Maths NCERT Exemplar Solutions Class 11th Chapter Sixteen: Overview, Questions, Preparation

Maths NCERT Exemplar Solutions Class 11th Chapter Sixteen 2025 ( Maths NCERT Exemplar Solutions Class 11th Chapter Sixteen )

Payal Gupta
Updated on Sep 8, 2025 14:16 IST

By Payal Gupta, Retainer

Table of contents
  • Probability Short Answer Type Questions
  • Probability Long Answer Type Questions
  • Probability Objective Type Questions
  • Probability True or False Type Questions
  • Probability Fill in the blank Type Questions
  • Probability Matching Type Questions
Maths NCERT Exemplar Solutions Class 11th Chapter Sixteen Logo

Probability Short Answer Type Questions

1. If the letters of the word ALGORITHM are arranged at random in a row, what is the probability that the letters GOR must remain together as a unit?

Sol. W o r d A L G O R I T H M h a s 9 l e t t e r s . I f G O R r e m a i n t o g e t h e r , t h e n i t w i l l r e m a i n t o g e t h e r . N u m b e r o f l e t t e r s = A L G O R I T H M = 6 + 1 = 7 N u m b e r o f w o r d s = 7 ! a n d t h e t o t a l n u m b e r o f w o r d s f r o m A L G O R I T H M = 9 ! S o , t h e r e q u i r e d p r o b a b i l i t y = 7 ! 9 ! = 7 ! 9 . 8 . 7 ! = 1 7 2 H e n c e , t h e r e q u i r e d p r o b a b i l i t y = 1 7 2 .

2. Six new employees, two of whom are married to each other, are to be assigned six desks that are lined up in a row. If the assignment of employees to desks is made randomly, what is the probability that the married couple will have nonadjacent desks?

[Hint: First find the probability that the couple has adjacent desks, and then subtract it from 1.]

Sol. W o r d A L G O R I T H M h a s 9 l e t t e r s . N u m b e r o f d e s k o c c u p i e d b y o n e c o u p l e = 1 O n l y ( 4 + 1 ) = 5 p e r s o n s t o b e a s s i g n e d . N u m b e r o f w a y s o f a s s i g n i n g t h e s e 5 p e r s o n s = 5 ! × 2 ! T o t a l n u m b e r o f w a y s o f a s s i g n i n g t h e s e 6 p e r s o n s = 6 ! Probability t h a t a c o u p l e h a s a d j a c e n t d e s k = 5 ! × 2 ! 6 ! = 1 3 S o , t h e p r o b a b i l i t y t h a t t h e m a r r i e d c o u p l e w i l l h a v e n o - a d j a c e n t d e s k s = 1 1 3 = 2 3 H e n c e , t h e r e q u i r e d p r o b a b i l i t y = 2 3 .
Q&A Icon
Commonly asked questions
Q:  

Six new employees, two of whom are married to each other, are to be assigned six desks that are lined up in a row. If the assignment of employees to desks is made randomly, what is the probability that the married couple will have nonadjacent desks?

[Hint: First find the probability that the couple has adjacent desks, and then subtract it from 1.]

Read more
A: 

This is a short answer type question as classified in NCERT ExemplarWordALGORITHMhas9letters.Numberofdeskoccupiedbyonecouple=1Only(4+1)=5personstobeassigned.Numberofwaysofassigningthese5persons=5!×2!Totalnumberofwaysofassigningthese6persons=6! Probabilitythatacouplehasadjacentdesk=5!×2!6!=13So,theprobabilitythatthemarriedcouplewillhavenoadjacentdesks=113=23Hence,therequiredprobability=23.

Q:  

If the letters of the word ALGORITHM are arranged at random in a row, what is the probability that the letters GOR must remain together as a unit?

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

W o r d A L G O R I T H M h a s 9 l e t t e r s . I f G O R r e m a i n t o g e t h e r , t h e n i t w i l l r e m a i n t o g e t h e r . N u m b e r o f l e t t e r s = A L G O R I T H M = 6 + 1 = 7 N u m b e r o f w o r d s = 7 ! a n d t h e t o t a l n u m b e r o f w o r d s f r o m A L G O R I T H M = 9 ! S o , t h e r e q u i r e d p r o b a b i l i t y = 7 ! 9 ! = 7 ! 9 . 8 . 7 ! = 1 7 2 H e n c e , t h e r e q u i r e d p r o b a b i l i t y = 1 7 2 .

Q:  

Suppose an integer from 1 through 1000 is chosen at random. Find the probability that the integer is a multiple of 2 or a multiple of 9.

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

W e h a v e m u l t i p l e s o f 2 , f r o m 1 t o 1 0 0 0 a r e 2 , 4 , 6 , 8 , , 1 0 0 0 L e t n b e t h e n u m b e r o f t e r m s H e r e a = 2 , d = 2 , a n = 1 0 0 0 a n = a + ( n 1 ) d 1 0 0 0 = 2 + ( n 1 ) 2 1 0 0 0 = 2 n n = 5 0 0 N o w m u l t i p l e s o f 9 , f r o m 1 t o 1 0 0 0 a r e 9 , 1 8 , 2 7 , , 9 9 9 H e r e a = 9 , d = 9 , a m = 9 9 9 [ m b e t h e n u m b e r o f t e r m s ] a m = a + ( m 1 ) d 9 9 9 = 9 + ( m 1 ) 9 9 9 9 = 9 m m = 1 1 1 N o w m u l t i p l e s o f 2 a n d 9 a r e 1 8 , 3 6 , 5 4 , , 9 9 0 H e r e a = 1 8 , d = 1 8 , a p = 9 9 9 [ p b e t h e n u m b e r o f t e r m s ] a p = a + ( p 1 ) d 9 9 0 = 1 8 + ( p 1 ) 1 8 9 9 0 = 1 8 p p = 5 5 N u m b e r o f m u l t i p l e s o f 2 o r 9 = 5 0 0 + 1 1 1 5 5 = 5 5 6 R e q u i r e d p r o b a b i l i t y = P ( E ) n ( E ) = 5 5 6 1 0 0 0 = 0 . 5 5 6 H e n c e , t h e r e q u i r e d p r o b a b i l i t y = 0 . 5 5 6

Q:  

An experiment consists of rolling a die until a 2 appears.

(i) How many elements of the sample space correspond to the event that the 2 appears on the k t h roll of the die?

(ii) How many elements of the sample space correspond to the event that the 2 appears not later than the k t h roll of the die?

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

N u m b e r o f S a m p l e s p a c e = 6 ( i ) G i v e n t h a t 2 a p p e a r s o n t h e k t h r o l l o f t h e d i e . S o f i r s t ( k 1 ) t h r o l l h a v e 5 o u t c o m e s e a c h a n d k t h r o l l r e s u l t s 2 i . e . o n l y 1 o u t c o m e . N u m b e r o f e l e m e n t o f s a m p l e s p a c e c o r r e s p o n d t o t h e e v e n t t h a t 2 a p p e a r s o n t h e k t h r o l l o f t h e d i e = 5 k 1 . ( i i ) I n t h i s c a s e , 2 a p p e a r s n o t l a t e r t h a n k t h r o l l o f t h e d i e , t h e n i t i s p o s s i b l e t h a t 2 c o m e s infirstthrowthenoutcomeswillbe5and2outcomesinsecondthrowi.e.1outcome. P o s s i b l e o u t c o m e = 5 × 1 = 5 Similarly,if2doesnotappearinsecondthrowandappearsinthirdthrow P o s s i b l e o u t c o m e = 5 × 5 × 1 N o w w e h a v e t h e s e r i e s : = 1 + 5 + 5 × 5 + 5 × 5 × 5 + + 5 k 1 = 1 + 5 + 5 2 + 5 3 + + 5 k 1 = 1 . ( r k 1 ) r 1 = 5 k 1 5 1 = 5 k 1 4 H e n c e , t h e r e q u i r e d p r o b a b i l i t y = 5 k 1 4 .

