Maths NCERT Exemplar Solutions Class 12th Chapter Ten: Overview, Questions, Preparation

Maths NCERT Exemplar Solutions Class 12th Chapter Ten 2025 ( Maths NCERT Exemplar Solutions Class 12th Chapter Ten )

alok kumar singh
Updated on Jul 24, 2025 12:06 IST

By alok kumar singh, Executive Content Operations

Table of content
  • Vector Algebra Short Answer Type Questions
  • Vector Algebra Long Answer Type Questions
  • Vector Algebra Objective Type Questions
  • Vector Algebra Fill in the blanks
  • Vector Algebra True or False Type Question
  • 28th June 2022 (First Shift)
  • JEE Mains 2022
View More
Maths NCERT Exemplar Solutions Class 12th Chapter Ten Logo

Vector Algebra Short Answer Type Questions

1. Find the unit vector in the direction of the sum of vectors a = î − 2ĵ + k̂ and  b = ĵ + 2k̂.

Sol:

 

2. If â = î + ĵ + 2k̂ and b̂ = î + 2ĵ − 2k̂, find the unit vector in the direction of
(i)
6 b
(ii)
2 a  − b .

Sol: 

 
Q&A Icon
Commonly asked questions
Q:  

Find the unit vector in the direction of the sum of vectors a = î − 2ĵ + k̂ and  b = ĵ + 2k̂.

A: 

This is a Short Answer type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t a = 2 i ^ j ^ + k ^ a n d b = 2 j ^ + k ^ a + b = ( 2 i ^ j ^ + k ^ ) + ( 2 j ^ + k ^ ) = 2 i ^ + j ^ + 2 k ^ U n i t v e c t o r i n t h e d i r e c t i o n o f a + b = a + b | a + b | = 2 i ^ + j ^ + 2 k ^ ( 2 ) 2 + ( 1 ) 2 + ( 2 ) 2 = 2 i ^ + j ^ + 2 k ^ 4 + 1 + 4 = 2 i ^ + j ^ + 2 k ^ 9 = 2 i ^ + j ^ + 2 k ^ 3 = 2 3 i ^ + 1 3 j ^ + 2 3 k ^ H e n c e , t h e r e q u i r e d u n i t v e c t o r i s 2 3 i ^ + 1 3 j ^ + 2 3 k ^ .
Q:  

If â = î + ĵ + 2k̂ and b̂ = î + 2ĵ − 2k̂, find the unit vector in the direction of
(i)
6 b
(ii)
2 a  − b .

Read more
A: 

This is a Short Answer type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t a = i ^ + j ^ + 2 k ^ a n d b = 2 i ^ + j ^ 2 k ^ ( i ) 6 b = 6 ( 2 i ^ + j ^ 2 k ^ ) = 1 2 i ^ + 6 j ^ 1 2 k ^ U n i t v e c t o r i n t h e d i r e c t i o n o f 6 b = 6 b | 6 b | = 1 2 i ^ + 6 j ^ 1 2 k ^ ( 1 2 ) 2 + ( 6 ) 2 + ( 1 2 ) 2 = 1 2 i ^ + 6 j ^ 1 2 k ^ 1 4 4 + 3 6 + 1 4 4 = 1 2 i ^ + 6 j ^ 1 2 k ^ 3 2 4 = 1 2 i ^ + 6 j ^ 1 2 k ^ 1 8 = 6 1 8 ( 2 i ^ + j ^ 2 k ^ ) = 1 3 ( 2 i ^ + j ^ 2 k ^ ) H e n c e , t h e r e q u i r e d u n i t v e c t o r i s 1 3 ( 2 i ^ + j ^ 2 k ^ ) . ( i i ) 2 a b = 2 ( i ^ + j ^ + 2 k ^ ) ( 2 i ^ + j ^ 2 k ^ ) = 2 i ^ + 2 j ^ + 4 k ^ 2 i ^ j ^ + 2 k ^ = j ^ + 6 k ^ U n i t v e c t o r i n t h e d i r e c t i o n o f 2 a b = 2 a b | 2 a b | = j ^ + 6 k ^ ( 1 ) 2 + ( 6 ) 2 = j ^ + 6 k ^ 1 + 3 6 = j ^ + 6 k ^ 3 7 = 1 3 7 ( j ^ + 6 k ^ ) H e n c e , t h e r e q u i r e d u n i t v e c t o r i s 1 3 7 ( j ^ + 6 k ^ ) .

Q:  

Find a unit vector in the direction of PQ , where P and Q have coordinates (5, 0, 8) and (3, 3, 2), respectively.

Read more
A: 

This is a Short Answer type Questions as classified in NCERT Exemplar

Sol:

  G i v e n c o o r d i n a t e s a r e P ( 5 , 0 , 8 ) a n d Q ( 3 , 3 , 2 ) P Q = ( 3 5 ) i ^ + ( 3 0 ) j ^ + ( 2 8 ) k ^ = 2 i ^ + 3 j ^ 6 k ^ U n i t v e c t o r i n t h e d i r e c t i o n o f P Q = P Q | P Q | = 2 i ^ + 3 j ^ 6 k ^ ( 2 ) 2 + ( 3 ) 2 + ( 6 ) 2 = 2 i ^ + 3 j ^ 6 k ^ 4 + 9 + 3 6 = 2 i ^ + 3 j ^ 6 k ^ 4 9 = 2 i ^ + 3 j ^ 6 k ^ 7 = 1 7 ( 2 i ^ + 3 j ^ 6 k ^ ) H e n c e , t h e r e q u i r e d u n i t v e c t o r i s 1 7 ( 2 i ^ + 3 j ^ 6 k ^ ) .

Q:  

If a and b . are the position vectors of A and B, respectively, find the position vector of a point C in BA produced such that BC = 1.5 BA.

Read more
A: 
This is a Short Answer type Questions as classified in NCERT Exempla

G i v e n t h a t B C = 1 . 5 B A B C B A = 1 . 5 = 3 2 c b a b = 3 2 2 c 2 b = 3 a 3 b 2 c = 3 a 3 b + 2 b 2 c = 3 a b c = 3 a b 2 H e n c e , t h e r e q u i r e d v e c t o r i s c = 3 a b 2 .

Q:  

Using vectors, find the value of k such that the points (k, –10, 3), (1, –1, 3), and (3, 5, 3) are collinear.

Read more
A: 

This is a Short Answer type Questions as classified in NCERT Exemplar

Sol:

LetthegivenpointsareA(k,10,3),B(1,1,3)andC(3,5,3) A B = ( 1 k ) i ^ + ( 1 + 1 0 ) j ^ + ( 3 3 ) k ^ = ( 1 k ) i ^ + 9 j ^ + 0 k ^ | A B | = ( 1 k ) 2 + ( 9 ) 2 = ( 1 k ) 2 + 8 1 B C = ( 3 1 ) i ^ + ( 5 + 1 ) j ^ + ( 3 3 ) k ^ = 2 i ^ + 6 j ^ + 0 k ^ | B C | = ( 2 ) 2 + ( 6 ) 2 = 4 + 3 6 = 4 0 = 2 1 0 A C = ( 3 k ) i ^ + ( 5 + 1 0 ) j ^ + ( 3 3 ) k ^ = ( 3 k ) i ^ + 6 j ^ + 0 k ^ | A C | = ( 3 k ) 2 + ( 1 5 ) 2 = ( 3 k ) 2 + 2 2 5 I f A , B , a n d C a r e c o l l i n e a r , t h e n | A B | + | B C | = | A C | ( 1 k ) 2 + 8 1 + 2 1 0 = ( 3 k ) 2 + 2 2 5 S q u a r i n g b o t h s i d e s , w e h a v e [ ( 1 k ) 2 + 8 1 + 4 0 ] 2 = [ ( 3 k ) 2 + 2 2 5 ] 2 ( 1 k ) 2 + 8 1 + 4 0 + 2 4 0 ( 1 k ) 2 + 8 1 = ( 3 k ) 2 + 2 2 5 1 + k 2 2 k + 1 2 1 + 2 4 0 1 + k 2 2 k + 8 1 = 9 + k 2 6 k + 2 2 5 1 2 2 2 k + 2 4 0 k 2 2 k + 8 2 = 2 3 4 6 k D i v i d i n g b y 2 , w e g e t 6 1 k + 4 0 k 2 2 k + 8 2 = 1 1 7 3 k 4 0 k 2 2 k + 8 2 = 1 1 7 6 1 3 k + k 4 0 k 2 2 k + 8 2 = 5 6 2 k 2 1 0 k 2 2 k + 8 2 = 5 6 2 k 1 0 k 2 2 k + 8 2 = 2 8 k ( D i v i d i n g b y 2 ) S q u a r i n g b o t h s i d e s , w e g e t 1 0 ( k 2 2 k + 8 2 ) = 7 8 4 + k 2 5 6 k 1 0 k 2 2 0 k + 8 2 0 = 7 8 4 + k 2 5 6 k 1 0 k 2 k 2 2 0 k + 5 6 k + 8 2 0 7 8 4 = 0 9 k 2 + 3 6 k + 3 6 = 0 k 2 + 4 k + 4 = 0 ( k + 2 ) 2 = 0 k + 2 = 0 k = 2 H e n c e , t h e r e q u i r e d v a l u e i s k = 2 .

