Maths NCERT Exemplar Solutions Class 11th Chapter Sixteen: Overview, Questions, Preparation

Maths NCERT Exemplar Solutions Class 11th Chapter Sixteen 2025 ( Maths NCERT Exemplar Solutions Class 11th Chapter Sixteen )

Payal Gupta
Updated on Sep 8, 2025 14:16 IST

By Payal Gupta, Retainer

Table of content
  • Probability Short Answer Type Questions
  • Probability Long Answer Type Questions
  • Probability Objective Type Questions
  • Probability True or False Type Questions
  • Probability Fill in the blank Type Questions
  • Probability Matching Type Questions
Maths NCERT Exemplar Solutions Class 11th Chapter Sixteen Logo

Probability Short Answer Type Questions

1. If the letters of the word ALGORITHM are arranged at random in a row, what is the probability that the letters GOR must remain together as a unit?

Sol. W o r d A L G O R I T H M h a s 9 l e t t e r s . I f G O R r e m a i n t o g e t h e r , t h e n i t w i l l r e m a i n t o g e t h e r . N u m b e r o f l e t t e r s = A L G O R I T H M = 6 + 1 = 7 N u m b e r o f w o r d s = 7 ! a n d t h e t o t a l n u m b e r o f w o r d s f r o m A L G O R I T H M = 9 ! S o , t h e r e q u i r e d p r o b a b i l i t y = 7 ! 9 ! = 7 ! 9 . 8 . 7 ! = 1 7 2 H e n c e , t h e r e q u i r e d p r o b a b i l i t y = 1 7 2 .

2. Six new employees, two of whom are married to each other, are to be assigned six desks that are lined up in a row. If the assignment of employees to desks is made randomly, what is the probability that the married couple will have nonadjacent desks?

[Hint: First find the probability that the couple has adjacent desks, and then subtract it from 1.]

Sol. W o r d A L G O R I T H M h a s 9 l e t t e r s . N u m b e r o f d e s k o c c u p i e d b y o n e c o u p l e = 1 O n l y ( 4 + 1 ) = 5 p e r s o n s t o b e a s s i g n e d . N u m b e r o f w a y s o f a s s i g n i n g t h e s e 5 p e r s o n s = 5 ! × 2 ! T o t a l n u m b e r o f w a y s o f a s s i g n i n g t h e s e 6 p e r s o n s = 6 ! Probability t h a t a c o u p l e h a s a d j a c e n t d e s k = 5 ! × 2 ! 6 ! = 1 3 S o , t h e p r o b a b i l i t y t h a t t h e m a r r i e d c o u p l e w i l l h a v e n o - a d j a c e n t d e s k s = 1 1 3 = 2 3 H e n c e , t h e r e q u i r e d p r o b a b i l i t y = 2 3 .
Maths NCERT Exemplar Solutions Class 11th Chapter Sixteen Logo

Probability Long Answer Type Questions

1. One urn contains two black balls (labeled B 1 and B 1 ) and one white ball. A second urn contains one black ball and two white balls (labeled W 1 and W 2 ). Suppose the following experiment is performed: one of the two urns is chosen at random. Next, a ball is randomly chosen from the urn. Then a second ball is chosen at random from the same urn without replacing the first ball.

(a) Write the sample space showing all possible outcomes.

(b) What is the probability that two black balls are chosen?

(c) What is the probability that two balls of opposite color are chosen?

Sol. G i v e n t h a t o n e o f t h e u r n s i s c h o o s e n , t h e n a b a l l i s r a n d o m l y c h o o s e n f r o m t h e u r n , t h e n a second b a l l i s c h o o s e n a t r a n d o m f r o m t h e s a m e u r n w i t h o u t r e p l a c i n g t h e f i r s t b a l l ( a ) S a m p l e s p a c e S = { B 1 B 2 , B 1 W , B 2 B 1 , B 2 W , W B 1 , W B 2 , B W 1 , B W 2 , W 1 B , W 1 W 2 , W 2 B , W 2 W 1 } T o t a l n u m b e r o f S a m p l e s p a c e , S = 1 2 ( b ) I f t w o b l a c k b a l l s a r e c h o o s e n t h e n t h e f a v o u r a b l e e v e n t s a r e B 1 B 2 , B 2 B 1 i . e . 2 R e q u i r e d p r o b a b i l i t y = 2 1 2 = 1 6 ( c ) I f t w o b a l l s o f o p p o s i t e c o l o u r s a r e c h o o s e n t h e n , t h e r e q u i r e d p r o b a b i l i t y = 8 1 2 = 2 3

2. A bag contains 8 red and 5 white balls. Three balls are drawn at random. Find the probability that:

(a) All the three balls are white.

(b) All the three balls are red.

(c) One ball is red and two balls are white.

