Maths NCERT Exemplar Solutions Class 11th Chapter Eight: Overview, Questions, Preparation

Maths NCERT Exemplar Solutions Class 11th Chapter Eight 2025 ( Maths NCERT Exemplar Solutions Class 11th Chapter Eight )

Vishal Baghel
Updated on Jul 23, 2025 15:30 IST

By Vishal Baghel, Executive Content Operations

CCCCC

Table of content
  • Binomial Theorem Long Answer Type Questions
  • Binomial Theorem Short Answer Type Questions
  • Binomial Theorem Objective Type Questions
  • Binomial Theorem Fill in the Blanks
  • Binomial Theorem True or False Type Questions
  • JEE Mains
Maths NCERT Exemplar Solutions Class 11th Chapter Eight Logo

Binomial Theorem Long Answer Type Questions

If  p  is a real number and if the middle term in the expansion of  ( p 2   + 2 ) 8  is 1120, find  p  .
G i v e n expression i s ( P 2 + 2 ) 8 N u m b e r o f t e r m s = 8 + 1 = 9 ( o d d ) M i d d l e t e r m ( n + 1 2 ) t h t e r m = 9 + 1 2 = 1 0 2 = 5 t h t e r m T 5 = T 4 + 1 = C 4 8 ( P 2 ) 8 4 ( 2 ) 4 = C 4 8 P 4 2 4 × 2 4 = C 4 8 P 4 N o w C 4 8 P 4 = 1 1 2 0 8 × 7 × 6 × 5 4 × 3 × 2 × 1 . P 4 = 1 1 2 0 7 0 P 4 = 1 1 2 0 P 4 = 1 1 2 0 7 0 = 1 6 P 4 = 2 4 P = ± 2 H e n c e , t h e r e q u i r e d v a l u e o f P = ± 2 .
Show that the middle term in the expansion of (x – 1/x)2n is 1 × 3 × 5 × … (2n -1)/n × (-2)n.
G i v e n expression i s ( x 1 x ) 2 n N u m b e r o f t e r m s = 2 n + 1 = 9 ( o d d ) M i d d l e t e r m ( n + 1 2 ) t h t e r m = 2 n + 1 + 1 2 = ( n + 1 ) t h t e r m . G e n e r a l T e r m   T r + 1 = C r n x n r y r T n + 1 = C n 2 n ( x ) 2 n n ( 1 x ) n = C n 2 n ( x ) n ( 1 ) n . 1 x n = ( 1 ) n . C n 2 n = ( 1 ) n . 2 n ! n ! ( 2 n n ) ! = ( 1 ) n . 2 n ! n ! n ! = ( 1 ) n . 2 n ( 2 n 1 ) ( 2 n 2 ) ( 2 n 3 ) 1 n ! n ( n 1 ) ( n 2 ) ( n 3 ) 1 = ( 1 ) n . 2 n ( 2 n 1 ) . 2 ( n 1 ) ( 2 n 3 ) 1 n ! n ( n 1 ) ( n 2 ) ( n 3 ) 1 = ( 1 ) n . 2 n . [ n ( n 1 ) ( n 1 ) ] . [ ( 2 n 1 ) . ( 2 n 3 ) 5 . 3 . 1 ] n ! . n ( n 1 ) ( n 2 ) 1 = ( 2 ) n [ ( 2 n 1 ) . ( 2 n 3 ) 5 . 3 . 1 ] n ! = 1 × 3 × 5 × ( 2 n 1 ) n ! × ( 2 ) n H e n c e , t h e m i d d l e t e r m = 1 × 3 × 5 × ( 2 n 1 ) n ! × ( 2 ) n
Q&A Icon
Commonly asked questions
Q:  

If p is a real number and if the middle term in the expansion of (p2 +2)8 is 1120, find p .

Read more
Q:  

Show that the middle term in the expansion of (x – 1/x)2n is 1 × 3 ×  5 × … (2n -1)/n × (-2)n.

Q:  

Find n in the binomial expansion , if the ratio of the 7th term from the beginning to the 7th term from the end is 16.

 
Read more
Q:  

In the expansion of (x+a)n if the sum of odd terms is denoted by O and the sum of even terms by E , prove that:

O2E2=(x2a2)n.

4OE=(x+a)2n(xa)2n.

Read more
Q:  

 If xp occurs in the expansion of (x2+1x)2n, prove that its coefficient is 4n-p32n+p3.

Q:  

Find the term independent of x in the expansion of (1+x+2x3) 3/2 x2 – 1/3x 9.