 

Q:  

A vector r . is inclined at equal angles to the three axes. If the magnitude of r . is 2 3 units, find r .

Read more
A: 

This is a Short Answer type Questions as classified in NCERT Exemplar

Sol:

Since,thevectorrmakesequalangleswiththeaxes,theirdirectioncosinesshouldbesame. l = m = n W e k n o w t h a t l 2 + m 2 + n 2 = 1 l 2 + l 2 + l 2 = 1 3 l 2 = 1 l 2 = 1 3 l = ± 1 3 r ^ = ± 1 3 i ^ ± 1 3 j ^ ± 1 3 k ^ r ^ = ± 1 3 ( i ^ + j ^ + k ^ ) W e k n o w t h a t r = ( r ^ ) | r | = ± 1 3 ( i ^ + j ^ + k ^ ) 2 3 = ± 2 ( i ^ + j ^ + k ^ ) H e n c e , t h e r e q u i r e d v a l u e o f r i s ± 2 ( i ^ + j ^ + k ^ ) .

Q:  

A vector   has magnitude 14 and direction ratios 2, 3, –6. Find the direction cosines and components of r?, given that  makes an acute angle with the x-axis.

Read more
A: 

This is a Short Answer type Questions as classified in NCERT Exemplar

Sol:

L e t a , b a n d c b e t h r e e v e c t o r s s u c h t h a t a = 2 k , b = 3 k a n d c = 6 k I f l , m a n d n a r e t h e d i r e c t i o n s c o s i n e s o f v e c t o r r , t h e n l = a | r | = 2 k 1 4 = k 7 m = b | r | = 3 k 1 4 a n d n = c | r | = 6 k 1 4 = 3 k 7 W e k n o w t h a t l 2 + m 2 + n 2 = 1 k 2 4 9 + 9 k 2 1 9 6 + 9 k 2 4 9 = 1 4 k 2 + 9 k 2 + 3 6 k 2 1 9 6 = 1 4 9 k 2 = 1 9 6 k 2 = 4 k = ± 2 a n d l = k 7 = 2 7 m = 3 k 1 4 = 3 × 2 1 4 = 3 7 a n d n = 3 k 7 = 3 × 2 7 = 6 7 r ^ = ± ( 2 7 i ^ + 3 7 j ^ 6 7 k ^ ) W e k n o w t h a t r = ( r ^ ) | r | = ± ( 2 7 i ^ + 3 7 j ^ 6 7 k ^ ) . 1 4 = ± ( 4 i ^ + 6 j ^ 1 2 k ^ ) H e n c e , t h e r e q u i r e d d i r e c t i o n c o s i n e s a r e 2 7 , 3 7 , 6 7 a n d t h e c o m p o n e n t s o f r a r e 4 i ^ , 6 j ^ a n d 1 2 k ^ .

Q:  

Find a vector of magnitude 6, which is perpendicular to both the vectors 2î − 2ĵ + k̂ and 4î − 3ĵ + k̂.

Read more
A: 

This is a Short Answer type Questions as classified in NCERT Exemplar

Sol:

L e t a = 2 i ^ j ^ + 2 k ^ a n d b = 4 i ^ j ^ + 3 k ^ W e k n o w t h a t u n i t v e c t o r a r e p e r p e n d i c u l a r t o a a n d b = ( a × b ) | a × b | a × b = | i ^ j ^ k ^ 2 1 2 4 1 3 | = i ^ ( 3 + 2 ) j ^ ( 6 8 ) + k ^ ( 2 + 4 ) = i ^ + 2 j ^ + 2 k ^ | a × b | = ( 1 ) 2 + ( 2 ) 2 + ( 2 ) 2 = 1 + 4 + 4 = 9 = 3 S o , ( a × b ) | a × b | = i ^ + 2 j ^ + 2 k ^ 3 = 1 3 ( i ^ + 2 j ^ + 2 k ^ ) N o w t h e v e c t o r o f m a g n i t u d e 6 = 1 3 ( i ^ + 2 j ^ + 2 k ^ ) . 6 = 2 ( i ^ + 2 j ^ + 2 k ^ ) = 2 i ^ + 4 j ^ + 4 k ^ H e n c e , t h e r e q u i r e d v e c t o r i s 2 i ^ + 4 j ^ + 4 k ^ .

Q:  

Find the angle between the vectors 2î − ĵ + k̂ and 3î + 4ĵ − k̂.

A: 

This is a Short Answer type Questions as classified in NCERT Exemplar

Sol:

  L e t a = 2 i ^ j ^ + k ^ a n d b = 3 i ^ + 4 j ^ k ^ a n d l e t θ b e t h e a n g l e b e t w e e n a a n d b . c o s θ = a . b | a | | b | = ( 2 i ^ j ^ + k ^ ) ( 3 i ^ + 4 j ^ k ^ ) 4 + 1 + 1 . 9 + 1 6 + 1 = 6 4 1 6 2 6 = 1 2 3 . 1 3 = 1 2 3 9 θ = c o s 1 1 2 3 9 c o s 1 ( 1 1 5 6 ) H e n c e , t h e r e q u i r e d v a l u e o f θ i s c o s 1 ( 1 1 5 6 ) .

Q:  

If a + b + c = 0, show that a × b = b × c = c × a . Interpret the result geometrically.

Read more
A: 

This is a Short Answer type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t a + b + c = 0 S o , a × ( a + b + c ) = a × 0 a × a + a × b + a × c = 0 0 + a × b + a × c = 0 ( ? a × a = 0 ) a × b c × a = 0 ( a × c = c × a ) a × b = c × a ( i ) N o w , a + b + c = 0 b × ( a + b + c ) = b × 0 b × a + b × b + b × c = 0 b × a + 0 + b × c = 0 ( ? b × b = 0 ) ( a × b ) + b × c = 0 b × c = a × b ( i i ) F r o m e q . ( i ) a n d ( i i ) w e g e t a × b = b × c = c × a . H e n c e p r o v e d . G e o m e t r i c a l I n t e r p r e t a t i o n Accordingtofigure,wehaveAreaofparallelogramABCDis | a × b | = | a | | b | s i n θ Since,theparallelogramsonthesamebaseandbetweenthesameparallellinesare e q u a l i n a r e a . | a × b | = | b × c | = | c × a | a × b = b × c = c × a .

Q:  

Find the sine of the angle between the vectors  a = 3î + 2ĵ + k̂ and b = −î + 2ĵ + 4k̂.