Q:  

A die is loaded in such a way that each odd number is twice as likely to occur as each even number. Find P ( G ) , where G  is the event that a number greater than 3 occurs on a single roll of the die.

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t p r o b a b i l i t y o f e v e n n u m b e r s = 1 2 × p r o b a b i l i t y o f o d d n u m b e r s P ( O d d ) : P ( E v e n ) = 2 : 1 P ( o d d n u m b e r ) = 2 2 + 1 = 2 3 a n d P ( e v e n n u m b e r ) = 1 2 + 1 = 1 3 Also,giventhat,Gtheeventthatanumbergreaterthan3occursinasinglethrowofdie. T h e p o s s i b l e o u t c o m e a r e 4 , 5 a n d 6 o u t o f w h i c h t w o a r e e v e n a n d o n e i s o d d . R e q u i r e d p r o b a b i l i t y = P ( G ) = 2 × P ( e v e n ) × P ( o d d ) = 2 × 1 3 × 2 3 = 4 9 H e n c e , t h e r e q u i r e d p r o b a b i l i t y = 4 9 .

Q:  

In a large metropolitan area, the probabilities are 0.87, 0.36, 0.30 that a family (randomly chosen for a sample survey) owns a colour television set, a black and white television set, or both kinds of sets. What is the probability that a family owns either any one or both kinds of sets?

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

L e t E 1 b e t h e e v e n t t h a t a f a m i l y o w n s c o l o u r t e l e v i s i o n s e t . a n d E 2 b e t h e e v e n t t h a t a f a m i l y o w n s b l a c k a n d w h i t e t e l e v i s i o n s e t . G i v e n t h a t P ( E 1 ) = 0 . 8 7 , P ( E 2 ) = 0 . 3 6 a n d P ( E 1 E 2 ) = 0 . 3 0 T h e p r o b a b i l i t y t h a t a f a m i l y o w n s e i t h e r c o l o u r o r b l a c k a n d w h i t e t e l e v i s i o n s e t . P ( E 1 E 2 ) = P ( E 1 ) + P ( E 2 ) P ( E 1 E 2 ) = 0 . 8 7 + 0 . 3 6 0 . 3 0 = 0 . 9 3 H e n c e , t h e r e q u i r e d p r o b a b i l i t y = 0 . 9 3

Q:  

If   A and   B are mutually exclusive events, P ( A ) = 0 . 3 5  and P ( B ) = 0 . 4 5 , find:

(a) P ( A )

(b) P ( B )

(c) P ( A B )

(d) P ( A B )

(e) P ( A B )

(f) P ( A B )

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t P ( A ) = 0 . 3 5 a n d P ( B ) = 0 . 4 5 SincetheeventsAandBaremutuallyexclusivethenP(AB)=0 ( a ) P ( A ' ) = 1 P ( A ) = 1 0 . 3 5 = 0 . 6 5 ( b ) P ( B ' ) = 1 P ( B ) = 1 0 . 4 5 = 0 . 5 5 ( c ) P ( A B ) = P ( A ) + P ( B ) P ( A B ) = 0 . 3 5 + 0 . 4 5 0 = 0 . 8 0 ( d ) P ( A B ) = 0 [ ? A a n d B a r e m u t u a l l y e x c l u s i v e e v e n t s ] ( e ) P ( A B ' ) = P ( A ) P ( A B ) = 0 . 3 5 0 = 0 . 3 5 ( f ) P ( A ' B ' ) = 1 P ( A B ) = 1 0 . 8 0 = 0 . 2 0

Q:  

A team of medical students doing their internship has to assist during surgeries at a city hospital. The probabilities of surgeries rated as very complex, complex, routine, simple, or very simple are respectively, 0.15, 0.20, 0.31, 0.26, 0.08. Find the probabilities that a particular surgery will be rated:

(a) complex or very complex;

(b) neither very complex nor very simple;

(c) routine or complex;

(d) routine or simple.

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

L e t E 1 , E 2 , E 3 , E 4 a n d E 5 b e t h e e v e n t s t h a t t h e s u r g e r i e s a r e r a t e d a s v e r y c o m p l e x , c o m p l e x , r o u t i n e , s i m p l e a n d v e r y s i m p l e r e s p e c t i v e l y . P ( E 1 ) = 0 . 1 5 , P ( E 2 ) = 0 . 2 0 , P ( E 3 ) = 0 . 3 1 , P ( E 4 ) = 0 . 2 6 a n d P ( E 5 ) = 0 . 0 8 ( a ) P ( c o m p l e x a n d v e r y c o m p l e x ) = P ( E 1 o r E 2 ) P ( E 1 E 2 ) = P ( E 1 ) + P ( E 2 ) P ( E 1 E 2 ) = 0 . 1 5 + 0 . 2 0 0 = 0 . 3 5 [ ? A l l e v e n t a r e i n d e p e n d e n t ] ( b ) P ( n e i t h e r v e r y c o m p l e x n o r v e r y s i m p l e ) = P ( E 1 ' E 5 ' ) = P ( E 1 E 5 ) ' = 1 P ( E 1 E 5 ) = 1 [ P ( E 1 ) + P ( E 5 ) ] = 1 [ 0 . 1 5 + 0 . 0 8 ] = 1 0 . 2 3 = 0 . 7 7 ( c ) P ( r o u t i n e o r c o m p l e x ) = P ( E 3 o r E 2 ) P ( E 3 E 2 ) = P ( E 3 ) + P ( E 2 ) = 0 . 3 1 + 0 . 2 0 = 0 . 5 1 ( d ) P ( r o u t i n e o r s i m p l e ) = P ( E 3 o r E 4 ) P ( E 3 E 4 ) = P ( E 3 ) + P ( E 4 ) = 0 . 3 1 + 0 . 2 6 = 0 . 5 7

Q:  

Four candidates   A , B , C , D have applied for the assignment to coach a school cricket team. If   A is twice as likely to be selected as B , and   B and   C are given about the same chance of being selected, while C  is twice as likely to be selected as D , what are the probabilities that:

(a) C will be selected?

(b) A will not be selected?

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t A i s t w i c e a s l i k e l y t o b e s e l e c t e d a s B i . e . , P ( A ) = 2 P ( B ) a n d C i s t w i c e a s l i k e l y t o b e s e l e c t e d a s D P ( C ) = 2 P ( D ) P ( B ) = 2 P ( D ) P ( A ) 2 = 2 P ( D ) P ( D ) = 1 4 P ( A ) N o w B a n d C a r e g i v e n a b o u t t h e s a m e c h a n c e P ( B ) = P ( C ) Since,sumofallprobabilities=1 P ( A ) + P ( B ) + P ( C ) + P ( D ) = 1 P ( A ) + P ( A ) 2 + P ( A ) 2 + P ( A ) 4 = 1 4 P ( A ) + 2 P ( A ) + 2 P ( A ) + P ( A ) = 4 9 P ( A ) = 4 P ( A ) = 4 9 ( a ) P ( C w i l l b e s e l e c t e d ) = P ( C ) = P ( B ) = P ( A ) 2 = 4 9 × 1 2 = 2 9 ( b ) P ( A w i l l n o t b e s e l e c t e d ) = P ( A ' ) = 1 P ( A ) &thi

Q:  

One of the four persons, John, Rita, Aslam, or Gurpreet, will be promoted next month. Consequently, the sample space consists of four elementary outcomes: 

S = {John promoted, Rita promoted, Aslam promoted, Gurpreet promoted}

You are told that the chances of John’s promotion are the same as that of Gurpreet. Rita’s chances of promotion are twice as likely as John’s. Aslam’s chances are four times that of John.

