 3 A c c o r d i n g t o t h e q u e s t i o n , w e g e t C 6 n ( 2 ) n 6 3 . ( 3 ) 2 C n 6 n ( 2 ) 2 . ( 3 ) 6 n 3 = 1 6 C n 6 n ( 2 ) n 6 3 . ( 3 ) 2 C n 6 n ( 2 ) 2 . ( 3 ) 6 n 3 = 1 6 ( 2 ) n 6 3 2 . ( 3 ) 2 6 n 3 = 1 6 ( 2 ) n 6 6 3 . ( 3 ) 6 6 + n 3 = 1 6 ( 2 ) n 1 2 3 . ( 3 ) n 1 2 3 = ( 6 ) 1 ( 6 ) n 1 2 3 = ( 6 ) 1 n 1 2 3 = 1 n 1 2 = 3 n = 1 2 3 = 9 H e n c e , t h e r e q u i r e d v a l u e o f n i s 9 .

Q:  

In the expansion of (x+a)n if the sum of odd terms is denoted by O and the sum of even terms by E , prove that:

O2E2=(x2a2)n.

4OE=(x+a)2n(xa)2n.

Read more
A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar
Sol:

(i)Thegivenexpressionis(x+a)n ( x + a ) n = C 0 n x n a 0 + C 1 n x n 1 a + C 2 n x n 2 a 2 + C 3 n x n 3 a 3 + + C n n a n S u m o f o d d t e r m s , O = C 0 n x n + C 2 n x n 2 a 2 + C 4 n x n 4 a 4 + a n d t h e s u m o f e v e n t e r m s , E = C 1 n x n 1 a + C 3 n x n 3 a 3 + C 5 n x n 5 a 5 + N o w ( x + a ) n = O + E ( i ) S i m i l a r l y , ( x a ) n = O E ( i i ) M u l t i p l y i n g e q n . ( i ) a n d e q n . ( i i ) , w e g e t ( x + a ) n ( x a ) n = ( O + E ) ( O E ) ( x 2 a 2 ) n = O 2 E 2 H e n c e , O 2 E 2 = ( x 2 a 2 ) n ( i i ) 4 O E = ( O + E ) 2 ( O E ) 2 = [ ( x + a ) n ] 2 [ ( x a ) n ] 2 = [ x + a ] 2 n [ x a ] 2 n H e n c e , 4 O E = ( x + a ) 2 n ( x a ) 2 n

Q:  

 If xp occurs in the expansion of (x2+1x)2n, prove that its coefficient is 4n-p32n+p3.

A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar
Sol:

Thegivenexpressionis(x2+1x)2n G e n e r a l T e r m   T r + 1 = C r n x n r y r = C r 2 n ( x 2 ) 2 n r ( 1 x ) r = C r 2 n ( x ) 4 n 2 r . 1 x r = C r 2 n ( x ) 4 n 2 r r = C r 2 n ( x ) 4 n 3 r I f x p o c c u r s i n ( x 2 + 1 x ) 2 n t h e n 4 n 3 r = p 3 r = 4 n p r = 4 n p 3 C o e f f i c i e n t o f x p = C r 2 n = C 4 n p 3 2 n = ( 2 n ) ! ( 4 n p 3 ) ! ( 2 n 4 n p 3 ) ! = ( 2 n ) ! ( 4 n p 3 ) ! ( 6 n 4 n + p 3 ) ! = ( 2 n ) ! ( 4 n p 3 ) ! ( 2 n + p 3 ) ! H e n c e , c o e f f i c i e n t o f x p = ( 2 n ) ! ( 4 n p 3 ) ! ( 2 n + p 3 ) !

Q:  

Find the term independent of x in the expansion of (1+x+2x3) 3/2 x2 – 1/3x 9.

A: 

This is a Long Answer Type Questions as classified in NCERT Exemplar
Sol:

Thegivenexpressionis(1+x+2x3)(32x213x)9 L e t u s c o n s i d e r ( 3 2 x 2 1 3 x ) 9 G e n e r a l T e r m   T r + 1 = C r n x n r y r T r + 1 = C r 9 ( 3 2 x 2 ) 9 r ( 1 3 x ) r = C r 9 ( 3 2 ) 9 r ( x ) 1 8 2 r ( 1 3 ) r . 1 x r = C r 9 ( 3 2 ) 9 r ( x ) 1 8 2 r r ( 1 3 ) r = C r 9 ( 3 2 ) 9 r ( 1 3 ) r . ( x ) 1 8 3 r So,thegeneraltermintheexpansionof ( 1 + x + 2 x 3 ) ( 3 2 x 2 1 3 x ) 9 = C r 9 ( 3 2 ) 9 r ( 1 3 ) r . ( x ) 1 8 3 r + C r 9 ( 3 2 ) 9 r ( 1 3 ) r . ( x ) 1 9 3 r + 2 . C r 9 ( 3 2 ) 9 r ( 1 3 ) r . ( x ) 2 1 3 r F o r g e t t i n g t h e t e r m i n d e p e n d e n t o f x , P u t 1 8 3 r = 0 , 1 9 3 r = 0 a n d 2 1 3 r = 0 w e g e t r = 6 , r = 1 9 3 a n d r = 7 T h e p o s s i b l e v a l u e o f r a r e 6 a n d 7 ( ? r 1 9 3 ) T h e t e r m i n d e p e n d e n t o f x i s = C 6 9 ( 3 2 ) 9 6 ( 1 3 ) 6 + . C 7 9 ( 3 2 ) 9 7 ( 1 3 ) 7 = 9 × 8 × 7 × 6 ! 3 × 2 × 1 × 6 ! . 3 3 2 3 . 1 3 6 2 . 9 × 8 × 7 ! 2 × 1 × 7 ! . 3 2 2 2 . 1 3 7 = 8 4 8 . 1 3 3 3 6 4 . 2 3 5 = 7 1 8 2 2 7 = 2 1 4 5 4 = 1 7 5 4 H e n c e , t h e r e q u i r e d t e r m i s 1 7 5 4