A: 

This is a Short Answer type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t a = 3 i ^ + j ^ + 2 k ^ a n d b = 2 i ^ 2 j ^ + 4 k ^ W e k n o w t h a t | a × b | = | a | | b | s i n θ a × b = | i ^ j ^ k ^ 3 1 2 2 2 4 | = i ^ ( 4 + 4 ) j ^ ( 1 2 4 ) + k ^ ( 6 2 ) = 8 i ^ 8 j ^ 8 k ^ | a × b | = ( 8 ) 2 + ( 8 ) 2 + ( 8 ) 2 = 6 4 + 6 4 + 6 4 = 1 9 2 = 6 4 × 3 = 8 3 | a | = ( 3 ) 2 + ( 1 ) 2 + ( 2 ) 2 = 9 + 1 + 4 = 1 4 | b | = ( 2 ) 2 + ( 2 ) 2 + ( 4 ) 2 = 4 + 4 + 1 6 = 2 4 = 2 6 s i n θ = | a × b | | a | | b | = 8 3 1 4 . 2 6 = 4 3 8 4 = 4 3 2 2 1 = 2 7 H e n c e , s i n θ = 2 7 .

Q:  

If A, B, C, D are the points with position vectors î + ĵ − k̂, 2î − 3ĵ + k̂, 2î − 3k̂, and 3î + 2ĵ − k̂, respectively, find the projection of A B ¯  along   C D . ¯

Read more
A: 

This is a Short Answer type Questions as classified in NCERT Exemplar

  H e r e , P o s i t i o n v e c t o r o f A = i ^ + j ^ k ^ P o s i t i o n v e c t o r o f B = 2 i ^ j ^ + 3 k ^ P o s i t i o n v e c t o r o f C = 2 i ^ 3 k ^ P o s i t i o n v e c t o r o f D = 3 i ^ 2 j ^ + k ^ A B = P . V o f B P . V o f A = ( 2 i ^ j ^ + 3 k ^ ) ( i ^ + j ^ k ^ ) = i ^ 2 j ^ + 4 k ^ C D = P . V o f D P . V o f C = ( 3 i ^ 2 j ^ + k ^ ) ( 2 i ^ 3 k ^ ) = i ^ 2 j ^ + 4 k ^ ProjectionofABonCD=AB¯.CD¯|CD¯|=(i^2j^+4k^)(i^2j^+4k^)(1)2+(2)2+(4)2 = 1 + 4 + 1 6 1 + 4 + 1 6 = 2 1 2 1 = 2 1 Hence,therequiredprojection=21.

Q:  

Using vectors, find the area of the triangle ABC with vertices A(1, 2, 3), B(2, –1, 4), C(4, 5, –1).

A: 

This is a Short Answer type Questions as classified in NCERT Exemplar

Sol:

  G i v e n t h a t A ( 1 , 2 , 3 ) , B ( 2 , 1 , 4 ) a n d C ( 4 , 5 , 1 ) A B = ( 2 1 ) i ^ + ( 1 2 ) j ^ + ( 4 3 ) k ^ A B = i ^ 3 j ^ + k ^ A C = ( 4 1 ) i ^ + ( 5 2 ) j ^ + ( 1 3 ) k ^ = 3 i ^ + 3 j ^ 4 k ^ A r e a o f Δ A B C = 1 2 | A B × A C | = 1 2 | i ^ j ^ k ^ 1 3 1 3 3 4 | = 1 2 [ i ^ ( 1 2 3 ) j ^ ( 4 3 ) + k ^ ( 3 + 9 ) ] = 1 2 | 9 i ^ + 7 j ^ + 1 2 k ^ | = 1 2 ( 9 ) 2 + ( 7 ) 2 + ( 1 2 ) 2 = 1 2 8 1 + 4 9 + 1 4 4 = 1 2 2 7 4 H e n c e , t h e r e q u i r e d a r e a i s 2 7 4 2 .

Q:  

Using vectors, prove that parallelograms on the same base and between the same parallels are equal in area.

Read more
A: 

This is a Short Answer type Questions as classified in NCERT Exemplar

  LetABCDandABFEbetwoparallelogramsonthesamebaseABandbetweensame p a r a l l e l l i n e s A B a n d D F . L e t A B = a a n d A D = b AreaofparallelogramABCD=|a×b| NowAreaofparallelogramABFE=|AB×AE| = | a × ( A D + D E ) | = | a × ( b + K a ) | = | ( a × b ) + K ( a × a ) | = | a × b | + 0 [ ? a × a = 0 ] = | a × b | H e n c e p r o v e d .

Maths NCERT Exemplar Solutions Class 12th Chapter Ten Logo

Vector Algebra Long Answer Type Questions

1. Prove that in any triangle ABC, c o s   A = b 2 + c 2 a 2 2 b c   where a, b, c are the magnitudes of the sides opposite to the vertices A, B, C, respectively.

Sol: 

 

2. If   a   ,   b   ,   c determine the vertices of a triangle, show that 1 2 (   b   ×     c +   c   ×   a + a   ×   b   )   gives the a   ,   b   ,   c vector area of the triangle. Hence deduce the condition that the three points are collinear. Also, find the unit vector normal to the plane of the triangle.

Sol:

 

Since , a , b a n d c a r e t h e v e r t i c e s o f Δ A B C A B = b a , B C = c b a n d A c = c a A r e a o f Δ A B C = 1 2 | A B × A C | = 1 2 | ( b a ) × ( c b ) | = 1 2 | b × c b × a a × c + a × a | = 1 2 | b × c + a × b + c × a | [ a × b = b × a c × a = a × c a × a = 0 ] F o r t h r e e v e c t o r s a r e c o l l i n e a r , a r e a o f Δ A B C = 0 1 2 | b × c + a × b + c × a | = 0 | a × b + b × c + c × a | = 0 w h i c h i s t h e c o n d i t i o n o f c o l l i n e a r i t y o f a , b a n d c . L e t n ^ b e t h e u n i t v e c t o r n o r m a l t o t h e p l a n e o f t h e Δ A B C n ^ = A B × A C | A B × A C | = a × b + b × c + c × a | a × b + b × c + c × a |                              
 

 

Q&A Icon
Commonly asked questions
Q:  

Prove that in any triangle ABC, c o s   A = b 2 + c 2 a 2 2 b c   where a, b, c are the magnitudes of the sides opposite to the vertices A, B, C, respectively.

Read more
A: 

This is a Long Answer type Questions as classified in NCERT Exemplar

Sol:

H e r e , i n t h e g i v e n f i g u r e , t h e c o m p o n e n t s o f c a r e c c o s A a n d a n d c s i n A . C D = b c c o s A I n Δ B D C , a 2 = C D 2 + B D 2 a 2 = ( b c c o s A ) 2 + ( c s i n A ) 2 a 2 = b 2 + c 2 c o s 2 A 2 b c c o s A + c 2 s i n 2 A a 2 = b 2 + c 2 ( c o s 2 A + s i n 2 A ) 2 b c c o s A a 2 = b 2 + c 2 2 b c c o s A 2 b c c o s A = b 2 + c 2 a 2 c o s A = b 2 + c 2 a 2 2 b c H e n c e p r o v e d .

Q:  

If    a   ,   b   ,   c determine the vertices of a triangle, show that 1 2 (   b   ×     c +   c   ×   a + a   ×   b   )   gives the a   ,   b   ,   c vector area of the triangle. Hence deduce the condition that the three points are collinear. Also, find the unit vector normal to the plane of the triangle.

Read more
A: 
This is a Long Answer type Questions as classified in NCERT Exemplar

Since,a,bandcaretheverticesofΔABC A B = b a , B C = c b a n d A c = c a A r e a o f Δ A B C = 1 2 | A B × A C | = 1 2 | ( b a ) × ( c b ) | = 1 2 | b × c b × a a × c + a × a | = 1 2 | b × c + a × b + c × a | [ ? a × b = b × a c × a = a × c a × a = 0 ] F o r t h r e e v e c t o r s a r e c o l l i n e a r , a r e a o f Δ A B C = 0 1 2 | b × c + a × b + c × a | = 0 | a × b + b × c + c × a | = 0 w h i c h i s t h e c o n d i t i o n o f c o l l i n e a r i t y o f a , b a n d c . L e t n ^ b e t h e u n i t v e c t o r n o r m a l t o t h e p l a n e o f t h e Δ A B C n ^ = A B × A C | A B × A C | = a × b + b × c + c × a | a × b + b × c + c × a |

Q:  

Show that the area of the parallelogram whose diagonals are given by a   and b   is 1 2 a   ×   b   2 Also, find the area of the parallelogram whose diagonals are 2î − ĵ + k̂ and  î + 3ĵ − k̂.