(a) Determine P (John promoted),

P (Rita promoted),

P (Aslam promoted), and

P (Gurpreet promoted).

(b) If A = {John promoted or Gurpreet promoted}, find P(A).

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

L e t E 1 , E 2 , E 3 a n d E 4 b e t h e e v e n t s t h a t J o h n p r o m o t e d , R i t a p r o m o t e d , A s l a m p r o m o t e d a n d G u r p r e e t p r o m o t e d r e s p e c t i v e l y . S a m p l e s p a c e S = { E 1 , E 2 , E 3 , E 4 } G i v e n t h a t p r o b a b i l i t y o f J o h n ' s p r o m o t i o n i s s a m e a s t h a t o f G u r p r e e t P ( E 1 ) = P ( E 4 ) R i t a ' s c h a n c e s o f p r o m o t i o n a r e t w i c e a s l i k e l y a s J o h n P ( E 2 ) = 2 P ( E 1 ) A n d A s l a m ' s c h a n c e s o f p r o m o t i o n a r e 4 t i m e s t h a t o f J o h n P ( E 3 ) = 4 P ( E 1 ) Since,thesumofallprobabilities=1 P ( E 1 ) + P ( E 2 ) + P ( E 3 ) + P ( E 4 ) = 1 P ( E 1 ) + 2 P ( E 1 ) + 4 P ( E 1 ) + P ( E 1 ) = 1 8 P ( E 1 ) = 1 P ( E 1 ) = 1 8 ( a ) P ( J o h n p r o m o t e d ) = P ( E 1 ) = 1 8 P ( R i t a p r o m o t e d ) = P ( E 2 ) = 2 P ( E 1 ) = 2 × 1 8 = 2 8 P ( A s l a m p r o m o t e d ) = P ( E 3 ) = 4 P ( E 1 ) = 4 × 1 8 = 4 8 = 1 2 P ( G u r p r e e t p r o m o t e d ) = P ( E 4 ) = P ( E 1 ) = 1 8 ( b ) P ( J o h n p r o m o t e d o r G u r p r e e t p r o m o t e d ) = P ( E 1 E 4 ) &th

Q:  

The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P (A ∩ B) = .07). Determine

(a) P (A)

(b) P (B ∩ C )

(c) P (A ∪ B)

(d) P (A ∩ B )

(e) P (B ∩ C)

(f) Probability of exactly one of the three occurs.

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

F r o m t h e g i v e n V e n n d i a g r a m ( a ) P ( A ) = 0 . 1 3 + 0 . 0 7 = 0 . 2 0 ( b ) P ( B C ¯ ) = P ( B ) P ( B C ) = 0 . 0 7 + 0 . 1 0 + 0 . 1 5 0 . 1 5 = 0 . 0 7 + 0 . 1 0 = 0 . 1 7 ( c ) P ( A B ) = P ( A ) + P ( B ) P ( A B ) = 0 . 1 3 + 0 . 0 7 + 0 . 0 7 + 0 . 1 0 + 0 . 1 5 0 . 0 7 = 0 . 1 3 + 0 . 0 7 + 0 . 1 0 + 0 . 1 5 = 0 . 4 5 ( d ) P ( A B ¯ ) = P ( A ) P ( A B ) = 0 . 1 3 + 0 . 0 7 0 . 0 7 = 0 . 1 3 ( e ) P ( B C ) = 0 . 1 5 ( f ) P ( e x a c t l y o n e o f t h e t h r e e o c c u r s ) = 0 . 1 3 + 0 . 1 0 + 0 . 2 8 = 0 . 5 1

Maths NCERT Exemplar Solutions Class 11th Chapter Sixteen Logo

Probability Long Answer Type Questions

1. One urn contains two black balls (labeled B 1 and B 1 ) and one white ball. A second urn contains one black ball and two white balls (labeled W 1 and W 2 ). Suppose the following experiment is performed: one of the two urns is chosen at random. Next, a ball is randomly chosen from the urn. Then a second ball is chosen at random from the same urn without replacing the first ball.

(a) Write the sample space showing all possible outcomes.

(b) What is the probability that two black balls are chosen?

(c) What is the probability that two balls of opposite color are chosen?

Sol. G i v e n t h a t o n e o f t h e u r n s i s c h o o s e n , t h e n a b a l l i s r a n d o m l y c h o o s e n f r o m t h e u r n , t h e n a second b a l l i s c h o o s e n a t r a n d o m f r o m t h e s a m e u r n w i t h o u t r e p l a c i n g t h e f i r s t b a l l ( a ) S a m p l e s p a c e S = { B 1 B 2 , B 1 W , B 2 B 1 , B 2 W , W B 1 , W B 2 , B W 1 , B W 2 , W 1 B , W 1 W 2 , W 2 B , W 2 W 1 } T o t a l n u m b e r o f S a m p l e s p a c e , S = 1 2 ( b ) I f t w o b l a c k b a l l s a r e c h o o s e n t h e n t h e f a v o u r a b l e e v e n t s a r e B 1 B 2 , B 2 B 1 i . e . 2 R e q u i r e d p r o b a b i l i t y = 2 1 2 = 1 6 ( c ) I f t w o b a l l s o f o p p o s i t e c o l o u r s a r e c h o o s e n t h e n , t h e r e q u i r e d p r o b a b i l i t y = 8 1 2 = 2 3

2. A bag contains 8 red and 5 white balls. Three balls are drawn at random. Find the probability that:

(a) All the three balls are white.

(b) All the three balls are red.

(c) One ball is red and two balls are white.

Sol. G i v e n t h a t : N u m b e r o f r e d b a l l s = 8 N u m b e r o f w h i t e b a l l s = 5 ( a ) P ( a l l t h e t h r e e b a l l s a r e w h i t e ) = C 3 5 C 3 1 3 = 5 ! 3 ! 2 ! 1 3 ! 3 ! 1 0 ! = 5 ! 3 ! 2 ! × 3 ! 1 0 ! 1 3 ! = 5 ! 2 ! × 1 0 ! 1 3 × 1 2 × 1 1 × 1 0 ! = 5 × 4 × 3 × 2 ! 2 ! × 1 1 3 × 1 2 × 1 1 = 5 × 4 × 3 1 3 × 1 2 × 1 1 = 5 1 4 3 ( b ) P ( a l l t h e t h r e e b a l l s a r e r e d ) = C 3 8 C 3 1 3 = 8 ! 3 ! 5 ! 1 3 ! 3 ! 1 0 ! = 8 ! 3 ! 5 ! × 3 ! 1 0 ! 1 3 ! = 8 × 7 × 6 × 5 ! 5 ! × 1 0 ! 1 3 × 1 2 × 1 1 × 1 0 ! = 8 × 7 × 6 1 3 × 1 2 × 1 1 = 2 8 1 4 3 ( c ) P ( o n e b a l l i s r e d a n d t w o b a l l s a r e w h i t e ) = C 1 8 × C 2 5 C 3 1 3 = 8 ! 7 ! 1 ! × 5 ! 2 ! 3 ! 1 3 ! 3 ! 1 0 ! = 8 × 7 ! 7 ! × 5 × 4 × 3 × 2 ! 2 ! × 3 ! × 3 ! × 1 0 ! 1 3 × 1 2 × 1 1 × 1 0 ! = 8 × 5 1 3 × 1 1 = 4 0 1 4 3
Q&A Icon
Commonly asked questions
Q:  

One urn contains two black balls (labeled B 1 and B 1 ) and one white ball. A second urn contains one black ball and two white balls (labeled W 1 and W 2 ). Suppose the following experiment is performed: one of the two urns is chosen at random. Next, a ball is randomly chosen from the urn. Then a second ball is chosen at random from the same urn without replacing the first ball.