Maths NCERT Exemplar Solutions Class 11th Chapter Eight Logo

Binomial Theorem Short Answer Type Questions

Find the term independent of x, x 0 , in the expansion of (3x2/2 – 1/3x)15

G e n e r a l T e r m T r + 1 = C r n x n r y r = C r 1 5 ( 3 x 2 2 ) 1 5 r ( 1 3 x ) r = C r 1 5 ( 3 2 ) 1 5 r ( x ) 3 0 2 r ( 1 3 ) r 1 x r = C r 1 5 ( 3 2 ) 1 5 r ( x ) 3 0 2 r r ( 1 ) r 1 ( 3 ) r = C r 1 5 ( 3 2 ) 1 5 r ( x ) 3 0 3 r ( 1 ) r 1 ( 3 ) r f o r g e t t i n g t h e t e r m i n d e p e n d e n t o f x , 3 0 3 r = 0 r = 1 0 O n p u t t i n g t h e v a l u e o f r i n t h e a b o v e expression , w e g e t = C 1 0 1 5 ( 3 2 ) 1 5 1 0 ( 1 ) 1 0 1 ( 3 ) 1 0 = C 1 0 1 5 ( 3 ) 5 ( 2 ) 5 . 1 ( 3 ) 1 0 = C 1 0 1 5 . 1 ( 2 ) 5 . ( 3 ) 5 = C 1 0 1 5 ( 1 6 ) 5 H e n c e , t h e r e q u i r e d t e r m = C 1 0 1 5 ( 1 6 ) 5

If the term free from  in the expansion of x – k/x2 10 is 405, find the value of .

T h e g i v e n expression i s ( x K x 2 ) 1 0 G e n e r a l T e r m     T r + 1 = C r n x n r y r = C r 1 0 ( x ) 1 0 r ( K x 2 ) r = C r 1 0 ( x ) 1 0 r 2 ( K ) r ( 1 x 2 r ) = C r 1 0 ( x ) 1 0 r 2 2 r ( K ) r = C r 1 0 ( x ) 1 0 r 4 r 2 ( K ) r = C r 1 0 ( x ) 1 0 5 r 2 ( K ) r f o r g e t t i n g t h e t e r m i n d e p e n d e n t o f x , 1 0 5 r 2 = 0 r = 2 O n p u t t i n g t h e v a l u e o f r i n t h e a b o v e expression , w e g e t = C 2 1 0 ( K ) 2 A c c o r d i n g t o t h e c o n d i t i o n o f t h e q u e s t i o n , w e h a v e C 2 1 0 K 2 = 4 0 5 1 0 . 9 2 . 1 K 2 = 4 0 5 4 5 K 2 = 4 0 5 K 2 = 4 0 5 4 5 = 9 K = ± 3 H e n c e , t h e v a l u e o f K = ± 3

 

Q&A Icon
Commonly asked questions
Q:  

Find the term independent of x , x 0 , in the expansion of (3x2/2 – 1/3x)15

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

G e n e r a l T e r m T r + 1 = C r n x n r y r = C r 1 5 ( 3 x 2 2 ) 1 5 r ( 1 3 x ) r = C r 1 5 ( 3 2 ) 1 5 r ( x ) 3 0 2 r ( 1 3 ) r 1 x r = C r 1 5 ( 3 2 ) 1 5 r ( x ) 3 0 2 r r ( 1 ) r 1 ( 3 ) r = C r 1 5 ( 3 2 ) 1 5 r ( x ) 3 0 3 r ( 1 ) r 1 ( 3 ) r f o r g e t t i n g t h e t e r m i n d e p e n d e n t o f x , 3 0 3 r = 0 r = 1 0 Onputtingthevalueofrintheaboveexpression,weget = C 1 0 1 5 ( 3 2 ) 1 5 1 0 ( 1 ) 1 0 1 ( 3 ) 1 0 = C 1 0 1 5 ( 3 ) 5 ( 2 ) 5 . 1 ( 3 ) 1 0 = C 1 0 1 5 . 1 ( 2 ) 5 . ( 3 ) 5 = C 1 0 1 5 ( 1 6 ) 5 H e n c e , t h e r e q u i r e d t e r m = C 1 0 1 5 ( 1 6 ) 5

Q:  

 If the term free from x in the expansion of x – k/x2 10  is 405, find the value of k .

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

Thegivenexpressionis(xKx2)10 G e n e r a l T e r m     T r + 1 = C r n x n r y r = C r 1 0 ( x ) 1 0 r ( K x 2 ) r = C r 1 0 ( x ) 1 0 r 2 ( K ) r ( 1 x 2 r ) = C r 1 0 ( x ) 1 0 r 2 2 r ( K ) r = C r 1 0 ( x ) 1 0 r 4 r 2 ( K ) r = C r 1 0 ( x ) 1 0 5 r 2 ( K ) r f o r g e t t i n g t h e t e r m i n d e p e n d e n t o f x , 1 0 5 r 2 = 0 r = 2 Onputtingthevalueofrintheaboveexpression,weget = C 2 1 0 ( K ) 2 A c c o r d i n g t o t h e c o n d i t i o n o f t h e q u e s t i o n , w e h a v e C 2 1 0 K 2 = 4 0 5 1 0 . 9 2 . 1 K 2 = 4 0 5 4 5 K 2 = 4 0 5 K 2 = 4 0 5 4 5 = 9 K = ± 3 H e n c e , t h e v a l u e o f K = ± 3

Q:  

 Find the coefficient of x in the expansion of

(13x+7x2)(1x)16.

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

Thegivenexpressionis(13x+7x2)(1x)16 = ( 1 3 x + 7 x 2 ) [ C 0 1 6 ( 1 ) 1 6 ( x ) 0 + C 1 1 6 ( 1 ) 1 5 ( x ) + C 2 1 6 ( 1 ) 1 4 ( x ) 2 + ] = ( 1 3 x + 7 x 2 ) ( 1 1 6 x + 1 2 0 x 2 + ) C o l l e c t i n g t h e t e r m c o n t a i n i n g x , w e g e t 1 6 x 3 x = 1 9 x H e n c e , t h e c o e f f i c i e n t o f x = 1 9

Q:  