Read more
A: 
This is a Long Answer type Questions as classified in NCERT Exemplar
LetABCDbeaparallelogramsuchthat, A B = p , A D = q = B C b y l a w o f t r i a n g l e , w e g e t A C = a = p + q ( i ) a n d B D = b = p + q ( i i ) A d d i n g e q . ( i ) a n d ( i i ) w e g e t , a + b = 2 q q = ( a + b 2 ) S u b t r a c t i n g e q . ( i i ) f r o m ( i ) w e g e t , a b = 2 p p = ( a b 2 ) p × q = 1 4 ( a + b ) ( a b ) = 1 4 ( a × a a × b + b × a b × b ) = 1 4 ( a × b + b × a ) [ ? a × a = 0 b × b = 0 ] = 1 4 ( a × b + b × a ) = 1 4 . 2 ( a × b ) = | a × b | 2 So,theareaofparallelogramABCD=|p×q|=12|a×b| Nowareaofparallelogramwhosediagonalsare2i^j^+k^andi^+3j^k^ = 1 2 | ( 2 i ^ j ^ + k ^ ) × ( i ^ + 3 j ^ k ^ ) | = 1 2 | i ^ j ^ k ^ 2 1 1 1 3 1 | = 1 2 [ i ^ ( 1 3 ) j ^ ( 2 1 ) + k ^ ( 6 + 1 ) ] = 1 2 | 2 i ^ + 3 j ^ + 7 k ^ | = 1 2 ( 2 ) 2 + ( 3 ) 2 + ( 7 ) 2 = 1 2 4 + 9 + 4 9 = 1 2 6 2 s q . u n i t s . H e n c e , t h e r e q u i r e d a r e a i s 1 2 6 2 s q . u n i t s .

 

Q:  

If a   = î + ĵ + k̂ and b̂ = ĵ − k̂, find a vector c such that a   ×   c   =   b   and a   .   c   = 3.

A: 

This is a Long Answer type Questions as classified in NCERT Exemplar

Sol:

L e t c = c 1 i ^ + c 2 j ^ + c 3 k ^ A l s o g i v e n t h a t a = i ^ + j ^ + k ^ a n d b = j ^ k ^ S i n c e , a × c = b | i ^ j ^ k ^ 1 1 1 c 1 c 2 c 3 | = j ^ k ^ i ^ ( c 3 c 2 ) j ^ ( c 3 c 1 ) + k ^ ( c 2 c 1 ) = j ^ k ^ O n c o m p a r i n g t h e l i k e t e r m s , w e g e t c 3 c 2 = 0 ( i ) c 1 c 3 = 1 ( i i ) c 2 c 1 = 1 ( i i i ) N o w f o r a . c = 3 ( i ^ + j ^ + k ^ ) . ( c 1 i ^ + c 2 j ^ + c 3 k ^ ) = 3 c 1 + c 2 + c 3 = 3 ( i v ) A d d i n g e q . ( i i ) a n d e q . ( i i i ) w e g e t , c 2 c 3 = 0 ( v ) F r o m ( i v ) a n d ( v ) w e g e t c 1 + 2 c 2 = 3 ( v i ) F r o m ( i i i ) a n d ( v i ) w e g e t c 1 + 2 c 2 = 3 c 1 + c 2 = 1 _ A d d i n g 3 c 2 = 2 c 2 = 2 3 c 3 c 2 = 0 c 3 2 3 = 0 c 3 = 2 3 N o w , c 2 c 1 = 1 2 3 c 1 = 1 c 1 = 1 + 2 3 = 5 3 c = 5 3 i ^ + 2 3 j ^ + 2 3 k ^ = 1 3 ( 5 i ^ + 2 j ^ + 2 k ^ ) H e n c e , c = 1 3 ( 5 i ^ + 2 j ^ + 2 k ^ ) .

Maths NCERT Exemplar Solutions Class 12th Chapter Ten Logo

Vector Algebra Objective Type Questions

Choose the correct answer from the given four options in each of the Exercises 19 to 33:

1. The vector in the direction of the vector î − 2ĵ + 2k̂ that has magnitude 9 is:

(A) î − 2ĵ + 2k̂

(B) ( i ^   2 j ^   +   2 k ^ ) 3

(C) 9(î − 2ĵ + 2k̂)

(D) (î − 2ĵ + 2k̂)/3

Sol:

L e t a = i ^ 2 j ^ + 2 k ^ U n i t v e c t o r i n t h e d i r e c t i o n o f a = a | a | = i ^ 2 j ^ + 2 k ^ ( 1 ) 2 + ( 2 ) 2 + ( 2 ) 2 = i ^ 2 j ^ + 2 k ^ 1 + 4 + 4 = i ^ 2 j ^ + 2 k ^ 3 v e c t o r o f m a g n i t u d e 9 = 9 ( i ^ 2 j ^ + 2 k ^ ) 3 = 3 ( i ^ 2 j ^ + 2 k ^ ) H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

 

2. The position vector of the point that divides the join of points 2â − 3b̂ and â + b̂ in the ratio 3:1 is:

(A) ( 3 a     2 b ^ ) 2

(B) ( 7 a     8 b ^ ) 4

(C) 3 a 4

(D) 5 a 4

Sol:

T h e g i v e n v e c t o r s a r e 2 a 3 b a n d a + b a n d t h e r a t i o i s 3 : 1 . T h e p o s i t i o n v e c t o r o f t h e r e q u i r e d point c w h i c h d i v i d e s t h e j o i n o f t h e g i v e n v e c t o r s a a n d b i s c = m 1 x 2 + m 2 x 1 m 1 + m 2 = 1 . ( 2 a 3 b ) + 3 ( a + b ) 3 + 1 = 2 a 3 b + 3 a + 3 b 4 = 5 a 4 = 5 4 a H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q&A Icon
Commonly asked questions
Q:  

Choose the correct answer from the given four options in each of the Exercises 19 to 33:

The vector in the direction of the vector î − 2? + 2k? that has magnitude 9 is:

(A)  î − 2ĵ + 2k̂

(B) ( i ^   2 j ^   +   2 k ^ ) 3  

(C) 9(î − 2ĵ + 2k̂)

(D) (î − 2ĵ + 2k̂)/3

Read more
A: 

This is a Objective type Questions as classified in NCERT Exemplar

Sol: 

  L e t a = i ^ 2 j ^ + 2 k ^ U n i t v e c t o r i n t h e d i r e c t i o n o f a = a | a | = i ^ 2 j ^ + 2 k ^ ( 1 ) 2 + ( 2 ) 2 + ( 2 ) 2 = i ^ 2 j ^ + 2 k ^ 1 + 4 + 4 = i ^ 2 j ^ + 2 k ^ 3 v e c t o r o f m a g n i t u d e 9 = 9 ( i ^ 2 j ^ + 2 k ^ ) 3 = 3 ( i ^ 2 j ^ + 2 k ^ ) H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Q:  

The position vector of the point that divides the join of points 2â − 3b̂ and â + b̂  in the ratio 3:1 is:

(A) ( 3 a     2 b ^ ) 2  

(B) ( 7 a     8 b ^ ) 4  

(C) 3 a 4

(D) 5 a 4  

Read more
A: 

This is an Objective type Questions as classified in NCERT Exemplar

Sol:

T h e g i v e n v e c t o r s a r e 2 a 3 b a n d a + b a n d t h e r a t i o i s 3 : 1 . Thepositionvectoroftherequiredpointcwhichdividesthejoinofthegiven v e c t o r s a a n d b i s c = m 1 x 2 + m 2 x 1 m 1 + m 2 = 1 . ( 2 a 3 b ) + 3 ( a + b ) 3 + 1 = 2 a 3 b + 3 a + 3 b 4 = 5 a 4 = 5 4 a H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q:  

The vector having initial and terminal points as (2, 5, 0) and (–3, 7, 4), respectively, is

(A) –î + 12ĵ + 4k̂

(B) 5î − 2ĵ − 4k̂

(C) −5î + 2ĵ + 4k̂

(D) î + ĵ + k̂

Read more
A: 

This is a Objective type Questions as classified in NCERT Exemplar

Sol:

LetAandBbetwopointswhosecoordinatesaregivenas(2,5,0)and(3,7,4) A B = ( 3 2 ) i ^ + ( 7 5 ) j ^ + ( 4 0 ) k ^ A B = 5 i ^ + 2 j ^ + 4 k ^ H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Q:  

The angle between two vectors a , b with magnitudes √3 and 4, respectively, and   a . b = 2√3  is:

(A) π 6

(B) π 3  

(C) π 2  

(D) 5 π 2  

Read more
A: 

This is a Objective type Questions as classified in NCERT Exemplar

Sol:

H e r e , g i v e n t h a t | a | = 3 , | b | = 4 a n d a . b = 2 3 F r o m s c a l a r p r o d u c t , w e k n o w t h a t a . b = | a | | b | c o s θ 2 3 = 3 . 4 . c o s θ c o s θ = 2 3 3 . 4 = 1 2 θ = π 3 H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

Find the value of λ such that the vectors a = 2î + λĵ + k̂ and b = î + 2ĵ + 3k̂ are orthogonal.

(A) 0

(B) 1

(C) 3 2  

(D) − 5 2

Read more
A: 

This is an Objective type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t a = 2 i ^ + λ j ^ + k ^ a n d b = i ^ + 2 j ^ + 3 k ^ Sinceaandbareorthogonal a . b = 0 ( 2 i ^ + λ j ^ + k ^ ) . ( i ^ + 2 j ^ + 3 k ^ ) = 0 2 + 2 λ + 3 = 0 5 + 2 λ = 0 λ = 5 2 H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q:  

The value of λ for which the vectors 3î − 6? + k? and 2î − 4? + λk? are parallel is:

(A) 2 3  

(B) 3 2  

(C) 5 2  

(D) 2 5  

Read more
A: 

This is an Objective type Questions as classified in NCERT Exemplar

Sol: 

  L e t a = a 1 i ^ + a 2 j ^ + a 3 k ^ a n d b = b 1 i ^ + b 2 j ^ + b 3 k ^ I f a ? b a 1 b 1 = a 2 b 2 = a 3 b 3 3 2 = 6 4 = 1 λ 1 λ = 3 2 λ = 2 3 H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q:  

The vectors from the origin to the points A and B are: respectively. Then the area of triangle OAB is:

(A) 340

(B) 25

(C) 229

(D) 1 2 2 2 9

Read more
A: 

This is an Objective type Questions as classified in NCERT Exemplar

Sol:

L e t O b e t h e o r i g i n O A = 2 i ^ 3 j ^ + 2 k ^ a n d O B = 2 i ^ 3 j ^ + 2 k ^ A r e a o f Δ O A B = 1 2 | O A × O B | = 1 2 | i ^ j ^ k ^ 2 3 2 2 3 1 | = 1 2 | i ^ ( 3 6 ) j ^ ( 2 4 ) + k ^ ( 6 + 6 ) | = 1 2 | 9 i ^ + 2 j ^ + 1 2 k ^ | = 1 2 ( 9 ) 2 + ( 2 ) 2 + ( 1 2 ) 2 = 1 2 8 1 + 4 + 1 4 4 = 1 2 2 2 9 H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q:  

For any vector , the value of  is equal to:

(A) a 2  

(B) 3 a 2  

(C) 4 a 2  

(D) 2 a 2

Read more
A: 

This is an Objective type Questions as classified in NCERT Exemplar

Sol:

L e t a = a 1 i ^ + a 2 j ^ + a 3 k ^ a 2 = a 1 2 + a 2 2 + a 3 2 N o w , a × i ^ = ( a 1 i ^ + a 2 j ^ + a 3 k ^ ) × i ^ = | i ^ j ^ k ^ a 1 a 2 a 3 1 0 0 | = i ^ ( 0 0 ) j ^ ( 0 a 3 ) + k ^ ( 0 a 2 ) = a 3 j ^ a 2 k ^ ( a × i ^ ) 2 = ( a 3 j ^ a 2 k ^ ) . ( a 3 j ^ a 2 k ^ ) = a 3 2 + a 2 2 S i m i l a r l y ( a × j ^ ) 2 = a 1 2 + a 3 2 a n d ( a × k ^ ) 2 = a 1 2 + a 2 2 ( a × i ^ ) 2 + ( a × j ^ ) 2 + ( a × k ^ ) 2 = a 3 2 + a 2 2 + a 1 2 + a 3 2 + a 1 2 + a 2 2 = 2 ( a 1 2 + a 2 2 + a 3 2 ) = 2 a 2 H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q:  

If a = 1 0 , b = 2 , and a b = 1 2 , then the value of a × b is:

(A) 5

(B) 10

(C) 14

(D) 16

A: 

This is an Objective type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t a = 1 0 , b = 2 a n d a . b = 1 2 a . b = | a | | b | c o s θ 1 2 = 1 0 . 2 . c o s θ c o s θ = 1 2 2 0 = 3 5 s i n θ = 1 c o s 2 θ s i n θ = 1 ( 3 5 ) 2 s i n θ = 1 9 2 5 s i n θ = 1 6 2 5 s i n θ = 4 5 N o w | a × b | = | a | | b | s i n θ = 1 0 . 2 . 4 5 = 1 6 H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q:  

The vectors λi^+j^+2k^, i^+λj^k^,and 2i^+j^+λk^ are coplanar if:

(A) λ = 2  

(B) λ = 0  

(C) λ = 1  

(D) λ = 1  

Read more
A: 

This is an Objective type Questions as classified in NCERT Exemplar

Sol:

L e t a = λ i ^ + j ^ + 2 k ^ b = i ^ + λ j ^ k ^ c = 2 i ^ j ^ + λ k ^ I f a , b a n d c a r e c o p l a n a r , t h e n a . ( b × c ) = 0 | λ 1 2 1 λ 1 2 1 λ | = 0 λ ( λ 2 1 ) 1 ( λ + 2 ) + 2 ( 1 2 λ ) = 0 λ 3 λ λ 2 2 4 λ = 0 λ 3 6 λ 4 = 0 ( λ + 2 ) ( λ 2 2 λ 2 ) = 0 λ = 2 o r λ 2 2 λ 2 = 0 λ = 2 ± 4 + 8 2 λ = 2 ± 2 3 2 λ = 2 o r 1 ± 3 H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q:  

If a , b , c are unit vectors such that a + b + c = 0 then the value of a.  b+b .c+c.a  is:

(A) 1

(B) 3

(C) 3 2  

(D) None of these

Read more
A: 

This is an Objective type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t | a | = | b | = | c | = 1 a n d a + b + c = 0 ( a + b + c ) . ( a + b + c ) = 0 . 0 = 0 | a | 2 + a . b + a . c + b . a + | b | 2 + b . c + c . a + c . b + | c | 2 = 0 | a | 2 + | b | 2 + | c | 2 + 2 a . b + 2 b . c + 2 c . a = 0 1 + 1 + 1 + 2 ( a . b + b . c + c . a ) = 0 2 ( a . b + b . c + c . a ) = 3 a . b + b . c + c . a = 3 2 H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Q:  

The projection vector of a .   on b is:

(A) ( a .   b ) b 2 b

(B) a .   b b b

(C) ( a .   b ) a .  