(a) Write the sample space showing all possible outcomes.

(b) What is the probability that two black balls are chosen?

(c) What is the probability that two balls of opposite color are chosen?

Read more
A: 

This is a long answer type question as classified in NCERT Exemplar

G i v e n t h a t o n e o f t h e u r n s i s c h o o s e n , t h e n a b a l l i s r a n d o m l y c h o o s e n f r o m t h e u r n , t h e n asecondballischoosenatrandomfromthesameurnwithoutreplacingthefirstball ( a ) S a m p l e s p a c e S = { B 1 B 2 , B 1 W , B 2 B 1 , B 2 W , W B 1 , W B 2 , B W 1 , B W 2 , W 1 B , W 1 W 2 , W 2 B , W 2 W 1 } T o t a l n u m b e r o f S a m p l e s p a c e , S = 1 2 ( b ) I f t w o b l a c k b a l l s a r e c h o o s e n t h e n t h e f a v o u r a b l e e v e n t s a r e B 1 B 2 , B 2 B 1 i . e . 2 R e q u i r e d p r o b a b i l i t y = 2 1 2 = 1 6 ( c ) I f t w o b a l l s o f o p p o s i t e c o l o u r s a r e c h o o s e n t h e n , t h e r e q u i r e d p r o b a b i l i t y = 8 1 2 = 2 3

Q:  

A bag contains 8 red and 5 white balls. Three balls are drawn at random. Find the probability that:

(a) All the three balls are white.

(b) All the three balls are red.

(c) One ball is red and two balls are white.

Read more
A: 

This is a long answer type question as classified in NCERT Exemplar

G i v e n t h a t : N u m b e r o f r e d b a l l s = 8 N u m b e r o f w h i t e b a l l s = 5 ( a ) P ( a l l t h e t h r e e b a l l s a r e w h i t e ) = C 3 5 C 3 1 3 = 5 ! 3 ! 2 ! 1 3 ! 3 ! 1 0 ! = 5 ! 3 ! 2 ! × 3 ! 1 0 ! 1 3 ! = 5 ! 2 ! × 1 0 ! 1 3 × 1 2 × 1 1 × 1 0 ! = 5 × 4 × 3 × 2 ! 2 ! × 1 1 3 × 1 2 × 1 1 = 5 × 4 × 3 1 3 × 1 2 × 1 1 = 5 1 4 3 ( b ) P ( a l l t h e t h r e e b a l l s a r e r e d ) = C 3 8 C 3 1 3 = 8 ! 3 ! 5 ! 1 3 ! 3 ! 1 0 ! = 8 ! 3 ! 5 ! × 3 ! 1 0 ! 1 3 ! = 8 × 7 × 6 × 5 ! 5 ! × 1 0 ! 1 3 × 1 2 × 1 1 × 1 0 ! = 8 × 7 × 6 1 3 × 1 2 × 1 1 = 2 8 1 4 3 ( c ) P ( o n e b a l l i s r e d a n d t w o b a l l s a r e w h i t e ) = C 1 8 × C 2 5 C 3 1 3 = 8 ! 7 ! 1 ! × 5 ! 2 ! 3 ! 1 3 ! 3 ! 1 0 ! = 8 × 7 ! 7 ! × 5 × 4 × 3 × 2 ! 2 ! × 3 ! × 3 ! × 1 0 ! 1 3 × 1 2 × 1 1 × 1 0 ! = 8 × 5 1 3 × 1 1 = 4 0 1 4 3

Q:  

If the letters of the word ASSASSINATION are arranged at random, find the probability that:

(a) Four S’s come consecutively in the word.

(b) Two I’s and two N’s come together.

(c) All A’s are not coming together.

(d) No two A’s are coming together.

Read more
A: 

This is a long answer type question as classified in NCERT Exemplar

T o t a l n u m b e r o f w o r d i s A S S A S S I N A T I O N a r e 1 3 . W h e r e , w e h a v e 3 A ' s , 4 S ' s , 2 I ' s , 2 N ' s , 1 T ' s a n d 1 O ' s . (a)If4S'scomeconsecutivelyintheword,thenarrangementmaybeasfollows: S S S S 1 G r o u p A A A I I N N T O ? 9 o t h e r s N u m b e r o f w o r d s w h e n a l l S ' s a r e t o g e t h e r = 1 0 ! 3 ! 2 ! 2 !

a n d t h e t o t a l n u m b e r o f w o r d f o r m e d f r o m t h e w o r d s A S S A S S I N A T I O N = 1 3 ! 3 ! 4 ! 2 ! 2 ! R e q u i r e d p r o b a b i l i t y = 1 0 ! 3 ! 2 ! 2 ! 1 3 ! 3 ! 4 ! 2 ! 2 ! = 1 0 ! 3 ! 2 ! 2 ! × 3 ! 4 ! 2 ! 2 ! 1 3 ! = 1 0 ! 4 ! 1 3 ! = 1 0 ! × 4 × 3 × 2 1 3 × 1 2 × 1 1 × 1 0 ! = 2 1 4 3 ( b ) I f 2 I ' s a n d 2 N ' s c o m e t o g e t h e r t h e n t h e r e a r e 1 0 a l p h a b e t s N u m b e r o f w o r d s w h e n 2 I ' s a n d 2 N ' s c o m e t o g e t h e r = 1 0 ! 3 ! 4 ! × 4 ! 2 ! 2 ! R e q u i r e d p r o b a b i l i t y = 1 0 ! 3 ! 4 ! × 4 ! 2 ! 2 ! 1 3 ! 3 ! 4 ! 2 ! 2 ! = 1 0 ! 3 ! 4 ! × 4 ! 2 ! 2 ! × 3 ! 4 ! 2 ! 2 ! 1 3 ! = 4 ! 1 0 ! 1 3 ! = 4 × 3 × 2 × 1 0 ! 1 3 × 1 2 × 1 1 × 1 0 ! = 2 1 4 3 (c)IfallA'sarecomingtogether,thenthereare11alphabets N u m b e r o f w o r d s w h e n a l l A ' s c o m e t o g e t h e r = 1 1 ! 4 ! 2 ! 2 ! P r o b a b i l i t y w h e n a l l A ' s c o m e t o g e t h e r = 1 1 ! 4 ! 2 ! 2 ! 1 3 ! 4 ! 3 ! 2 ! 2 ! = 1 1 ! 4 ! 2 ! 2 ! × 4 ! 3 ! 2 ! 2 ! 1 3 ! = 1 1 ! 3 ! 1 3 ! = 6 1 3 × 1 2 = 1 2 6 R e q u i r e d p r o b a b i l i t y w h e n a l l A ' s d o n o t c o m e t o g e t h e r = 1 1 2 6 = 2 5 2 6 ( d ) I f n o t w o A ' s a r e t o g e t h e r , t h e n a r r a n g i n g t h e a l p h a b e t s e x c e p t A ' s S S S S I N T I O N N u m b e r o f w a y s o f a r r a n g i n g a l l a l p h a b e t s e x c e p t A ' s = 1 0 ! 4 ! 2 ! 2 ! T h e r e a r e 1 1 v a c a n t p l a c e s b e t w e e n t h e s e a l p h a b e t s . 3 A ' s c a n b e p l a c e d i n 1 1 p l a c e s i n C 3 1 1 w a y s = 1 1 ! 3 ! 8 ! T o t a l n u m b e r o f w o r d s w h e n n o t w o A ' s c o m e t o g e t h e r = 1 1 ! 3 ! 8 ! × 1 0 ! 4 ! 2 ! 2 ! R e q u i r e d p r o b a b i l i t y = 1 1 ! 3 ! 8 ! × 1 0 ! 4 ! 2 ! 2 ! × 4 ! 3 ! 2 ! 2 ! 1 3 ! = 1 0 ! 8 ! × 1 3 × 1 2 = 1 0 × 9 × 8 ! 8 ! × 1 3 × 1 2 = 1 0 × 9 1 3 × 1 2 = 1 5 2 6

Q:  

A card is drawn from a deck of 52 cards. Find the probability of getting a king or a heart or a red card.