Sol. G i v e n t h a t : N u m b e r o f r e d b a l l s = 8 N u m b e r o f w h i t e b a l l s = 5 ( a ) P ( a l l t h e t h r e e b a l l s a r e w h i t e ) = C 3 5 C 3 1 3 = 5 ! 3 ! 2 ! 1 3 ! 3 ! 1 0 ! = 5 ! 3 ! 2 ! × 3 ! 1 0 ! 1 3 ! = 5 ! 2 ! × 1 0 ! 1 3 × 1 2 × 1 1 × 1 0 ! = 5 × 4 × 3 × 2 ! 2 ! × 1 1 3 × 1 2 × 1 1 = 5 × 4 × 3 1 3 × 1 2 × 1 1 = 5 1 4 3 ( b ) P ( a l l t h e t h r e e b a l l s a r e r e d ) = C 3 8 C 3 1 3 = 8 ! 3 ! 5 ! 1 3 ! 3 ! 1 0 ! = 8 ! 3 ! 5 ! × 3 ! 1 0 ! 1 3 ! = 8 × 7 × 6 × 5 ! 5 ! × 1 0 ! 1 3 × 1 2 × 1 1 × 1 0 ! = 8 × 7 × 6 1 3 × 1 2 × 1 1 = 2 8 1 4 3 ( c ) P ( o n e b a l l i s r e d a n d t w o b a l l s a r e w h i t e ) = C 1 8 × C 2 5 C 3 1 3 = 8 ! 7 ! 1 ! × 5 ! 2 ! 3 ! 1 3 ! 3 ! 1 0 ! = 8 × 7 ! 7 ! × 5 × 4 × 3 × 2 ! 2 ! × 3 ! × 3 ! × 1 0 ! 1 3 × 1 2 × 1 1 × 1 0 ! = 8 × 5 1 3 × 1 1 = 4 0 1 4 3
Maths NCERT Exemplar Solutions Class 11th Chapter Sixteen Logo

Probability Objective Type Questions

1. In a non-leap year, the probability of having 53 Tuesdays or 53 Wednesdays is:

(a) 1 7

(b) 2 7

(c) 3 7

(d) None of these

Sol. T h e r e a r e 3 6 5 d a y s i n a l e a p y e a r a n d t h e r e a r e 7 d a y s i n a w e e k . 3 6 5 ÷ 7 = 5 2 w e e k s + 1 d a y S o , t h i s d a y m a y b e T u e s d a y o r W e d n e s d a y . S o , t h e r e q u i r e d p r o b a b i l i t y = 1 7 . H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

2. Three numbers are chosen from 1 to 20. Find the probability that they are not consecutive:

(a) 1 8 6 1 9 0  

(b) 1 8 7 1 9 0  

(c) 1 8 8 1 9 0  

(d) 18/20C3

Sol. S e t o f t h r e e c o n s e c u t i v e n u m b e r s f r o m 1 t o 2 0 a r e 1 , 2 , 3 ; 2 , 3 , 4 ; 3 , 4 , 5 ; ; 1 8 , 1 9 , 2 0 . S o , t h e p r o b a b i l i t y t h a t t h e n u m b e r s a r e consecutive = 1 8 C 3 2 0 = 1 8 2 0 ! 3 ! 7 ! = 1 8 . 3 ! 7 ! 2 0 ! = 1 8 × 3 × 2 × 1 7 ! 2 0 × 1 9 × 1 8 × 1 7 ! = 3 × 2 2 0 × 1 9 = 3 1 9 0 P ( t h r e e n u m b e r s a r e n o t consecutive ) = 1 3 1 9 0 = 1 8 7 1 9 0 H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .
Maths NCERT Exemplar Solutions Class 11th Chapter Sixteen Logo

Probability True or False Type Questions

1. The probability that a person visiting a zoo will see the giraffe is 0.72, the probability that he will see the bears is 0.84, and the probability that he will see both is 0.52.

Sol. G i v e n t h a t : P ( t o s e e g i r a f f e e ) = 0 . 7 2 P ( t o s e e b e a r ) = 0 . 8 4 P ( t o s e e b o t h g i r a f f e e a n d b e a r ) = 0 . 5 2 P ( t o s e e g i r a f f e e o r b e a r ) = P ( t o s e e g i r a f f e e ) + P ( t o s e e b e a r ) P ( t o s e e b o t h ) = 0 . 7 2 + 0 . 8 4 0 . 5 2 = 1 . 0 4 w h i c h i s n o t p o s s i b l e . H e n c e , t h e g i v e n s t a t e m e n t i s ' F a l s e ' .

2. The probability that a student will pass his examination is 0.73, the probability of the student getting a compartment is 0.13, and the probability that the student will either pass or get a compartment is 0.96.