(D) ( a   b ) a   2 b

A: 

This is an Objective type Questions as classified in NCERT Exemplar

Sol:    

            T h e p r o j e c t i o n v e c t o r o f a o n b = ( a . b | b | ) . b H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q:  

If a , b , c are three vectors such that a + b + c = 0 and ? a | = 2 ,  ?b|=2,?c|=2 then the value of a.  b+b .c+c.a  is:

(A) 0

(B) 1

(C) 1 9  

(D) 38

Read more
A: 

This is an Objective type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t | a | = 2 , | b | = 3 , | c | = 5 a n d a + b + c = 0 ( a + b + c ) . ( a + b + c ) = 0 . 0 = 0 | a | 2 + a . b + a . c + b . a + | b | 2 + b . c + c . a + c . b + | c | 2 = 0 | a | 2 + | b | 2 + | c | 2 + 2 a . b + 2 b . c + 2 c . a = 0 ( 2 ) 2 + ( 3 ) 2 + ( 5 ) 2 + 2 ( a . b + b . c + c . a ) = 0 4 + 9 + 2 5 + 2 ( a . b + b . c + c . a ) = 0 3 8 + 2 ( a . b + b . c + c . a ) = 0 2 ( a . b + b . c + c . a ) = 3 8 a . b + b . c + c . a = 1 9 H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Q:  

If a = 4 and 3 λ 2 , then the range of λ a is:

(A) [0, 8]

(B) [-12, 8]

(C) [0, 12]

(D) [8, 12]

A: 

This is an Objective type Questions as classified in NCERT Exemplar

Sol:

G i v e n t h a t | a | = 4 , 3 λ 2 N o w | λ a | = λ | a | = λ . 4 = 4 λ H e r e , 3 λ 2 3 . 4 4 λ 2 . 4 1 2 4 λ 8 4 λ = [ 1 2 , 8 ] H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

The number of unit vectors perpendicular to both a = 2 i ^ + 2 j ^ + k ^ , b = j ^ + 2 k ^ is:

(A) One

(B) Two

(C) Three

(D) Infinite

A: 

This is an Objective type Questions as classified in NCERT Exemplar

Sol:

T h e n u m b e r o f v e c t o r s o f u n i t l e n g t h p e r p e n d i c u l a r t o v e c t o r s a a n d b i s c ( L e t ) c = ± ( a × b ) S o , t h e r e w i l l b e t w o v e c t o r s o f u n i t l e n g t h p e r p e n d i c u l a r t o v e c t o r s a a n d b . H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Maths NCERT Exemplar Solutions Class 12th Chapter Ten Logo

Vector Algebra Fill in the blanks

1. The vector a + b  bisects the angle between the non-collinear vectors a and b if ________.

Sol:

I f v e c t o r a + b bisects t h e a n g l e b e t w e e n n o n c o l l i n e a r v e c t o r s a a n d b t h e n t h e a n g l e b e t w e e n a + b a n d a i s e q u a l t o t h e a n g l e b e t w e e n a + b a n d b . S o , c o s θ = a . ( a + b ) | a | | a + b | = a . ( a + b ) | a | a 2 + b 2 ( i ) A l s o , c o s θ = b . ( a + b ) | b | | a + b | [ θ i s s a m e ] = b . ( a + b ) | b | a 2 + b 2 ( i i ) F r o m e q . ( i ) a n d e q . ( i i ) w e g e t , a . ( a + b ) | a | a 2 + b 2 = b . ( a + b ) | b | a 2 + b 2 a | a | = b | b | a ^ = b ^ a = b H e n c e , t h e r e q u i r e d f i l l e r i s a = b .

 

2. If r . a  = 0, r . b = 0, r . c  = 0 for some non-zero vector r̂, then the value of ( a × b ) ĉ is ________.

Sol:

I f r i s a n o n z e r o v e c t o r , t h e n a , b a n d c c a n b e i n t h e s a m e p l a n e . Since a n g l e s b e t w e e n a , b a n d c a r e z e r o i . e . θ = 0 a . ( b × c ) = 0 H e n c e , t h e r e q u i r e d v a l u e i s 0 .

Q&A Icon
Commonly asked questions
Q:  

The vector a + b bisects the angle between the non-collinear vectors a and b if ________.

A: 

This is a Fill in the blanks type Questions as classified in NCERT Exemplar

Sol:

Ifvectora+bbisectstheanglebetweennoncollinearvectorsaandbthentheanglebetween a + b a n d a i s e q u a l t o t h e a n g l e b e t w e e n a + b a n d b . S o , c o s θ = a . ( a + b ) | a | | a + b | = a . ( a + b ) | a | a 2 + b 2 ( i ) A l s o , c o s θ = b . ( a + b ) | b | | a + b | [ ? θ i s s a m e ] = b . ( a + b ) | b | a 2 + b 2 ( i i ) F r o m e q . ( i ) a n d e q . ( i i ) w e g e t , a . ( a + b ) | a | a 2 + b 2 = b . ( a + b ) | b | a 2 + b 2 a | a | = b | b | a ^ = b ^ a = b H e n c e , t h e r e q u i r e d f i l l e r i s a = b .

Q:  

If r . a = 0, r . b = 0, r . c = 0 for some non-zero vector r̂, then the value of
(
a × b ) ĉ is ________.

Read more
A: 

This is a Fill in the blanks type Questions as classified in NCERT Exemplar

Sol: 

I f r i s a n o n z e r o v e c t o r , t h e n a , b a n d c c a n b e i n t h e s a m e p l a n e . Sinceanglesbetweena,bandcarezeroi.e.θ=0 a . ( b × c ) = 0 H e n c e , t h e r e q u i r e d v a l u e i s 0 .

Q:  

The vectors a = 3î − 2ĵ + 2k̂ and b̂ = î − 2k̂ are the adjacent sides of a parallelogram. The acute angle between its diagonals is ________.

Read more
A: 

This is a Fill in the blanks type Questions as classified in NCERT Exemplar

Sol:

         G i v e n t h a t a = 3 i ^ 2 j ^ + 2 k ^ a n d b = i ^ 2 k ^ a + b = 2 i ^ 2 j ^ a n d a b = 4 i ^ 2 j ^ + 4 k ^ L e t θ b e t h e a n g l e b e t w e e n t h e t w o d i a g o n a l v e c t o r s a + b a n d a b t h e n c o s θ = ( a + b ) . ( a b ) | a + b | | a b | = ( 2 i ^ 2 j ^ ) . ( 4 i ^ 2 j ^ + 4 k ^ ) ( 2 ) 2 + ( 2 ) 2 ( 4 ) 2 + ( 2 ) 2 + ( 4 ) 2 = 8 + 4 2 2 . 6 = 1 2 2 2 . 6 = 1 2 θ = π 4 H e n c e , t h e v a l u e o f r e q u i r e d f i l l e r i s π 4 .

Q:  

The values of k for which |k a <| a | |  and k a + 1 2 a   is parallel to a holds true are ________.

Read more
A: 

This is a Fill in the blanks type Questions as classified in NCERT Exemplar

Sol: 

G i v e n t h a t | k a | < | a | a n d k a + 1 2 a i s p a r a l l e l t o a | k a | < | a | | k | | a | < | a | | k | < 1 1 < k < 1 Nowsinceka+12aisparalleltoa H e r e , w e s e e t h a t k = 1 2 , k a + 1 2 a b e c o m e n u l l v e c t o r a n d t h e n i t w i l l n o t b e p a r a l l e l t o a . k a + 1 2 a i s p a r a l l e l t o a w h e n k ( 1 , 1 ) a n d k 1 2 . H e n c e , t h e r e q u i r e d v a l u e o f k ( 1 , 1 ) a n d k 1 2 .

Q:  

The value of the expression   ( a   ×   b ? )   2   + ( a . b ) 2 is ________.