Read more
A: 

This is a long answer type question as classified in NCERT Exemplar

T o t a l n u m b e r o f c a r d s = 5 2 F a v o u r a b l e e v e n t s = 4 k i n g s + 1 3 h e a r t s + 2 6 r e d 1 3 2 = 2 8 R e q u i r e d p r o b a b i l i t y = 2 8 5 2 = 7 1 3 .

Q:  

A sample space consists of 9 elementary outcomes   e 1 , e 2 , , e 9 whose probabilities are:

  P ( e 1 ) = P ( e 2 ) = 0 . 0 8 , P ( e 3 ) = P ( e 4 ) = P ( e 5 ) = 0 . 1 , P ( e 6 ) = P ( e 7 ) = 0 . 2 , P ( e 8 ) = P ( e 9 ) = 0 . 0 7 .

Suppose  A = { e 1 , e 5 , e 8 } , B = { e 2 , e 5 , e 8 , e 9 } .

(a) Calculate P ( A ) , P ( B ) , and P ( A B ) .

(b) Using the addition law of probability, calculate P ( A B ) .

(c) List the composition of the event A B , and calculate   P ( A B ) by adding the probabilities of the elementary outcomes.

(d) Calculate   P ( B ) from P ( B ) , also calculate   P ( B ) directly from the elementary outcomes of B .

Read more
A: 

This is a long answer type question as classified in NCERT Exemplar

G i v e n t h a t : S = { e 1 , e 2 , e 3 , e 4 , e 5 , e 6 , e 7 , e 8 , e 9 } A = { e 1 , e 5 , e 5 } a n d B = { e 2 , e 5 , e 5 , e 9 } P ( e 1 ) = P ( e 2 ) = 0 . 0 8 P ( e 3 ) = P ( e 4 ) = P ( e 5 ) = 0 . 1 P ( e 6 ) = P ( e 7 ) = 0 . 2 P ( e 8 ) = P ( e 9 ) = 0 . 0 7 ( a ) P ( A ) = P ( e 1 ) + P ( e 5 ) + P ( e 8 ) = 0 . 0 8 + 0 . 1 + 0 . 0 7 = 0 . 2 5 ( b ) P ( A B ) = P ( A ) + P ( B ) P ( A B ) ( i ) B u t P ( B ) = P ( e 2 ) + P ( e 5 ) + P ( e 8 ) + P ( e 9 ) = 0 . 0 8 + 0 . 1 + 0 . 0 7 + 0 . 0 7 = 0 . 3 2 a n d P ( A B ) = { e 5 , e 8 } = P ( e 5 ) + P ( e 8 ) = 0 . 1 + 0 . 0 7 = 0 . 1 7 P u t t i n g t h e v a l u e s i n e q n . ( i ) w e g e t P ( A B ) = 0 . 2 5 + 0 . 3 2 0 . 1 7 = 0 . 4 0 ( c ) P ( A B ) = { e 1 , e 2 , e 5 , e 8 , e 9 } P ( A B ) = P ( e 1 ) + P ( e 2 ) + P ( e 5 ) + P ( e 8 ) + P ( e 9 ) = 0 . 0 8 + 0 . 0 8 + 0 . 1 + 0 . 0 7 + 0 . 0 7 = 0 . 4 0 ( d ) &t

Q:  

Determine the probability p, for each of the following events.

(a) An odd number appears in a single toss of a fair die.

(b) At least one head appears in two tosses of a fair coin.

(c) A king, 9 of hearts, or 3 of spades appears in drawing a single card from a well shuffled ordinary deck of 52 cards.

(d) The sum of 6 appears in a single toss of a pair of fair dice.

Read more
A: 

This is a long answer type question as classified in NCERT Exemplar

(a)Possibleoutcomeofasinglethrowofdie S = { 1 , 2 , 3 , 4 , 5 , 6 } o u t o f w h i c h 1 , 3 , 5 a r e o d d R e q u i r e d p r o b a b i l i t y = 3 6 = 1 2 ( b ) W h e n a f a i r c o i n i s t o s s e d t w i c e , t h e n t h e s a m p l e s p a c e S = { H H , H T , T H , T T } P r o b a b i l i t y o f g e t t i n g a t l e a s t o n e h e a d ( H H , H T , T H ) = 3 4 ( c ) F a v o u r a b l e e v e n t s a r e 4 k i n g s + 2 o f h e a r t s + 3 o f s p a d e s = 4 + 1 + 1 = 6 = 6 5 2 = 3 2 6 ( d ) W h e n a p a i r o f d i c e i s r o l l e d , t h e n t o t a l n u m b e r o f s a m p l e s p a c e = 3 6 o u t o f w h i c h ( 1 , 5 ) , ( 5 , 1 ) , ( 2 , 4 ) , ( 4 , 2 ) a n d ( 3 , 3 ) a r e t h e f a v o u r a b l e e v e n t s R e q u i r e d p r o b a b i l i t y = 5 3 6 .

Maths NCERT Exemplar Solutions Class 11th Chapter Sixteen Logo

Probability Objective Type Questions

1. In a non-leap year, the probability of having 53 Tuesdays or 53 Wednesdays is:

(a) 1 7

(b) 2 7

(c) 3 7

(d) None of these

Sol. T h e r e a r e 3 6 5 d a y s i n a l e a p y e a r a n d t h e r e a r e 7 d a y s i n a w e e k . 3 6 5 ÷ 7 = 5 2 w e e k s + 1 d a y S o , t h i s d a y m a y b e T u e s d a y o r W e d n e s d a y . S o , t h e r e q u i r e d p r o b a b i l i t y = 1 7 . H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

2. Three numbers are chosen from 1 to 20. Find the probability that they are not consecutive:

(a) 1 8 6 1 9 0  

(b) 1 8 7 1 9 0  

(c) 1 8 8 1 9 0  

(d) 18/20C3

Sol. S e t o f t h r e e c o n s e c u t i v e n u m b e r s f r o m 1 t o 2 0 a r e 1 , 2 , 3 ; 2 , 3 , 4 ; 3 , 4 , 5 ; ; 1 8 , 1 9 , 2 0 . S o , t h e p r o b a b i l i t y t h a t t h e n u m b e r s a r e consecutive = 1 8 C 3 2 0 = 1 8 2 0 ! 3 ! 7 ! = 1 8 . 3 ! 7 ! 2 0 ! = 1 8 × 3 × 2 × 1 7 ! 2 0 × 1 9 × 1 8 × 1 7 ! = 3 × 2 2 0 × 1 9 = 3 1 9 0 P ( t h r e e n u m b e r s a r e n o t consecutive ) = 1 3 1 9 0 = 1 8 7 1 9 0 H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .
Q&A Icon
Commonly asked questions
Q:  

A single letter is selected at random from the word “PROBABILITY.” The probability that it is a vowel is:

(a) 1 3

(b)  14

(c) 2 1 1  

(d) None of these.

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Totalnumberofalphabetsinprobability=11Numberofvowels=4 Requiredprobability=411Hence, thecorrectoptionis (b).