Sol. L e t E b e t h e e v e n t t h a t t h e s t u d e n t w i l l p a s s a n d F b e t h e e v e n t t h a t h e w i l l g e t c o m p a r t m e n t P ( E ) = 0 . 7 3 , P ( F ) = 0 . 1 3 a n d P ( E F ) = 0 . 9 6 P ( E F ) = P ( E ) + P ( F ) P ( E F ) = 0 . 7 3 + 0 . 1 3 0 [ P ( E F ) = 0 ] = 0 . 8 6 B u t P ( E F ) = 0 . 9 6 H e n c e , t h e g i v e n s t a t e m e n t i s ' F a l s e ' .
Maths NCERT Exemplar Solutions Class 11th Chapter Sixteen Logo

Probability Fill in the blank Type Questions

1. The probability that the home team will win an upcoming football game is 0.77, the probability that it will tie the game is 0.08, and the probability that it will lose the game is ___.
Sol. P ( loosing t h e g a m e ) = 1 ( 0 . 7 7 + 0 . 0 8 ) = 1 0 . 8 5 = 0 . 1 5 H e n c e , t h e v a l u e o f t h e f i l l e r i s 0 . 1 5

2. If e₁, e₂, e₃, e₄ are the four elementary outcomes in a sample space and P(e₁) = 0.1, P(e₂) = 0.5, P(e₃) = 0.1, then the probability of e₄ is __.

Sol. W e k n o w t h a t t h e s u m o f a l l p r o b a b i l i t i e s = 1 P ( e 1 ) + P ( e 2 ) + P ( e 3 ) + P ( e 4 ) = 1 0 . 1 + 0 . 5 + 0 . 1 + P ( e 4 ) = 1 0 . 7 + P ( e 4 ) = 1 P ( e 4 ) = 1 0 . 7 = 0 . 3 H e n c e , t h e v a l u e o f t h e f i l l e r i s 0 . 3
Maths NCERT Exemplar Solutions Class 11th Chapter Sixteen Logo

Probability Matching Type Questions

1. Match the proposed probability under Column C1 with the appropriate written description under column C2 :

C1                                                                    C2

Probability                                                       Written Description

(a) 0.95                                                             (i) An incorrect assignment

(b) 0.02                                                             (ii) No chance of happening

(c) – 0.3                                                            (iii) As much chance of happening as not.

(d) 0.5                                                               (iv) Very likely to happen

(e) 0                                                                  (v) Very little chance of happening

Sol. ( a ) 0 . 9 5 = V e r y l i k e l y t o h a p p e n , s o i t i s c l o s e t o 1 . ( b ) 0 . 0 2 = V e r y l i t t l e c h a n c e o f h a p p e n i n g a s t h e p r o b a b i l i t y i s v e r y l o w . ( c ) 0 . 3 = A n i n c o r r e c t a s s i g n m e n t b e c a u s e p r o b a b i l i t y i s n e v e r n e g a t i v e . ( d ) 0 . 5 = A s m u c h c h a n c e o f h a p p e n i n g a s n o t b e c a u s e s u m o f c h a n c e s o f h a p p e n i n g a n d n o t h a p p e n i n g i s o n e . ( e ) 0 = N o c h a n c e o f h a p p e n i n g . H e n c e , ( a ) ( i v ) , ( b ) ( v ) , ( c ) ( i ) , ( d ) ( i i i ) , ( e ) ( i i )

2. Match the following

(a) If E1 and E2 are the two mutually                  (i) E1 ∩ E2 = E1 exclusive events

(b) If E1 and E2 are the mutually                         (ii) (E1 – E2) ∪ (E1 ∩ E2) = E1

      exclusive and exhaustive events

(c) If E1 and E2 have common                            (iii) E1 ∩ E2 = φ, E1 ∪ E2 = S

     outcomes, then

(d) If E1 and E2 are two events                           (iv) E1 ∩ E2 = φ

      such that E1 ⊂ E2

Sol. ( a ) I f E 1 a n d E 2 a r e m u t u a l l y e x c l u s i v e e v e n t s , t h e n E 1 E 2 = ϕ . ( b ) I f E 1 a n d E 2 a r e m u t u a l l y e x c l u s i v e a n d e x h a u s t i v e e v e n t s , t h e n E 1 E 2 = ϕ a n d E 1 E 2 = S . ( c ) I f E 1 a n d E 2 h a v e c o m m o n o u t c o m e s , t h e n ( E 1 E 2 ) ( E 1 E 2 ) = E 1 ( d ) I f E 1 a n d E 2 a r e t w o e v e n t s s u c h t h a t E 1 E 2 E 1 E 2 = E 1 H e n c e , ( a ) ( i v ) , ( b ) ( i i i ) , ( c ) ( i i ) , ( d ) ( i )
qna

Maths NCERT Exemplar Solutions Class 11th Chapter Sixteen Exam

Student Forum

chatAnything you would want to ask experts?
Write here...