Find the term independent of x in the expansion of 3x – 2/x2 15

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

Givenexpressionis(3x2x2)15 G e n e r a l t e r m T r + 1 = C r n x n r y r = C r 1 5 ( 3 x ) 1 5 r ( 2 x 2 ) r = C r 1 5 ( 3 ) 1 5 r ( x ) 1 5 r ( 2 ) r . 1 x 2 r = C r 1 5 ( 3 ) 1 5 r . ( x ) 1 5 r 2 r ( 2 ) r = C r 1 5 ( 3 ) 1 5 r ( x ) 1 5 3 r ( 2 ) r f o r g e t t i n g t h e t e r m i n d e p e n d e n t o f x , 1 5 3 r = 0 r = 5 Onputtingthevalueofrintheaboveexpression,weget = C 5 1 5 ( 3 ) 1 5 5 ( 2 ) 5 = C 5 1 5 ( 3 ) 1 0 ( 2 ) 5 = 1 5 × 1 4 × 1 3 × 1 2 × 1 1 5 × 4 × 3 × 2 × 1 . ( 3 ) 1 0 ( 2 ) 5 = 7 × 1 3 × 3 × 1 1 . ( 3 ) 1 0 ( 2 ) 5 = 3 0 0 3 . ( 3 ) 1 0 ( 2 ) 5 H e n c e , t h e r e q u i r e d t e r m = 3 0 0 3 . ( 3 ) 1 0 ( 2 ) 5

Q:  

Find the middle term(s) in the expansion of:

(x/aax)10. 3xx3/6 9

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

(i)Givenexpressionis(xaax)10 N u m b e r o f t e r m s = 1 0 + 1 = 1 1 ( o d d ) M i d d l e t e r m ( n + 1 2 ) t h t e r m = 1 1 + 1 2 = 1 2 2 = 6 t h t e r m G e n e r a l t e r m T r + 1 = C r n x n r y r T 5 + 1 = C 5 1 0 ( x a ) 1 0 5 ( a x ) 5 = C 5 1 0 x 5 a 5 . a 5 x 5 = C 5 1 0 = 1 0 × 9 × 8 × 7 × 6 5 × 4 × 3 × 2 × 1 . = 9 × 7 × 4 = 2 5 2 H e n c e , t h e r e q u i r e d m i d d l e t e r m = 2 5 2 (ii)Givenexpressionis(3xx36)9 N u m b e r o f t e r m s = 9 + 1 = 1 0 ( e v e n ) M i d d l e t e r m s a r e ( n 2 ) t h t e r m a n d ( n 2 + 1 ) t h t e r m ( 1 0 2 ) t h = 5 t h t e r m a n d ( 1 0 2 + 1 ) t h = 6 t h t e r m G e n e r a l t e r m T r + 1 = C r n x n r y r T 5 = T 4 + 1 = C 4 9 ( 3 x ) 9 4 ( x 3 6 ) 4 = C 4 9 ( 3 ) 5 . x 5 ( 1 6 ) 4 . x 1 2 = 9 × 8 × 7 × 6 4 × 3 × 2 × 1 × 3 × 3 × 3 × 3 × 3 6 × 6 × 6 × 6 x 1 7 = 1 8 9 8 x 1 7 N o w , T 6 = T 5 + 1 = C 5 9 ( 3 x ) 9 5 ( x 3 6 ) 5 = C 5 9 ( 3 ) 4 . x 4 ( 1 6 ) 5 . x 1 5 = 9 × 8 × 7 × 6 × 5 5 × 4 × 3 × 2 × 1 ( 3 ) 4 ( 1 6 ) 5 . x 1 9 = 2 1 1 6 x 1 9 H e n c e , t h e r e q u i r e d m i d d l e t e r m s a r e 1 8 9 8 x 1 7 a n d 2 1 1 6 x 1 9

Q:  

Find the coefficient of x15 in the expansion of (xx2)10.

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

Thegivenexpressionis(xx2)10 G e n e r a l T e r m   T r + 1 = C r n x n r y r = C r 1 0 ( x ) 1 0 r ( x 2 ) r = C r 1 0 ( x ) 1 0 r ( 1 ) r ( x 2 ) r = ( 1 ) r . C r 1 0 ( x ) 1 0 r + 2 r = ( 1 ) r . C r 1 0 ( x ) 1 0 + r T o f i n d t h e c o e f f i c i e n t o f x 1 5 , P u t 1 0 + r = 1 5 r = 5 C o e f f i c i e n t o f x 1 5 = ( 1 ) 5 . C 5 1 0 = C 5 1 0 = 2 5 2 H e n c e , t h e r e q u i r e d c o e f f i c i e n t = 2 5 2

Q:  

Find the coefficient of 1x17 in the expansion of x4 – 1/x3  15

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

Thegivenexpressionis(x41x3)15 G e n e r a l T e r m   T r + 1 = C r n x n r y r = C r 1 5 ( x 4 ) 1 5 r ( 1 x 3 ) r = C r 1 5 ( x ) 6 0 4 r ( 1 ) r . 1 x 3 r = C r 1 5 ( 1 ) r . 1 x 3 r 6 0 + 4 r = C r 1 5 ( 1 ) r . 1 x 7 r 6 0 T o f i n d t h e c o e f f i c i e n t o f 1 x 1 7 , P u t 7 r 6 0 = 1 7 7 r = 6 0 + 1 1 r = 7 7 7 = 1 1 Puttingthevalueofrintheaboveexpression,weget = C 1 1 1 5 ( 1 ) 1 1 . 1 x 1 7 = C 4 1 5 . 1 x 1 7 = 1 5 × 1 4 × 1 3 × 1 2 4 × 3 × 2 × 1 . 1 x 1 7 = 1 3 6 5 . 1 x 1 7 H e n c e , t h e r e q u i r e d c o e f f i c i e n t o f 1 x 1 7 = 1 3 6 5

Q:  

Find the sixth term of the expansion (y12+x13)n , if the binomial coefficient of the third term from the end is 45.

[Hint: Binomial coefficient of third term from the end = Binomial coefficient of third term from the beginning = nC2.]

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

Thegivenexpressionis(y12+x13)n,sincethebinomialcoefficientofthird t e r m f r o m t h e e n d = b i n o m i a l c o e f f i c i e n t o f t h i r d t e r m f r o m t h e b e g i n n i n g = C 2 n C 2 n = 4 5 n ( n 1 ) 2 = 4 5 n 2 n = 9 0 n 2 n 9 0 = 0 n 2 1 0 n + 9 n 9 0 = 0 n ( n 1 0 ) + 9 ( n 1 0 ) = 0 ( n 1 0 ) ( n + 9 ) = 0 n = 1 0 , n = 9 n = 1 0 , n 9 So,thegivenexpressionbecomes(y12+x13)10 Sixthterminthisexpression T 6 = T 5 + 1 = C 5 1 0 ( y 1 2 ) 1 0 5 ( x 1 3 ) 5 = C 5 1 0 y 5 2 . x 5 3 = 2 5 2 y 5 2 . x 5 3 H e n c e , t h e r e q u i r e d t e r m = 2 5 2 y 5 2 . x 5 3

Q:  

Find the value of r , if the coefficients of the (2r + 4)th and th terms in the expansion of (1+x)18 are equal.