Q:  

In a non-leap year, the probability of having 53 Tuesdays or 53 Wednesdays is:

(a) 1 7

(b) 2 7

(c) 3 7

(d) None of these

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

T h e r e a r e 3 6 5 d a y s i n a l e a p y e a r a n d t h e r e a r e 7 d a y s i n a w e e k . 3 6 5 ÷ 7 = 5 2 w e e k s + 1 d a y S o , t h i s d a y m a y b e T u e s d a y o r W e d n e s d a y . S o , t h e r e q u i r e d p r o b a b i l i t y = 1 7 . H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q:  

Three numbers are chosen from 1 to 20. Find the probability that they are not consecutive:

(a) 1 8 6 1 9 0  

(b) 1 8 7 1 9 0  

(c) 1 8 8 1 9 0  

(d) 18/20C3

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

S e t o f t h r e e c o n s e c u t i v e n u m b e r s f r o m 1 t o 2 0 a r e 1 , 2 , 3 ; 2 , 3 , 4 ; 3 , 4 , 5 ; ; 1 8 , 1 9 , 2 0 . So,theprobabilitythatthenumbersareconsecutive = 1 8 C 3 2 0 = 1 8 2 0 ! 3 ! 7 ! = 1 8 . 3 ! 7 ! 2 0 ! = 1 8 × 3 × 2 × 1 7 ! 2 0 × 1 9 × 1 8 × 1 7 ! = 3 × 2 2 0 × 1 9 = 3 1 9 0 P ( threenumbersarenotconsecutive ) = 1 3 1 9 0 = 1 8 7 1 9 0 H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

While shuffling a pack of 52 playing cards, 2 are accidentally dropped. Find the probability that the missing cards are of different colors

(a) 2 9 5 2    

(b) 1 2  

(c) 2 6 5 1  

(d) 2 7 5 1  

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

W e k n o w t h a t o u t o f 5 2 p l a y i n g c a r d s 2 6 a r e o f r e d a n d 2 6 a r e o f b l a c k c o l o u r . P ( b o t h c a r d s o f d i f f e r e n t c o l o u r ) = 2 6 5 2 × 2 6 5 1 + 2 6 5 2 × 2 6 5 1 = 2 × 2 6 5 2 × 2 6 5 1 = 2 6 5 1 H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Q:  

Seven persons are to be seated in a row. The probability that two particular persons sit next to each other is:

(a) 1 3  

(b) 1 6  

(c)   2 7  

(d) 1 2  

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Thetwoparticularpersonstobeseatednexteachotherthen,theyformonegroup.Nowthepermutationof6persons=6!×2!andTotalnumberofpermutationof7persons=7! Requiredprobability=6!×2!7!=6!×27×6!=27Hence,thecorrectoptionis(c).

Q:  

If P(A B) = P(A ∩ B) for any two events A and B, then:

(a) P(A) = P(B)

(b) P(A) > P(B)

(c) P(A) < P(B)

(d) None of these.

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

G i v e n t h a t : P ( A B ) = P ( A B ) P ( A ) + P ( B ) P ( A B ) = P ( A B ) [ P ( A ) P ( A B ) ] + [ P ( B ) P ( A B ) ] = 0 B u t P ( A ) P ( A B ) 0 [ ? P ( A B ) P ( A ) o r P ( B ) ] ( i ) a n d P ( B ) P ( A B ) 0 ( i i ) F r o m e q n . ( i ) a n d ( i i ) w e g e t P ( A ) = P ( B ) H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q:  

Six boys and six girls sit in a row at random. The probability that all the girls sit together is:

(a) 1 4 3 2

(b) 1 2 4 3 1

(c) 1 1 3 2

(d) None of these.

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Ifallthegirlssittogether,thenweconsideritas1groupTotalnumberofarrangementof6+1=7personsinarow=7!andthegirlsalsotheirplaceswith6!ways.Required probability=6!7!12!=6×5×4×3×2×7!12×11×10×9×8×7!=1132Hence,thecorrectoptionis(c).

.

Q:  

If the probabilities for A to fail in an examination are 0.2 and for B are 0.3, then the probability that either A or B fails is:

(a) > 0.5

(b) 0.5

(c) ≤ 0.5

(d) 0

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Giventhat:P(Afails)=0.2P(Bfails)=0.3P(eitherAorBfails)P(Afails)+P(Bfails)0.2+0.30.5Hence,thecorrectoptionis(c).

Q:  

The probability that at least one of the events A and B occurs is 0.6. If A and B occur simultaneously with a probability of 0.2, then P(A) + P(B) is:

(a) 0.4

(b) 0.8

(c) 1.2

(d) 1.6

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

Giventhat:P(AB)=0.6P(AB)=0.2P(AB)=P(A)+P(B)P(AB)0.6=P(A)+P(B)0.2P(A)+P(B)=0.6+0.2=0.8and1P(A¯)+1P(B¯)=0.8P(A¯)+P(B¯)=20.8=1.2Hence,thecorrectoptionis(c).

Q:  

If M and N are any two events, the probability that at least one of them occurs is:

(a) P(M) + P(N) – 2P(M ∩ N)

(b) P(M) + P(N) – P(M ∩ N)

(c) P(M) + P(N) + P(M ∩ N)

(d) P(M) + P(N) + 2P(M ∩ N)

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

IfMandNareanytwoevents, thenP (MN)=P (M)+P (N)P (MN)Hence, thecorrectoptionis (b).

Q:  

Without repetition of the numbers, four-digit numbers are formed with the numbers 0, 2, 3, 5. The probability of such a number divisible by 5 is:

(a) 1 5  

(b) 4 5

(c) 1 3 0  

(d) 5 9

Read more
A: 

This is an Objective Type Questions as classified in NCERT ExemplarFourdigitnumberthedigits0,2,3,5withoutrepetitionanddivisibleby5withthegivenconditionisIfunitplacebefilledwith0Thenthenumberofways=3×2×1×1=6Ifunitplacebefilledwith5Thenthenumberofways=2×2×1×1=4Totalnumberofways=6+4=10Totalnumberofwaysofarrangingthedigits0,2,3,5toform4digitnumberswithoutrepetitionis3×3×2×1=18 Requiredprobability=1018=59Hence,thecorrectoptionis(d).

 



Q:  

If A and B are mutually exclusive events, then: (A) P

(a) ≤ P(B)

(b) P(A) ≥ P(B)

(c) P(A) < P(B)

(d) None of these.

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

F o r m u t u a l l y e x c l u s i v e e v e n t s , P ( A B ) = 0 P ( A B ) = P ( A ) + P ( B ) [ ? P ( A B ) = 0 ] P ( A ) + P ( B ) 1 P ( A ) + 1 P ( B ¯ ) 1 [ ? P ( B ) = 1 P ( B ¯ ) ] P ( A ) P ( B ¯ ) 0 P ( A ) P ( B ¯ ) H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Maths NCERT Exemplar Solutions Class 11th Chapter Sixteen Logo

Probability True or False Type Questions

1. The probability that a person visiting a zoo will see the giraffe is 0.72, the probability that he will see the bears is 0.84, and the probability that he will see both is 0.52.

Sol. G i v e n t h a t : P ( t o s e e g i r a f f e e ) = 0 . 7 2 P ( t o s e e b e a r ) = 0 . 8 4 P ( t o s e e b o t h g i r a f f e e a n d b e a r ) = 0 . 5 2 P ( t o s e e g i r a f f e e o r b e a r ) = P ( t o s e e g i r a f f e e ) + P ( t o s e e b e a r ) P ( t o s e e b o t h ) = 0 . 7 2 + 0 . 8 4 0 . 5 2 = 1 . 0 4 w h i c h i s n o t p o s s i b l e . H e n c e , t h e g i v e n s t a t e m e n t i s ' F a l s e ' .

2. The probability that a student will pass his examination is 0.73, the probability of the student getting a compartment is 0.13, and the probability that the student will either pass or get a compartment is 0.96.