Maths NCERT Exemplar Solutions Class 11th Chapter Eight Logo

Binomial Theorem Short Answer Type Questions

Find the term independent of x, x 0 , in the expansion of (3x2/2 – 1/3x)15

G e n e r a l T e r m T r + 1 = C r n x n r y r = C r 1 5 ( 3 x 2 2 ) 1 5 r ( 1 3 x ) r = C r 1 5 ( 3 2 ) 1 5 r ( x ) 3 0 2 r ( 1 3 ) r 1 x r = C r 1 5 ( 3 2 ) 1 5 r ( x ) 3 0 2 r r ( 1 ) r 1 ( 3 ) r = C r 1 5 ( 3 2 ) 1 5 r ( x ) 3 0 3 r ( 1 ) r 1 ( 3 ) r f o r g e t t i n g t h e t e r m i n d e p e n d e n t o f x , 3 0 3 r = 0 r = 1 0 O n p u t t i n g t h e v a l u e o f r i n t h e a b o v e expression , w e g e t = C 1 0 1 5 ( 3 2 ) 1 5 1 0 ( 1 ) 1 0 1 ( 3 ) 1 0 = C 1 0 1 5 ( 3 ) 5 ( 2 ) 5 . 1 ( 3 ) 1 0 = C 1 0 1 5 . 1 ( 2 ) 5 . ( 3 ) 5 = C 1 0 1 5 ( 1 6 ) 5 H e n c e , t h e r e q u i r e d t e r m = C 1 0 1 5 ( 1 6 ) 5

If the term free from  in the expansion of x – k/x2 10 is 405, find the value of .

T h e g i v e n expression i s ( x K x 2 ) 1 0 G e n e r a l T e r m     T r + 1 = C r n x n r y r = C r 1 0 ( x ) 1 0 r ( K x 2 ) r = C r 1 0 ( x ) 1 0 r 2 ( K ) r ( 1 x 2 r ) = C r 1 0 ( x ) 1 0 r 2 2 r ( K ) r = C r 1 0 ( x ) 1 0 r 4 r 2 ( K ) r = C r 1 0 ( x ) 1 0 5 r 2 ( K ) r f o r g e t t i n g t h e t e r m i n d e p e n d e n t o f x , 1 0 5 r 2 = 0 r = 2 O n p u t t i n g t h e v a l u e o f r i n t h e a b o v e expression , w e g e t = C 2 1 0 ( K ) 2 A c c o r d i n g t o t h e c o n d i t i o n o f t h e q u e s t i o n , w e h a v e C 2 1 0 K 2 = 4 0 5 1 0 . 9 2 . 1 K 2 = 4 0 5 4 5 K 2 = 4 0 5 K 2 = 4 0 5 4 5 = 9 K = ± 3 H e n c e , t h e v a l u e o f K = ± 3

 

Q&A Icon
Commonly asked questions
Q:  

Find the term independent of x , x 0 , in the expansion of (3x2/2 – 1/3x)15

Read more
Q:  

 If the term free from x in the expansion of x – k/x2 10  is 405, find the value of k .

Read more
Q:  

 Find the coefficient of x in the expansion of

(13x+7x2)(1x)16.

Q:  

Find the term independent of x in the expansion of 3x – 2/x2 15

Q:  

Find the middle term(s) in the expansion of:

(x/aax)10. 3xx3/6 9

Q:  

Find the coefficient of x15 in the expansion of (xx2)10.

Q:  

Find the coefficient of 1x17 in the expansion of x4 – 1/x3  15

Q:  

Find the sixth term of the expansion (y12+x13)n , if the binomial coefficient of the third term from the end is 45.

[Hint: Binomial coefficient of third term from the end = Binomial coefficient of third term from the beginning = nC2.]

Read more
Q:  

Find the value of r , if the coefficients of the (2r + 4)th and th terms in the expansion of (1+x)18 are equal.

Read more
Q:  

If the coefficient of second, third, and fourth terms in the expansion of (1+x)2n are in A.P. Show that 2n29n+7=0.

Read more
Q:  

Find the coefficient of x4 in the expansion of (1+x+x2+x3)11.