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

G e n e r a l T e r m   T r + 1 = C r n x n r y r F o r c o e f f i c i e n t s o f ( 2 r + 4 ) t h t e r m , w e h a v e T 2 r + 4 = T 2 r + 3 + 1 = C 2 r + 3 1 8 ( 1 ) 1 8 2 r 3 . x 2 r + 3 C o e f f i c i e n t s o f ( 2 r + 4 ) t h t e r m = C 2 r + 3 1 8 S i m i l a r l y , T r 2 = T r 3 + 1 = C r 3 1 8 ( 1 ) 1 8 r + 3 . x r 3 C o e f f i c i e n t s o f ( r 2 ) t h t e r m = C r 3 1 8 A s p e r t h e c o n d i t i o n o f t h e q u e s t i o n s , w e h a v e C 2 r + 3 1 8 = C r 3 1 8 2 r + 3 + r 3 = 1 8 3 r = 1 8 r = 6

Q:  

If the coefficient of second, third, and fourth terms in the expansion of (1+x)2n are in A.P. Show that 2n29n+7=0.

Read more
A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

Givenexpressionis(1+x)2n H e r e , c o e f f i c i e n t o f 2 n d t e r m = C 1 2 n C o e f f i c i e n t o f 3 r d t e r m = C 2 2 n a n d c o e f f i c i e n t o f 4 t h t e r m = C 3 2 n G i v e n t h a t C 1 2 n , C 2 2 n a n d C 3 2 n a r e i n A . P C 2 2 n C 1 2 n = C 3 2 n C 2 2 n 2 . C 2 2 n = C 1 2 n + C 3 2 n 2 . 2 n ! 2 ! ( 2 n 2 ) ! = 2 n ! ( 2 n 1 ) ! + 2 n ! 3 ! ( 2 n 3 ) ! 2 [ 2 n ( 2 n 1 ) ( 2 n 2 ) ! 2 × 1 × ( 2 n 2 ) ! ] = 2 n ( 2 n 1 ) ! ( 2 n 1 ) ! + 2 n ( 2 n 1 ) ( 2 n 2 ) ( 2 n 3 ) ! 3 × 2 × 1 × ( 2 n 3 ) ! n ( 2 n 1 ) = n + n ( 2 n 1 ) ( 2 n 2 ) 6 2 n 1 = 1 + ( 2 n 1 ) ( 2 n 2 ) 6 1 2 n 6 = 6 + 4 n 2 4 n 2 n + 2 1 2 n 1 2 = 4 n 2 6 n + 2 4 n 2 6 n 1 2 n + 2 + 1 2 = 0 4 n 2 1 8 n + 1 4 = 0 2 n 2 9 n + 7 = 0 H e n c e p r o v e d .

Q:  

Find the coefficient of x4 in the expansion of (1+x+x2+x3)11.

A: 

This is a Short Answer Type Questions as classified in NCERT Exemplar
Sol:

Givenexpressionis(1+x+x2+x3)11 = [ ( 1 + x ) + x 2 ( 1 + x ) ] 1 1 = [ ( 1 + x ) ( 1 + x 2 ) ] 1 1 = ( 1 + x ) 1 1 . ( 1 + x 2 ) 1 1 Expandingtheaboveexpression,weget ( C 0 1 1 + C 1 1 1 x + C 2 1 1 x 2 + C 3 1 1 x 3 + C 4 1 1 x 4 + ) . ( C 0 1 1 + C 1 1 1 x 2 + C 2 1 1 x 4 + ) = ( 1 + 1 1 x + 5 5 x 2 + 1 6 5 x 3 + 3 3 0 x 4 + ) . ( 1 + 1 1 x 2 + 5 5 x 4 + ) C o l l e c t i n g t h e t e r m s c o n t a i n i n g x 4 , w e g e t ( 5 5 + 6 0 5 + 3 3 0 ) x 4 = 9 9 0 x 4 H e n c e , t h e c o e f f i c i e n t o f x 4 = 9 9 0

Maths NCERT Exemplar Solutions Class 11th Chapter Eight Logo

Binomial Theorem Objective Type Questions

The total number of terms in the expansion of  ( x + a ) 1 0 0 + ( x a ) 1 0 0  after simplification is:

(a) 50

(b) 202

(c) 51

(d) None of these

N u m b e r o f t e r m s i n t h e expansion o f ( x + a ) 1 0 0 = 1 0 1 N u m b e r o f t e r m s i n t h e expansion o f ( x a ) 1 0 0 = 1 0 1 N o w 5 0 t e r m s o f expansion w i l l c a n c e l o u t w i t h n e g a t i v e 5 0 t e r m s o f ( x a ) 1 0 0 S o , t h e r e m a i n i n g 5 1 t e r m s o f f i r s t expansion w i l l b e a d d e d t o 5 1 t e r m s o f o t h e r . T h e r e f o r e , t h e n u m b e r o f t e r m s = 5 1 H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Given the integers  r > 1 , n > 2  , and the coefficients of the  ( 3 r )  th and  ( r + 2 )  nd terms in the binomial expansion of  ( 1 + x ) 2 n  are equal, then:

(a)  n = 2 r

(b)  n = 3 r

(c)  n = 2 r + 1

(d) None of these

G i v e n t h a t r > 1 a n d n > 2 t h e n T 3 r =   T 3 r 1 + 1 = C 3 r 1 2 n . x 3 r 1 a n d T r + 2 =   T r + 1 + 1 = C r + 1 2 n . x r + 1 A s p e r q u e s t i o n , w e h a v e C 3 r 1 2 n = C r + 1 2 n 3 r 1 + r + 1 = 2 n [ C p n = C q n n = p + q ] 4 r = 2 n n = 2 r H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .
Q&A Icon
Commonly asked questions
Q:  

The total number of terms in the expansion of (x+a)100+(xa)100 after simplification is:

(a) 50

(b) 202

(c) 51

(d) None of these

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar
Sol:

Numberoftermsintheexpansionof(x+a)100=101 Numberoftermsintheexpansionof(xa)100=101 Now50termsofexpansionwillcanceloutwithnegative50termsof(xa)100 So,theremaining51termsoffirstexpansionwillbeaddedto51termsofother. T h e r e f o r e , t h e n u m b e r o f t e r m s = 5 1 H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Q:  

Given the integers r>1,n>2 , and the coefficients of the (3r) th and (r+2) nd terms in the binomial expansion of (1+x)2n are equal, then:

(a) n=2r

(b) n=3r

(c) n=2r+1

(d) None of these

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar
Sol:

G i v e n t h a t r > 1 a n d n > 2 t h e n T 3 r =   T 3 r 1 + 1 = C 3 r 1 2 n . x 3 r 1 a n d T r + 2 =   T r + 1 + 1 = C r + 1 2 n . x r + 1 A s p e r q u e s t i o n , w e h a v e C 3 r 1 2 n = C r + 1 2 n 3 r 1 + r + 1 = 2 n [ ? C p n = C q n n = p + q ] 4 r = 2 n n = 2 r H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q:  

The two successive terms in the expansion of (1+x)24 whose coefficients are in the ratio 1:4 are:

(a) 3rd and 4th

(b) 4th and 5th

(c) 5th and 6th

(d) 6th and 7th

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar
Sol:

Letrthand(r+1)thbetwosuccessivetermsintheexpansion(1+x)24 T r + 1 = C r 2 4 . x r a n d T r + 2 =   T r + 1 + 1 = C r + 1 2 4 . x r + 1 A s p e r q u e s t i o n , w e h a v e C r 2 4 C r + 1 2 4 = 1 4 2 4 ! r ! ( 2 4 r ) ! 2 4 ! ( r + 1 ) ! ( 2 4 r 1 ) ! = 1 4 2 4 ! r ! ( 2 4 r ) ! × ( r + 1 ) ! ( 2 4 r 1 ) ! 2 4 ! = 1 4 ( r + 1 ) . r ! ( 2 4 r 1 ) ! r ! ( 2 4 r ) ( 2 4 r 1 ) ! = 1 4 r + 1 2 4 r = 1 4 4 r + 4 = 2 4 r 5 r = 2 0 r = 4 T 4 + 1 = T 5 a n d T 4 + 2 = T 6 H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Q:  

The coefficient of xn in the expansion of (1+x)2n and (1+x)2n1 are in the ratio:

(a) 1:2

(b) 1:3

(c) 3:1

(d) 2:1

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar
Sol:

G e n e r a l T e r m   T r + 1 = C r n x n r y r Intheexpansionof(1+x)2n,wegetTr+1=Cr2n.xr T o g e t t h e c o e f f i c i e n t s o f x n , p u t r = n C o e f f i c i e n t s o f x n = C n 2 n Intheexpansionof(1+x)2n1,wegetTr+1=Cr2n1.xr C o e f f i c i e n t s o f x n = C n 1 2 n 1 T h e r e q u i r e d r a t i o i s C n 2 n C n 1 2 n 1 = 2 n ! n ! ( n ) ! ( 2 n 1 ) ! ( n 1 ) ! ( 2 n 1 n + 1 ) ! = 2 n ! n ! n ! ( 2 n 1 ) ! ( n 1 ) ! ( n ) ! = 2 n ! n ! n ! × ( n 1 ) ! n ! ( 2 n 1 ) ! = 2 n ( 2 n 1 ) ! n ! n ( n 1 ) ! × ( n 1 ) ! n ! ( 2 n 1 ) ! = 2 1 = 2 : 1 H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q:  

If the coefficients of the 2nd, 3rd, and 4th terms in the expansion of (1+x)n are in A.P., then the value of n is:

(a) 2

(b) 7

(c) 11

(d) 14

[Hint: 2 nC2 = nC1 + nC3 n29n+14=0n=27. ]

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar
Sol:

Givenexpressionis(1+x)n ( 1 + x ) n = C 0 n + C 1 n x + C 2 n x 2 + C 3 n x 3 + + C n n x n H e r e , c o e f f i c i e n t o f 2 n d t e r m = C 1 n C o e f f i c i e n t o f 3 r d t e r m = C 2 n a n d c o e f f i c i e n t o f 4 t h t e r m = C 3 n G i v e n t h a t C 1 n , C 2 n a n d C 3 n a r e i n A . P 2 . C 2 n = C 1 n + C 3 n 2 . n ( n 1 ) 2 = n + n ( n 1 ) ( n 2 ) 3 . 2 . 1 n ( n 1 ) = n + n ( n 1 ) ( n 2 ) 6 n 1 = 1 + ( n 1 ) ( n 2 ) 6 6 n 6 = 6 + n 2 3 n + 2 n 2 3 n 6 n + 1 4 = 0 n 2 9 n + 1 4 = 0 n 2 7 n 2 n + 1 4 = 0 n ( n 7 ) 2 ( n 7 ) = 0 ( n 2 ) ( n 7 ) = 0 n = 2 , 7 n = 7 w h e r e a s n = 2 i s n o t p o s s i b l e H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

If A and B are coefficients of xn in the expansions of (1+x)2n and (1+x)2n1 , respectively, then AB

(a) 1

(b) 2

(c) 12

(d) 1n

[Hint: AB= 2nCn/2n – 1Cn =  2]

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar
Sol:

Givenexpressionis(1+x)2n T r + 1 = C r 2 n x r C o e f f i c i e n t o f x n = C n 2 n = A ( G i v e n ) Intheexpressionis(1+x)2n1 T r + 1 = C r 2 n 1 x r C o e f f i c i e n t o f x n = C n 1 2 n 1 = B ( G i v e n ) S o , A B = C n 2 n C n 1 2 n 1 = 2 n ! n ! ( n ) ! ( 2 n 1 ) ! ( n 1 ) ! ( 2 n 1 n + 1 ) ! = 2 n ! n ! n ! ( 2 n 1 ) ! ( n 1 ) ! ( n ) ! = 2 n ! n ! n ! × ( n 1 ) ! n ! ( 2 n 1 ) ! = 2 n ( 2 n 1 ) ! n ! n ( n 1 ) ! × ( n 1 ) ! n ! ( 2 n 1 ) ! = 2 1 = 2 : 1 H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