Sol. L e t E b e t h e e v e n t t h a t t h e s t u d e n t w i l l p a s s a n d F b e t h e e v e n t t h a t h e w i l l g e t c o m p a r t m e n t P ( E ) = 0 . 7 3 , P ( F ) = 0 . 1 3 a n d P ( E F ) = 0 . 9 6 P ( E F ) = P ( E ) + P ( F ) P ( E F ) = 0 . 7 3 + 0 . 1 3 0 [ P ( E F ) = 0 ] = 0 . 8 6 B u t P ( E F ) = 0 . 9 6 H e n c e , t h e g i v e n s t a t e m e n t i s ' F a l s e ' .
Q&A Icon
Commonly asked questions
Q:  

The probability that a person visiting a zoo will see the giraffe is 0.72, the probability that he will see the bears is 0.84, and the probability that he will see both is 0.52.

Read more
A: 

This is a True or False Type Questions as classified in NCERT Exemplar

G i v e n t h a t : P ( t o s e e g i r a f f e e ) = 0 . 7 2 P ( t o s e e b e a r ) = 0 . 8 4 P ( t o s e e b o t h g i r a f f e e a n d b e a r ) = 0 . 5 2 P ( t o s e e g i r a f f e e o r b e a r ) = P ( t o s e e g i r a f f e e ) + P ( t o s e e b e a r ) P ( t o s e e b o t h ) = 0 . 7 2 + 0 . 8 4 0 . 5 2 = 1 . 0 4 w h i c h i s n o t p o s s i b l e . H e n c e , t h e g i v e n s t a t e m e n t i s ' F a l s e ' .

Q:  

The probability that a student will pass his examination is 0.73, the probability of the student getting a compartment is 0.13, and the probability that the student will either pass or get a compartment is 0.96.

Read more
A: 

This is a True or False Type Questions as classified in NCERT Exemplar

L e t E b e t h e e v e n t t h a t t h e s t u d e n t w i l l p a s s a n d F b e t h e e v e n t t h a t h e w i l l g e t c o m p a r t m e n t P ( E ) = 0 . 7 3 , P ( F ) = 0 . 1 3 a n d P ( E F ) = 0 . 9 6 P ( E F ) = P ( E ) + P ( F ) P ( E F ) = 0 . 7 3 + 0 . 1 3 0 [ ? P ( E F ) = 0 ] = 0 . 8 6 B u t P ( E F ) = 0 . 9 6 H e n c e , t h e g i v e n s t a t e m e n t i s ' F a l s e ' .

Q:  

The probabilities that a typist will make 0, 1, 2, 3, 4, or 5 or more mistakes in typing a report are, respectively, 0.12, 0.25, 0.36, 0.14, 0.08, 0.11.

Read more
A: 

This is a True or False Type Questions as classified in NCERT Exemplar

S u m o f a l l p r o b a b i l i t i e s = 1 P ( 0 ) + P ( 1 ) + P ( 2 ) + P ( 3 ) + P ( 4 ) + P ( 5 ) = 0 . 1 2 + 0 . 2 5 + 0 . 3 6 + 0 . 1 4 + 0 . 0 8 + 0 . 1 1 = 1 . 0 6 > 1 H e n c e , t h e g i v e n s t a t e m e n t i s ' F a l s e ' .

Q:  

If A and B are two candidates seeking admission in an engineering college, the probability that A is selected is 0.5, and the probability that both A and B are selected is at most 0.3. Is it possible that the probability of B getting selected is 0.7?

Read more
A: 

This is a True or False Type Questions as classified in NCERT Exemplar

G i v e n t h a t P ( A ) = 0 . 5 a n d P ( A B ) 0 . 3 N o w P ( A ) × P ( B ) 0 . 3 0 . 5 × P ( B ) 0 . 3 P ( B ) 0 . 3 0 . 5 P ( B ) 0 . 6 H e n c e , t h e g i v e n s t a t e m e n t i s ' F a l s e '

Q:  

The probability of the occurrence of event A is 0.7 and that of the occurrence of event B is 0.3, but the probability of the occurrence of both is 0.4.

Read more
A: 

This is a True or False Type Questions as classified in NCERT Exemplar

H e r e , P ( A ) = 0 . 7 , P ( B ) = 0 . 3 P ( A B ) = P ( A ) × P ( B ) = 0 . 7 × 0 . 3 = 0 . 2 1 B u t t h e g i v e n p r o b a b i l i t y i s 0 . 4 H e n c e , t h e g i v e n s t a t e m e n t i s ' F a l s e '

Q:  

The probability of the intersection of two events A and B is always less than or equal to the probability of A.

Read more
A: 

This is a True or False Type Questions as classified in NCERT Exemplar

H e r e , P ( A B ) P ( A ) W h i c h i s a l w a y s t r u e . H e n c e , t h e g i v e n s t a t e m e n t i s ' T r u e '

Q:  

The sum of probabilities of two students getting distinction in their final examinations is 1.2.

A: 

This is a True or False Type Questions as classified in NCERT Exemplar

Since,thetwogiveneventsarenotrelatedtothesameSamplespace.Thesumofprobabilitiesoftwostudentsgettingdistinctionintheirfinalmaybe1.2Hence,thegivenstatementis'True'

Maths NCERT Exemplar Solutions Class 11th Chapter Sixteen Logo

Probability Fill in the blank Type Questions

1. The probability that the home team will win an upcoming football game is 0.77, the probability that it will tie the game is 0.08, and the probability that it will lose the game is ___.
Sol. P ( loosing t h e g a m e ) = 1 ( 0 . 7 7 + 0 . 0 8 ) = 1 0 . 8 5 = 0 . 1 5 H e n c e , t h e v a l u e o f t h e f i l l e r i s 0 . 1 5

2. If e₁, e₂, e₃, e₄ are the four elementary outcomes in a sample space and P(e₁) = 0.1, P(e₂) = 0.5, P(e₃) = 0.1, then the probability of e₄ is __.

Sol. W e k n o w t h a t t h e s u m o f a l l p r o b a b i l i t i e s = 1 P ( e 1 ) + P ( e 2 ) + P ( e 3 ) + P ( e 4 ) = 1 0 . 1 + 0 . 5 + 0 . 1 + P ( e 4 ) = 1 0 . 7 + P ( e 4 ) = 1 P ( e 4 ) = 1 0 . 7 = 0 . 3 H e n c e , t h e v a l u e o f t h e f i l l e r i s 0 . 3
Q&A Icon
Commonly asked questions
Q:  

The probability that a person visiting a zoo will see the giraffe is 0.72, the probability that he will see the bears is 0.84, and the probability that he will see both is 0.52.

Read more
A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

G i v e n t h a t : P ( t o s e e g i r a f f e e ) = 0 . 7 2 P ( t o s e e b e a r ) = 0 . 8 4 P ( t o s e e b o t h g i r a f f e e a n d b e a r ) = 0 . 5 2 P ( t o s e e g i r a f f e e o r b e a r ) = P ( t o s e e g i r a f f e e ) + P ( t o s e e b e a r ) P ( t o s e e b o t h ) = 0 . 7 2 + 0 . 8 4 0 . 5 2 = 1 . 0 4 w h i c h i s n o t p o s s i b l e . H e n c e , t h e g i v e n s t a t e m e n t i s ' F a l s e ' .

Q:  

The probability that a student will pass his examination is 0.73, the probability of the student getting a compartment is 0.13, and the probability that the student will either pass or get a compartment is 0.96.

Read more
A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

L e t E b e t h e e v e n t t h a t t h e s t u d e n t w i l l p a s s a n d F b e t h e e v e n t t h a t h e w i l l g e t c o m p a r t m e n t P ( E ) = 0 . 7 3 , P ( F ) = 0 . 1 3 a n d P ( E F ) = 0 . 9 6 P ( E F ) = P ( E ) + P ( F ) P ( E F ) = 0 . 7 3 + 0 . 1 3 0 [ ? P ( E F ) = 0 ] = 0 . 8 6 B u t P ( E F ) = 0 . 9 6 H e n c e , t h e g i v e n s t a t e m e n t i s ' F a l s e ' .