A: 

This is a Fill in the blanks type Questions as classified in NCERT Exemplar

Sol:

| a × b | 2 + ( a . b ) 2 = ( | a | | b | s i n θ ) 2 + ( | a | | b | c o s θ ) 2 = | a | 2 | b | 2 s i n 2 θ + | a | 2 | b | 2 c o s 2 θ = | a | 2 | b | 2 . ( s i n 2 θ + c o s 2 θ ) = | a | 2 | b | 2 . 1 = | a | 2 | b | 2 H e n c e , t h e v a l u e o f t h e f i l l e r i s | a | 2 | b | 2 .

Q:  

If | a .   × b | 2 + | a .   b | 2 = 1 4 4 a n d | a | = 4 , then b is equal to _______.

A: 

This is a Fill in the blanks type Questions as classified in NCERT Exemplar

Sol:

| a × b | 2 + ( a . b ) 2 = 1 4 4 ( | a | | b | s i n θ ) 2 + ( | a | | b | c o s θ ) 2 = 1 4 4 | a | 2 | b | 2 s i n 2 θ + | a | 2 | b | 2 c o s 2 θ = 1 4 4 | a | 2 | b | 2 . ( s i n 2 θ + c o s 2 θ ) = 1 4 4 | a | 2 | b | 2 = 1 4 4 | a | | b | = 1 2 4 . | b | = 1 2 | b | = 3 H e n c e , t h e v a l u e o f t h e f i l l e r i s 3 .

Q:  

If a is any non-zero vector, then ( | a .   i ^ ) .   i ^ + ( a .   j ^ )   j ^ + ( a .   k ^ )     k ^   equals _______.

A: 

This is a Fill in the blanks type Questions as classified in NCERT Exemplar

Sol:

L e t a = a 1 i ^ + a 2 j ^ + a 3 k ^ a . i ^ = ( a 1 i ^ + a 2 j ^ + a 3 k ^ ) . i ^ = a 1 S i m i l a r l y , a . j ^ = a 2 a n d a . k ^ = a 3 ( a . i ^ ) . i ^ + ( a . j ^ ) . j ^ + ( a . k ^ ) . k ^ = a 1 i ^ + a 2 j ^ + a 3 k ^ = a H e n c e , t h e v a l u e o f t h e f i l l e r i s a .

Maths NCERT Exemplar Solutions Class 12th Chapter Ten Logo

Vector Algebra True or False Type Question

1. If | a | =| b | , then necessarily it implies a = ± b

 

Sol:

I f | a | = | b | t h e n a = ± b w h i c h i s t r u e . H e n c e t h e g i v e n s t a t e m e n t i s T r u e .

 

2. The position vector of a point P is a vector whose initial point is the origin.

Sol: T r u e .

Q&A Icon
Commonly asked questions
Q:  

State True or False for the statement in each of the Exercises 41 to 45.

If | a | =| b | , then necessarily it implies a = ± b

Read more
A: 

This is a True or False type Questions as classified in NCERT Exemplar

Sol:         

I f | a | = | b | t h e n a = ± b w h i c h i s t r u e . H e n c e t h e g i v e n s t a t e m e n t i s T r u e .

Q:  

The position vector of a point P is a vector whose initial point is the origin.

A: 

This is a True or False type Questions as classified in NCERT Exemplar

Sol:  T r u e .

Q:  

If | a + b | = | a - b | , then the vectors a and b are orthogonal.

 

Read more
A: 

This is a True or False type Questions as classified in NCERT Exemplar

Sol: 

G i v e n t h a t | a + b | = | a b | S q u a r i n g b o t h s i d e s , w e g e t | a + b | 2 = | a b | 2 | a | 2 + | b | 2 + 2 a . b = | a | 2 + | b | 2 2 a . b 2 a . b = 2 a . b a . b = a . b 2 a . b = 0 a . b = 0 w h i c h i m p l i e s t h a t a a n d b a r e o r t h o g o n a l . H e n c e t h e g i v e n s t a t e m e n t i s T r u e .

Q:  

The formula ( a + b ) 2 + ( a 2 + b 2 ) + 2 ( a × b ) 2   is valid for non-zero vectors a and b .

Read more
A: 

This is a True or False type Questions as classified in NCERT Exemplar

Sol:

       ( a + b ) 2 = ( a + b ) . ( a + b ) = | a | 2 + | b | 2 + 2 a . b H e n c e t h e g i v e n s t a t e m e n t i s F a l s e .

Q:  

If a and b are adjacent sides of a rhombus, then a b = 0.

Read more
A: 

This is a True or False type Questions as classified in NCERT Exemplar

Sol:

I f a . b = 0 t h e n a . b = | a | | b | c o s 9 0 0 Sotheanglebetweentheadjacentsidesoftherhombusshouldbe900whichisnotpossible. H e n c e t h e g i v e n s t a t e m e n t i s F a l s e .

Maths NCERT Exemplar Solutions Class 12th Chapter Ten Logo

28th June 2022 (First Shift)

28th June 2022 (First Shift)

Q&A Icon
Commonly asked questions
Q:  

If the system of linear equations

2x + 3y – z = 2

x + y + z = 4

xy+|λ|z=4λ4 where λR, has no solution, then

Read more
A: 

System of equation is

(2311111|λ|) (xyz)= [244λ4]

R1 – 2 R2, R3 – R2

(0131102|λ|1) (xyz)= (1044λ8)

System of equation will have no solution for λ = 7.

Q:  

Let [t] denote the greatest integer less than or equal to t. Then, the value of the integral 0 1 [ 8 x 2 + 6 x 1 ] d x  is equal to

Read more
A: 

0 1 [ 8 x 2 + 6 x 1 ] d x  

Let f (x) = -8x2 + 6x – 1

f (0) = -1, f (1) = -3

max f (x) = D 4 a = 3 6 3 2 3 2 = 1 8  

= 1 4 1 ( 3 4 λ 2 ) 2 ( 1 7 3 8 3 4 ) 3 ( 1 1 7 3 8 )  

= 1 7 1 3 8

Q:  

Let f : R → R be defined as

where a, b, c  R and [t] denotes greatest integer less than or equal to t. Then, which of the following statements is true?

Read more
A: 

For x < 0 0 < ex < 1 Þ [ex] = 0

0 x < 1 a e x + [ x 1 ]               

= a e x + [ x ] 1               

= a ex – 1             b + [sin px]

f ( x ) = [ 0 x < 0 a e x 1 0 x < 1 b 1 1 x < 2 c x 2 ]               

For f to be continuous at x = 0

a – 1 = 0 ⇒ a = 1

a + b + c = 1 + e + 1 e = 2 a + b + c 1               

Q:  

Let the solution curve y = y(x) of the differential equation [ x x 2 y 2 + e y x ] x d y d x = x + [ x x 2 y 2 + e y x ] y pass through the points (1, 0) and (2α, α), α > 0. Then a is equal to

Read more
A: 

[xx2y2+ey/x]xdydx=x+[xx2y2+ey/x]y

ey/x[xdyydx]=xdx+xx2y2(ydxxdy)

ey/xd(y/x)=dxxd(y/x)1(y/x)2

Integrating

ey/x=lnxsin1(yx)+c

Passes (1, 0)

1 = c

α=12exp(e1+π6)

Q:  

Let AB and PQ be two vertical poles, 160m apart from each other. Let C be the middle points of B and Q, which are feet of these two poles. Let π 8  and q be the angles of elevation from C to P and A, respectively. If the height of pole PQ is twice the height of pole AB, then tan2q is equal to

Read more
A: 
tanπ8=2h80......... (i)

tanθ=h80.......... (ii)

tanπ8=2tanθ

tan2θ=3224

Q:  

Let p, q, r be three logical statements. Consider the compound statements

S1:((p)q)((p)r)and

S2:p(qr)

Then, which of the following is NOT true?

Read more
A: 

Consider the following image

Q:  

Let R1 and R2 be relations on the set {1,2,…., 50} such that

R1 = { ( p , p n ) : p i s a p r i m e a n d n 0 i s a n i n t ? e g e r } a n d  

R2 = { ( p , p n ) : p i s a p r i m e a n d n = 0 o r 1 } .  