If the middle term of 1+xsinxx10 is equal to 778 , then the value of x is:

(a) 2nπ+π6

(b) nπ+π6

(c) nπ+(1)nπ6

(d) nπ+(1)nπ3

[Hint: T6 = 10C5 1/x5 . x5 sin5 x = 63/3 = sin5 x = 1/25  sin ½= x = nπ + (-1)π/6]

Read more
A: 

This is a Objective Type Questions as classified in NCERT Exemplar
Sol:

Givenexpressionis(1x+xsinx)10 N u m b e r o f t e r m s = 1 0 + 1 = 1 1 ( o d d ) M i d d l e t e r m ( n + 1 2 ) t h t e r m = 1 1 + 1 2 = 1 2 2 = 6 t h t e r m T 6 = T 5 + 1 = C 5 1 0 ( 1 x ) 1 0 5 ( x s i n x ) 5 C 5 1 0 ( 1 x ) 5 . x 5 . s i n 5 x = 7 7 8 C 5 1 0 . s i n 5 x = 6 3 8 1 0 × 9 × 8 × 7 × 6 5 × 4 × 3 × 2 × 1 . s i n 5 x = 6 3 8 2 5 2 . s i n 5 x = 6 3 8 s i n 5 x = 6 3 8 × 2 5 2 s i n 5 x = 1 3 2 s i n 5 x = ( 1 2 ) 5 s i n x = 1 2 s i n x = s i n π 6 x = n π + ( 1 ) n . π 6 H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Maths NCERT Exemplar Solutions Class 11th Chapter Eight Logo

Binomial Theorem Fill in the Blanks

The largest coefficient in the expansion of  ( 1 + x ) 3 0  is _________________ .
H e r e n = 3 0 w h i c h i s e v e n t h e largest c o e f f i c i e n t i n ( 1 + x ) n = C n / 2 n S o , t h e largest c o e f f i c i e n t i n ( 1 + x ) 3 0 = C 1 5 3 0 H e n c e , t h e v a l u e o f t h e f i l l e r i s C 1 5 3 0 .

The number of terms in the expansion of  ( x + y + z ) n  is _________________

[Hint:  ( x + y + z ) n = [ x + ( y + z ) ] n .  ]

T h e expression   ( x + y + z ) n c a n b e w r i t t e n a [ x + ( y + z ) ] n [ x + ( y + z ) ] n = C 0 n x n ( y + z ) 0 + C 1 n ( x ) n 1 ( y + z ) + C 2 n ( x ) n 2 ( y + z ) 2 + + C n n ( y + z ) n N u m b e r o f t e r m s 1 + 2 + 3 + 4 + + ( n + 1 ) = ( n + 1 ) ( n + 2 ) 2 H e n c e , t h e v a l u e o f t h e f i l l e r i s ( n + 1 ) ( n + 2 ) 2
Q&A Icon
Commonly asked questions
Q:  

The largest coefficient in the expansion of (1+x)30 is _________________ .

A: 

This is a Fill in the Blanks Type Questions as classified in NCERT Exemplar
Sol:

H e r e n = 3 0 w h i c h i s e v e n thethe largestcoefficientin (1+x)n=Cn/2n So, thethe largestcoefficientin (1+x)30=C1530 H e n c e , t h e v a l u e o f t h e f i l l e r i s C 1 5 3 0 .

Q:  

The number of terms in the expansion of (x+y+z)n is _________________

[Hint: (x+y+z)n=[x+(y+z)]n. ]

A: 

This is a Fill in the Blanks Type Questions as classified in NCERT Exemplar
Sol:

Theexpression (x+y+z)ncanbewrittena[x+(y+z)]n [ x + ( y + z ) ] n = C 0 n x n ( y + z ) 0 + C 1 n ( x ) n 1 ( y + z ) + C 2 n ( x ) n 2 ( y + z ) 2 + + C n n ( y + z ) n N u m b e r o f t e r m s 1 + 2 + 3 + 4 + + ( n + 1 ) = ( n + 1 ) ( n + 2 ) 2 H e n c e , t h e v a l u e o f t h e f i l l e r i s ( n + 1 ) ( n + 2 ) 2

Q:  

In the expansion of x2 – 1/x2 16 , the value of the constant term is ________________ .

A: 

This is a Fill in the Blanks Type Questions as classified in NCERT Exemplar
Sol:

LetTr+1betheconstanttermintheexpansionof(x21x2)16 T r + 1 = C r 1 6 ( x 2 ) 1 6 r ( 1 x 2 ) r = C r 1 6 ( x ) 3 2 2 r ( 1 ) r . 1 x 2 r = ( 1 ) r . C r 1 6 ( x ) 3 2 2 r 2 r = ( 1 ) r . C r 1 6 ( x ) 3 2 4 r F o r g e t t i n g c o n s t a n t t e r m , 3 2 4 r = 0 r = 8 T r + 1 = ( 1 ) 8 . C 8 1 6 = C 8 1 6 H e n c e , t h e v a l u e o f t h e f i l l e r i s C 8 1 6 .

Q:  

If the seventh terms from the beginning and the end in the expansion of are equal, then n equals _________________ .

[Hint: T7=Tn7+2 , = nC6 (2 /3)n-6 (1/3 1/3 6) = nCn – 6 (2 1/3 6 (1/3 1/3) n - 6 solve for n. ]

= (2 1/3)n – 12 = 1/3 1/3 n -12 = only problem when n – 12 = 0 = n =12].

 

Read more
A: 

This is a Fill in the Blanks Type Questions as classified in NCERT Exemplar
Sol:

Thegivenexpansionis(+1)n T 7 = T 6 + 1 = C 6 n ( 2 1 / 3 ) n 6 . 1 ( 3 1 / 3 ) 6 = C 6 n ( 2 ) n 6 3 ( 1 ) r . 1 ( 3 ) 2 N o w t h e T 7 f r o m t h e e n d = T 7 f r o m t h e b e g i n n i n g i n ( 1 + ) n . T 7 = T 6 + 1 = C 6 n ( 1 3 1 / 3 ) n 6 . ( 2 1 / 3 ) 6 A s p e r t h e q u e s t i o n s , w e g e t C 6 n ( 2 ) n 6 3 . ( 1 3 2 ) = C 6 n . 1 3 n 6 3 . ( 2 ) 2 ( 2 ) n 6 3 . ( 3 ) 2 = ( 3 ) ( n 6 3 ) . ( 2 ) 2 ( 2 ) n 6 3 2 . ( 3 ) 2 + n 6 3 = 1 ( 2 ) n 1 2 3 . ( 3 ) n 1 2 3 = 1 ( 6 ) n 1 2 3 = ( 6 ) 0 n 1 2 3 = 0 n = 1 2 H e n c e , t h e v a l u e o f t h e f i l l e r i s 1 2 .