Maths NCERT Exemplar Solutions Class 11th Chapter Eight Logo

Binomial Theorem Objective Type Questions

The total number of terms in the expansion of  ( x + a ) 1 0 0 + ( x a ) 1 0 0  after simplification is:

(a) 50

(b) 202

(c) 51

(d) None of these

N u m b e r o f t e r m s i n t h e expansion o f ( x + a ) 1 0 0 = 1 0 1 N u m b e r o f t e r m s i n t h e expansion o f ( x a ) 1 0 0 = 1 0 1 N o w 5 0 t e r m s o f expansion w i l l c a n c e l o u t w i t h n e g a t i v e 5 0 t e r m s o f ( x a ) 1 0 0 S o , t h e r e m a i n i n g 5 1 t e r m s o f f i r s t expansion w i l l b e a d d e d t o 5 1 t e r m s o f o t h e r . T h e r e f o r e , t h e n u m b e r o f t e r m s = 5 1 H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Given the integers  r > 1 , n > 2  , and the coefficients of the  ( 3 r )  th and  ( r + 2 )  nd terms in the binomial expansion of  ( 1 + x ) 2 n  are equal, then:

(a)  n = 2 r

(b)  n = 3 r

(c)  n = 2 r + 1

(d) None of these

G i v e n t h a t r > 1 a n d n > 2 t h e n T 3 r =   T 3 r 1 + 1 = C 3 r 1 2 n . x 3 r 1 a n d T r + 2 =   T r + 1 + 1 = C r + 1 2 n . x r + 1 A s p e r q u e s t i o n , w e h a v e C 3 r 1 2 n = C r + 1 2 n 3 r 1 + r + 1 = 2 n [ C p n = C q n n = p + q ] 4 r = 2 n n = 2 r H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .
Q&A Icon
Commonly asked questions
Q:  

The total number of terms in the expansion of (x+a)100+(xa)100 after simplification is:

(a) 50

(b) 202

(c) 51

(d) None of these

Read more
Q:  

Given the integers r>1,n>2 , and the coefficients of the (3r) th and (r+2) nd terms in the binomial expansion of (1+x)2n are equal, then:

(a) n=2r

(b) n=3r

(c) n=2r+1

(d) None of these

Read more
Q:  

The two successive terms in the expansion of (1+x)24 whose coefficients are in the ratio 1:4 are:

(a) 3rd and 4th

(b) 4th and 5th

(c) 5th and 6th

(d) 6th and 7th

Read more
Q:  

The coefficient of xn in the expansion of (1+x)2n and (1+x)2n1 are in the ratio:

(a) 1:2

(b) 1:3

(c) 3:1

(d) 2:1

Read more
Q:  

If the coefficients of the 2nd, 3rd, and 4th terms in the expansion of (1+x)n are in A.P., then the value of n is:

(a) 2

(b) 7

(c) 11

(d) 14

[Hint: 2 nC2 = nC1 + nC3 n29n+14=0n=27. ]

Read more
Q:  

If A and B are coefficients of xn in the expansions of (1+x)2n and (1+x)2n1 , respectively, then AB

(a) 1

(b) 2

(c) 12

(d) 1n

[Hint: AB= 2nCn/2n – 1Cn =  2]

Read more
Q:  

If the middle term of 1+xsinxx10 is equal to 778 , then the value of x is:

(a) 2nπ+π6

(b) nπ+π6

(c) nπ+(1)nπ6

(d) nπ+(1)nπ3

[Hint: T6 = 10C5 1/x5 . x5 sin5 x = 63/3 = sin5 x = 1/25  sin ½= x = nπ + (-1)π/6]

Read more
Maths NCERT Exemplar Solutions Class 11th Chapter Eight Logo

Binomial Theorem Fill in the Blanks

The largest coefficient in the expansion of  ( 1 + x ) 3 0  is _________________ .
H e r e n = 3 0 w h i c h i s e v e n t h e largest c o e f f i c i e n t i n ( 1 + x ) n = C n / 2 n S o , t h e largest c o e f f i c i e n t i n ( 1 + x ) 3 0 = C 1 5 3 0 H e n c e , t h e v a l u e o f t h e f i l l e r i s C 1 5 3 0 .

The number of terms in the expansion of  ( x + y + z ) n  is _________________

[Hint:  ( x + y + z ) n = [ x + ( y + z ) ] n .  ]

T h e expression   ( x + y + z ) n c a n b e w r i t t e n a [ x + ( y + z ) ] n [ x + ( y + z ) ] n = C 0 n x n ( y + z ) 0 + C 1 n ( x ) n 1 ( y + z ) + C 2 n ( x ) n 2 ( y + z ) 2 + + C n n ( y + z ) n N u m b e r o f t e r m s 1 + 2 + 3 + 4 + + ( n + 1 ) = ( n + 1 ) ( n + 2 ) 2 H e n c e , t h e v a l u e o f t h e f i l l e r i s ( n + 1 ) ( n + 2 ) 2
Q&A Icon
Commonly asked questions
Q:  

The largest coefficient in the expansion of (1+x)30 is _________________ .