Q:  

If A and B are two events associated with a random experiment such that P(A) = 0.3, P(B) = 0.2, and P(A ∩ B) = 0.1, then the value of P(A ∩ B') is ___.

Read more
A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

G i v e n t h a t : P ( A ) = 0 . 3 , P ( B ) = 0 . 2 a n d P ( A B ) = 0 . 1 P ( A B ¯ ) = P ( A ) P ( A B ) = 0 . 3 0 . 1 = 0 . 2 H e n c e , t h e v a l u e o f t h e f i l l e r i s 0 . 2

Q:  

The probability of happening of event A is 0.5, and that of B is 0.3. If A and B are mutually exclusive events, then the probability of neither A nor B is ____.

Read more
A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

G i v e n t h a t : P ( A ) = 0 . 5 , P ( B ) = 0 . 3 a n d P ( A B ) = 0 [ ? A a n d B a r e m u t u a l l y e x c l u s i v e e v e n t s ] P ( A ¯ B ¯ ) = P ( A B ¯ ) = 1 P ( A B ) = 1 [ P ( A ) + P ( B ) ] = 1 ( 0 . 5 + 0 . 3 ) = 1 0 . 8 = 0 . 2 H e n c e , t h e v a l u e o f t h e f i l l e r i s 0 . 2

Q:  

Let S = {1, 2, 3, 4, 5, 6} and E = {1, 3, 5}. Then E is ___.

A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

G i v e n t h a t : S = { 1 , 2 , 3 , 4 , 5 , 6 } E = { 1 , 3 , 5 } E ¯ = S E = { 2 , 4 , 6 } H e n c e , t h e v a l u e o f t h e f i l l e r i s { 2 , 4 , 6 } .

Maths NCERT Exemplar Solutions Class 11th Chapter Sixteen Logo

Probability Matching Type Questions

1. Match the proposed probability under Column C1 with the appropriate written description under column C2 :

C1                                                                    C2

Probability                                                       Written Description

(a) 0.95                                                             (i) An incorrect assignment

(b) 0.02                                                             (ii) No chance of happening

(c) – 0.3                                                            (iii) As much chance of happening as not.

(d) 0.5                                                               (iv) Very likely to happen

(e) 0                                                                  (v) Very little chance of happening

Sol. ( a ) 0 . 9 5 = V e r y l i k e l y t o h a p p e n , s o i t i s c l o s e t o 1 . ( b ) 0 . 0 2 = V e r y l i t t l e c h a n c e o f h a p p e n i n g a s t h e p r o b a b i l i t y i s v e r y l o w . ( c ) 0 . 3 = A n i n c o r r e c t a s s i g n m e n t b e c a u s e p r o b a b i l i t y i s n e v e r n e g a t i v e . ( d ) 0 . 5 = A s m u c h c h a n c e o f h a p p e n i n g a s n o t b e c a u s e s u m o f c h a n c e s o f h a p p e n i n g a n d n o t h a p p e n i n g i s o n e . ( e ) 0 = N o c h a n c e o f h a p p e n i n g . H e n c e , ( a ) ( i v ) , ( b ) ( v ) , ( c ) ( i ) , ( d ) ( i i i ) , ( e ) ( i i )

2. Match the following

(a) If E1 and E2 are the two mutually                  (i) E1 ∩ E2 = E1 exclusive events

(b) If E1 and E2 are the mutually                         (ii) (E1 – E2) ∪ (E1 ∩ E2) = E1

      exclusive and exhaustive events

(c) If E1 and E2 have common                            (iii) E1 ∩ E2 = φ, E1 ∪ E2 = S

     outcomes, then

(d) If E1 and E2 are two events                           (iv) E1 ∩ E2 = φ

      such that E1 ⊂ E2

Sol. ( a ) I f E 1 a n d E 2 a r e m u t u a l l y e x c l u s i v e e v e n t s , t h e n E 1 E 2 = ϕ . ( b ) I f E 1 a n d E 2 a r e m u t u a l l y e x c l u s i v e a n d e x h a u s t i v e e v e n t s , t h e n E 1 E 2 = ϕ a n d E 1 E 2 = S . ( c ) I f E 1 a n d E 2 h a v e c o m m o n o u t c o m e s , t h e n ( E 1 E 2 ) ( E 1 E 2 ) = E 1 ( d ) I f E 1 a n d E 2 a r e t w o e v e n t s s u c h t h a t E 1 E 2 E 1 E 2 = E 1 H e n c e , ( a ) ( i v ) , ( b ) ( i i i ) , ( c ) ( i i ) , ( d ) ( i )
Q&A Icon
Commonly asked questions
Q:  

Match the following

(a) If E1 and E2 are the two mutually                  (i) E1 ∩ E2 = E1 exclusive events

(b) If E1 and E2 are the mutually                         (ii) (E1 – E2) ∪ (E1 ∩ E2) = E1

      exclusive and exhaustive events

(c) If E1 and E2 have common                            (iii) E1 ∩ E2 = φ, E1 ∪ E2 = S

     outcomes, then

(d) If E1 and E2 are two events                           (iv) E1 ∩ E2 = φ

      such that E1 ⊂ E2

Read more
A: 

This is a matching answer type question as classified in NCERT Exemplar

( a ) I f E 1 a n d E 2 a r e m u t u a l l y e x c l u s i v e e v e n t s , t h e n E 1 E 2 = ? . ( b ) I f E 1 a n d E 2 a r e m u t u a l l y e x c l u s i v e a n d e x h a u s t i v e e v e n t s , t h e n E 1 E 2 = ? a n d E 1 E 2 = S . ( c ) I f E 1 a n d E 2 h a v e c o m m o n o u t c o m e s , t h e n ( E 1 E 2 ) ( E 1 E 2 ) = E 1 ( d ) I f E 1 a n d E 2 a r e t w o e v e n t s s u c h t h a t E 1 E 2 E 1 E 2 = E 1 H e n c e , ( a ) ( i v ) , ( b ) ( i i i ) , ( c ) ( i i ) , ( d ) ( i )

Q:  

Match the proposed probability under Column C1 with the appropriate written description under column C2 :

C1                                                                    C2

Probability                                                       Written Description

(a) 0.95                                                             (i) An incorrect assignment

(b) 0.02                                                             (ii) No chance of happening

(c) – 0.3                                                            (iii) As much chance of happening as not.

(d) 0.5                                                               (iv) Very likely to happen

(e) 0                                                                  (v) Very little chance of happening

Read more
A: 

This is a matching answer type question as classified in NCERT Exemplar

( a ) 0 . 9 5 = V e r y l i k e l y t o h a p p e n , s o i t i s c l o s e t o 1 . ( b ) 0 . 0 2 = V e r y l i t t l e c h a n c e o f h a p p e n i n g a s t h e p r o b a b i l i t y i s v e r y l o w . ( c ) 0 . 3 = A n i n c o r r e c t a s s i g n m e n t b e c a u s e p r o b a b i l i t y i s n e v e r n e g a t i v e . ( d ) 0 . 5 = A s m u c h c h a n c e o f h a p p e n i n g a s n o t b e c a u s e s u m o f c h a n c e s o f h a p p e n i n g a n d n o t h a p p e n i n g i s o n e . ( e ) 0 = N o c h a n c e o f h a p p e n i n g . H e n c e , ( a ) ( i v ) , ( b ) ( v ) , ( c ) ( i ) , ( d ) ( i i i ) , ( e ) ( i i )

qna

Maths NCERT Exemplar Solutions Class 11th Chapter Sixteen Exam

Student Forum

chatAnything you would want to ask experts?
Write here...