Q:  

The coefficient of a6b4 in the expansion of (1a+2b3)10 is _________________ .

[Hint: T5 = 10C4 1/a b -2b/3 4 = 1120/27 a-6b4]

Read more
A: 

This is a Fill in the Blanks Type Questions as classified in NCERT Exemplar
Sol:

Thegivenexpansionis(1a2b3)10 F r o m a 6 b 4 , w e c a n t a k e r = 4 T 5 = T 4 + 1 = C 4 1 0 ( 1 a ) 1 0 4 . ( 2 b 3 ) 4 = C 4 1 0 ( 1 a ) 6 . ( 2 3 ) 4 . b 4 = 1 0 . 9 . 8 . 7 4 . 3 . 2 . 1 × 1 6 8 1 . a 6 b 4 = 2 1 0 × 1 6 8 1 . a 6 b 4 = 1 1 2 0 2 7 . a 6 b 4 H e n c e , t h e v a l u e o f t h e f i l l e r i s 1 1 2 0 2 7 .

Q:  

 The middle term in the expansion of (a3+ba)28 is _________________ .

A: 

This is a Fill in the Blanks Type Questions as classified in NCERT Exemplar
Sol:

Numberoftermsintheexpansion(a3+ba)28=28+1=29(odd) M i d d l e t e r m = 2 9 + 1 2 = 1 5 t h t e r m T 1 5 = T 1 4 + 1 = C 1 4 2 8 ( a 3 ) 2 8 1 4 . ( b a ) 1 4 = C 1 4 2 8 ( a ) 4 2 . b 1 4 . a 1 4 = C 1 4 2 8 a 5 6 . b 1 4 H e n c e , t h e v a l u e o f t h e f i l l e r i s C 1 4 2 8 a 5 6 . b 1 4 .

Q:  

The ratio of the coefficients of xp and xq in the expansion of (1+x)p+q is _________________ .

[Hint: : p + qCp = p + qCq

Read more
A: 

This is a Fill in the Blanks Type Questions as classified in NCERT Exemplar
Sol:

Givenexpansionis(1+x)p+q T r + 1 = C r p + q x r P u t r = p = C p p + q x p t h e c o e f f i c i e n t s o f x p = C p p + q S i m i l a r l y , c o e f f i c i e n t s o f x q = C q p + q C p p + q = ( p + q ) ! p ! ( p + q p ) ! = ( p + q ) ! p ! q ! a n d C q p + q = ( p + q ) ! q ! ( p + q q ) ! = ( p + q ) ! p ! q ! S o , t h e r a t i o i s 1 : 1 .

Q:  

The position of the term independent of x in the expansion of x3+32x210 is _________________ .

Read more
A: 

This is a Fill in the Blanks Type Questions as classified in NCERT Exemplar
Sol:

Thegivenexpansionis(x3+32x2)10 T r + 1 = C r 1 0 ( x 3 ) 1 0 r ( 3 2 x 2 ) r = C r 1 0 ( x 3 ) 1 0 r 2 ( 3 2 ) r . 1 x 2 r = C r 1 0 ( 1 3 ) 1 0 r 2 . x 1 0 r 2 ( 3 2 ) r . 1 x 2 r = C r 1 0 ( 1 3 ) 1 0 r 2 . x 1 0 r 2 2 r ( 3 2 ) r = C r 1 0 ( 1 3 ) 1 0 r 2 . x 1 0 r 4 r 2 ( 3 2 ) r F o r i n d e p e n d e n t o f x , w e g e t 1 0 r 4 r 2 = 0 1 0 5 r = 0 r = 2 S o , t h e p o s i t i o n o f t h e t e r m i n d e p e n d e n t o f x i s 3 r d t e r m . H e n c e , t h e v a l u e o f t h e f i l l e r i s T h i r d t e r m .

Q:  

If 2515 is divided by 13, the remainder is _________________ .

A: 

This is a Fill in the Blanks Type Questions as classified in NCERT Exemplar
Sol:

L e t 2 5 1 5 = ( 2 6 1 ) 1 5 = C 0 1 5 ( 2 6 ) 1 5 ( 1 ) 0 + C 1 1 5 ( 2 6 ) 1 4 ( 1 ) 1 + C 2 1 5 ( 2 6 ) 1 3 ( 1 ) 2 + + C 1 5 1 5 ( 1 ) 1 5 = 2 6 1 5 1 5 ( 2 6 ) 1 4 + 1 1 3 + 1 3 = 2 6 1 5 1 5 ( 2 6 ) 1 4 + 1 3 + 1 2 = 1 3 λ + 1 2 T h e r e m a i n d e r = 1 2 H e n c e , t h e v a l u e o f t h e f i l l e r i s 1 2 .

Maths NCERT Exemplar Solutions Class 11th Chapter Eight Logo

Binomial Theorem True or False Type Questions

The sum of the series 10 20 r =0 Cr is 219 + 20 C10/2

r = 0 1 0 C r 2 0 = C 0 2 0 + C 1 2 0 + C 2 2 0 + C 3 2 0 + + C 1 0 2 0 = C 0 2 0 + C 1 2 0 + + C 1 0 2 0 + C 1 1 2 0 + + C 2 0 2 0 ( C 1 1 2 0 + + C 2 0 2 0 ) = 2 2 0 ( C 1 1 2 0 + + C 2 0 2 0 ) H e n c e , t h e g i v e n s t a t e m e n t i s ' F a l s e '

The expression  7 9 + 9 7  is divisible by 64.

[Hint:  7 9 + 9 7 = ( 1 + 8 ) 9 ( 1 8 ) 7  .]