Q:  

The number of terms in the expansion of (x+y+z)n is _________________

[Hint: (x+y+z)n=[x+(y+z)]n. ]

Q:  

In the expansion of x2 – 1/x2 16 , the value of the constant term is ________________ .

Q:  

If the seventh terms from the beginning and the end in the expansion of are equal, then n equals _________________ .

[Hint: T7=Tn7+2 , = nC6 (2 /3)n-6 (1/3 1/3 6) = nCn – 6 (2 1/3 6 (1/3 1/3) n - 6 solve for n. ]

= (2 1/3)n – 12 = 1/3 1/3 n -12 = only problem when n – 12 = 0 = n =12].

 

Read more
Q:  

The coefficient of a6b4 in the expansion of (1a+2b3)10 is _________________ .

[Hint: T5 = 10C4 1/a b -2b/3 4 = 1120/27 a-6b4]

Read more
Q:  

 The middle term in the expansion of (a3+ba)28 is _________________ .

Q:  

The ratio of the coefficients of xp and xq in the expansion of (1+x)p+q is _________________ .

[Hint: : p + qCp = p + qCq

Read more
Q:  

The position of the term independent of x in the expansion of x3+32x210 is _________________ .

Read more
Q:  

If 2515 is divided by 13, the remainder is _________________ .

Maths NCERT Exemplar Solutions Class 11th Chapter Eight Logo

Binomial Theorem True or False Type Questions

The sum of the series 10 20 r =0 Cr is 219 + 20 C10/2

r = 0 1 0 C r 2 0 = C 0 2 0 + C 1 2 0 + C 2 2 0 + C 3 2 0 + + C 1 0 2 0 = C 0 2 0 + C 1 2 0 + + C 1 0 2 0 + C 1 1 2 0 + + C 2 0 2 0 ( C 1 1 2 0 + + C 2 0 2 0 ) = 2 2 0 ( C 1 1 2 0 + + C 2 0 2 0 ) H e n c e , t h e g i v e n s t a t e m e n t i s ' F a l s e '

The expression  7 9 + 9 7  is divisible by 64.

[Hint:  7 9 + 9 7 = ( 1 + 8 ) 9 ( 1 8 ) 7  .]

7 9 + 9 7 = ( 1 + 8 ) 7 ( 1 8 ) 9 = [ C 0 7 + C 1 7 . 8 + C 2 7 ( 8 ) 2 + C 3 7 ( 8 ) 3 + + C 7 7 ( 8 ) 7 ] [ C 0 9 C 1 9 . 8 + C 2 9 ( 8 ) 2 C 3 9 ( 8 ) 3 + C 9 9 ( 8 ) 9 ] = ( 7 × 8 + 9 × 8 ) + ( 2 1 × 8 2 3 6 × 8 2 ) + = ( 5 6 + 7 2 ) + ( 2 1 3 6 ) × 8 2 + = 1 2 8 + 6 4 ( 2 1 3 6 ) + = 6 4 [ 2 + ( 2 1 3 6 ) + ] w h i c h i s d i v i s i b l e b y 6 4 . H e n c e , t h e g i v e n s t a t e m e n t i s ' T r u e ' .
Q&A Icon
Commonly asked questions
Q:  

The sum of the series 10 20 r =0 Cr is 219 + 20 C10/2

Q:  

 The expression 79+97 is divisible by 64.

[Hint: 79+97=(1+8)9(18)7 .]

Q:  

The number of terms in the expansion of [(2x+y3)4]7 is 8.

Q:  

The sum of coefficients of the two middle terms in the expansion of (1+x)2n1 is equal to Cn2n1 .

Read more
Q:  

The last two digits of the number 3400 are 01.

Q:  

If the expansion of x-1x22n contains a term independent of x , then n is a multiple of 2.

Read more
Q:  

The number of terms in the expansion of (a+b)n where  n is one less than the power n .

Maths NCERT Exemplar Solutions Class 11th Chapter Eight Logo

JEE Mains

JEE Mains

qna

Maths NCERT Exemplar Solutions Class 11th Chapter Eight Exam

Student Forum

chatAnything you would want to ask experts?
Write here...