7 9 + 9 7 = ( 1 + 8 ) 7 ( 1 8 ) 9 = [ C 0 7 + C 1 7 . 8 + C 2 7 ( 8 ) 2 + C 3 7 ( 8 ) 3 + + C 7 7 ( 8 ) 7 ] [ C 0 9 C 1 9 . 8 + C 2 9 ( 8 ) 2 C 3 9 ( 8 ) 3 + C 9 9 ( 8 ) 9 ] = ( 7 × 8 + 9 × 8 ) + ( 2 1 × 8 2 3 6 × 8 2 ) + = ( 5 6 + 7 2 ) + ( 2 1 3 6 ) × 8 2 + = 1 2 8 + 6 4 ( 2 1 3 6 ) + = 6 4 [ 2 + ( 2 1 3 6 ) + ] w h i c h i s d i v i s i b l e b y 6 4 . H e n c e , t h e g i v e n s t a t e m e n t i s ' T r u e ' .
Q&A Icon
Commonly asked questions
Q:  

The sum of the series 10 20 r =0 Cr is 219 + 20 C10/2

A: 

This is a True or False Type Questions as classified in NCERT Exemplar
Sol:

r = 0 1 0 C r 2 0 = C 0 2 0 + C 1 2 0 + C 2 2 0 + C 3 2 0 + + C 1 0 2 0 = C 0 2 0 + C 1 2 0 + + C 1 0 2 0 + C 1 1 2 0 + + C 2 0 2 0 ( C 1 1 2 0 + + C 2 0 2 0 ) = 2 2 0 ( C 1 1 2 0 + + C 2 0 2 0 ) H e n c e , t h e g i v e n s t a t e m e n t i s ' F a l s e '

Q:  

 The expression 79+97 is divisible by 64.

[Hint: 79+97=(1+8)9(18)7 .]

A: 

This is a True or False Type Questions as classified in NCERT Exemplar
Sol:

7 9 + 9 7 = ( 1 + 8 ) 7 ( 1 8 ) 9 = [ C 0 7 + C 1 7 . 8 + C 2 7 ( 8 ) 2 + C 3 7 ( 8 ) 3 + + C 7 7 ( 8 ) 7 ] [ C 0 9 C 1 9 . 8 + C 2 9 ( 8 ) 2 C 3 9 ( 8 ) 3 + C 9 9 ( 8 ) 9 ] = ( 7 × 8 + 9 × 8 ) + ( 2 1 × 8 2 3 6 × 8 2 ) + = ( 5 6 + 7 2 ) + ( 2 1 3 6 ) × 8 2 + = 1 2 8 + 6 4 ( 2 1 3 6 ) + = 6 4 [ 2 + ( 2 1 3 6 ) + ] w h i c h i s d i v i s i b l e b y 6 4 . H e n c e , t h e g i v e n s t a t e m e n t i s ' T r u e ' .

Q:  

The number of terms in the expansion of [(2x+y3)4]7 is 8.

A: 

This is a True or False Type Questions as classified in NCERT Exemplar
Sol:

Givenexpressionis [ (2x+y3)4]7= (2x+y3)28 H e r e , n = 2 8 Thenumberoftermsingivenexpressionis (n+1) i . e . , 2 8 + 1 = 2 9 H e n c e , t h e g i v e n s t a t e m e n t i s ' F a l s e ' .

Q:  

The sum of coefficients of the two middle terms in the expansion of (1+x)2n1 is equal to Cn2n1 .

Read more
A: 

This is a True or False Type Questions as classified in NCERT Exemplar
Sol:

Givenexpressionis(1+x)2n1 N u m b e r o f t e r m s = 2 n 1 + 1 = 2 n ( e v e n ) M i d d l e t e r m s a r e 2 n 2 t h t e r m a n d ( 2 n 2 + 1 ) t h t e r m s = n t h t e r m s a n d ( n + 1 ) t h t e r m s C o e f f i c i e n t o f n t h t e r m = C n 1 2 n 1 a n d t h e c o e f f i c i e n t o f ( n + 1 ) t h t e r m = C n 2 n 1 S u m o f t h e c o e f f i c i e n t s = C n 1 2 n 1 + C n 2 n 1 = C n 2 n 1 + 1 = C n 2 n [ ? C r n + C r 1 n = C r n + 1 ] H e n c e , t h e g i v e n s t a t e m e n t i s ' F a l s e ' .

Q:  

The last two digits of the number 3400 are 01.

A: 

This is a True or False Type Questions as classified in NCERT Exemplar
Sol:

G i v e n t h a t 3 4 0 0 = ( 9 ) 2 0 0 = ( 1 0 1 ) 2 0 0 ( 1 0 1 ) 2 0 0 = C 0 2 0 0 ( 1 0 ) 2 0 0 + C 1 2 0 0 ( 1 0 ) 1 9 9 + C 1 9 9 2 0 0 ( 1 0 ) 1 + C 2 0 0 2 0 0 ( 1 ) 2 0 0 = 1 0 2 0 0 2 0 0 × 1 0 1 9 9 + 1 0 × 2 0 0 + 1 S o , i t i s c l e a r t h a t l a s t t w o d i g i t s a r e 0 1 . H e n c e , t h e g i v e n s t a t e m e n t i s ' T r u e ' .

Q:  

If the expansion of x-1x22n contains a term independent of x , then n is a multiple of 2.

Read more
A: 

This is a True or False Type Questions as classified in NCERT Exemplar
Sol:

Givenexpressionis(x1x2)2n T r + 1 = C r 2 n ( x ) 2 n r ( 1 x 2 ) r = C r 2 n ( x ) 2 n r ( 1 ) r . 1 x 2 r = C r 2 n ( x ) 2 n r 2 r ( 1 ) r = C r 2 n ( x ) 2 n 3 r ( 1 ) r F o r t h e t e r m i n d e p e n d e n t o f x , 2 n 3 r = 0 r=2n3whichisnotanintegerandtheexpressionisnotpossibletobetrue. H e n c e , t h e g i v e n s t a t e m e n t i s ' F a l s e ' .

Q:  

The number of terms in the expansion of (a+b)n where  n is one less than the power n .

A: 

This is a True or False Type Questions as classified in NCERT Exemplar
Sol:

Since, thenumberoftermsinthegivenexpressionis (a+b)nis1morethanni.e., n+1 H e n c e , t h e g i v e n s t a t e m e n t i s ' F a l s e ' .

Maths NCERT Exemplar Solutions Class 11th Chapter Eight Logo

JEE Mains

JEE Mains

qna

Maths NCERT Exemplar Solutions Class 11th Chapter Eight Exam

Student Forum

chatAnything you would want to ask experts?
Write here...