Then, the number of elements in R1 – R2 is…………

Read more
A: 

A = {1, 2, 3, ….50}

R1 = (2, 1), (2, 2), (2, 4)…. (2, 32)

(3, 1) (3, 3) (3, 9) (3, 27)

(13, 1) (13, 13)   etc.

R2 = { (2, 1), (2, 2), (3, 1), (3, 3), (5, 1), (5, 5), (7, 1), (7, 7), (1, 1), (11, 11)…}

R 1 R 2 contains only 9 elements.

Q:  

The mean and standard deviation of 15 observations are found to be 8 and 3 respectively. On rechecking it was found that, in the observations, 20 was misread as 5. Then, the correct variance is equal to…………….

Read more
A: 

 Meani=115xi15=8

i=115xi=120....... (i)

S.D = 3

i=115xi2=15 (9+64)=15×73.......... (ii)

Given 20 has misread as 5

 in new case

q=115xi2=15×7325+400=1470

mean in new case

x¯=1205+2015

variance in new case

σnew2=115 (1470)81=17

Q:  

If a=2i^+j^+3k^,b=3i^+3j^+k^andc=c1i^+c2j^+c3k^ are coplanar vectors and a.c=5,bc,then122(c1+c2+c3) is equal to……….

A: 

 a=2i^+j^+3k^

b=3i^+3j^+k^c=c1i^+c2j^+c3k^

Coplnanar|213331c1c2c3|=0

8c1+7c2+12c3=0........(i)a.c=52c1+c2+3c3=5........(ii)b.c=03c1+3c2+c3=0........(iii)

Solving (i), (ii), (iii)

C1=10122,c2=85122,c3=225122

122(c1+c2+c3)=150

Q:  

A ray of light passing through the point P(2, 3) reflects on the x-axis at point A and the reflected ray passes through the point Q(5, 4). Let R be the point that divides the line segment AQ internally into the ration 2 : 1. Let the co-ordinates of the foot of the perpendicular M from R on the bisector of the angle PAQ be (a, b). Then the value of 7a + 3b is equal to………..

Read more
A: 

R (10+α3, 83)

|mAQ|=|mAP|

|45α|=|32α|

= 7 not possible α=237.7α+3β=23+8=31

Q:  

Let l  be a line which is normal to the curve y = 2x2 + x + 2 at a point P on the curve. If the point Q(6, 4) lies on the line l  and O is origin, then the area of the triangle OPQ is equal to

Read more
A: 

y=2x2+x+2.... (i)

dydx=4x+1

Slope of normal

dxdy=14x+1

Equation of PQ y - β = 14α+1 (xα)

It passes (6, 4)

(4β) (4α+1)= (6α)

4α3+3α23α3=0

Q:  

Let A = { 1 , a 1 , a 2 . . . . a 1 8 , 7 7 }  be a set of integers with 1 < a1 < a2 < … < a18 < 77. Let the set A + A = { x + y : x , y A }  contains exactly 39 elements. Then, the value of a1 + a2 +….. + a18 is equal to

Read more
A: 

1 < a1 < a2 ……18 < 77

77 = 1 + (20 – 1) . d If n numbers are in A.P.

76 = 19 × d ⇒ d = 4

⇒ a1 = 5

a 1 + a 2 + . . . . + a 1 8 = 1 8 2 [ 2 × 5 + 1 7 × 4 ] = 7 0 2          

Q:  

The number of elements in the set {z=a+ibC:a,bZand1<|z3+2i|<4} is

A: 

1 < | z 3 + 2 i | < 4

z = a + i b a , b I              

⇒ 1 < (a – 3)2 + (b + 2)2 < 16

in equivalent to 1 < α2 + β2 < 16  α = a 3 l               

( ± 2 , 0 ) ( ± 3 , 0 ) , ( 0 , ± 2 ) ( 0 , ± 3 )             β = b + 2 l

Total 40 such points are possible

Q:  

Let the lines y + 2x = 11+77 and 2y+x=211+67 be normal to a circle C : (xh)2+(yk)2=r2. If the line 11y3x=5773+11 is tangent to the circle C, then the value of (5h8k)2+5r2 is equal to

Read more
A: 

y+2x=11+77 ……… (i)

2y+x=211+67 ……… (ii)

x+y=11+1337 ……… (iii)

Centre of the circle given by solving (i) & (ii)

as (873, 11+573)

Again 11y3x=5773 is tangent to the circle.

r = | 1 1 ( 1 1 + 5 7 3 ) 8 7 5 7 7 3 1 1 + 9 | = | 1 1 8 7 2 0 |

( 5 h 8 k ) 2 + 5 r 2 = 8 1 6

Q:  

If  then the value of 16α is equal to

Read more
A: 

α (60!) (30!) (31!)=62!32!30!60!31!29!

= (1411)60! (31!) (30!)16

16α=1411

Q:  

Let a function f : N → N be defined by

f(n)=[2n,n=2,4,6,8....n1,n=3,7,11,15,....n+12,n=1,5,9,13,.....

then, f is

A: 

 f (x)= [2nn=2, 4, 6....n1n=3, 7, 11, 15....n+12n=1, 5, 9, 13....

for n = 2, 4, 6 ……

f (n) = 4, 8, 12, ….4 (n) form

for n = 3, 7, 11, 15, ….

f (n) = 1, 3, 5, 7, …. (4n + 1) or, (4n + 3) from

 f is one and onto.

Q:  

Let A be matrix of order 3 × 3 and det(A) = 2. Then det(det(A)adj(5adj(A3))) is equal to

A: 

|A| = 2

||A|adj (5adjA3)|

|AP3||adj (5adj (A3))|

=|A|15.56=215×56=29×106

Q:  

The total number of 5-digit numbers, formed by using the digits 1, 2, 3, 5, 6, 7 without repetition, which are multiple of 6, is

Read more
A: 

Sum of digits

1 + 2 + 3 + 5 + 6 + 7 = 24

So, either 3 or 6 rejected at a time

Case 1 Last digit is 2

……….2

no. of cases = 2C1 × 4! = 48

Case 2 Last digit is 6

……….6

= 4! = 24

Total cases = 72

Q:  

Let A1, A2, A3,…. be an increasing geometric progression of positive real numbers. If A1A3A5A7 = 1 1 2 9 6  and A2 + A4 = 7 3 6 ,  then, the value of A6 + A8 + A10 is equal to

Read more
A: 

Let   A 2 A 1 = A 3 A 2 = . . . = r

A 1 A 3 A 5 A 7 = 1 1 2 9 6              

A 1 r 3 = 1 6 . . . . . . . ( i )               

Again, A2 + A4736

A1r=73616=136........(ii)

(i)&(ii)r=6&A1=1366

A6+A8+A10=A1r5(1+r2+r4)=43             

Q:  

The area of the region S = { ( x , y ) : y 2 8 x , y 2 x , x 1 }  is

Read more
A: 

y 2 8 x y > 2 x

2 x 2 = 8 x x ( x 4 ) = 0 x = 0 , x = 4 x = 0 , x = y

Required area = 14 (22x2x) dx

=28231522=1126

Q:  

Let y = y(x) be the solution of the differential equation x(1x2)dydx+(3x2yy4x3)=0,x>1,withy(2)=2. Then y(3) is equal to

A: 

x (1x2)dydx+ (3x2yy4x3)=0

x (1x2)dydx+ (3x21)y=4x3

y=2x1 (x3x)y (3)=18

Q:  

Let the eccentricity of the hyperbola H:x2a2y2b2=1be52 and length of its latus rectum be 62,ify=2x+c is a tangent to the hyperbola H, then the value of c2 is equal to

Read more
A: 

a 2 ( e 2 1 ) = b 2  

e = 5 2 b 2 = 3 a 2 2                

Length of latus rectum 2 b 2 a = 6 2  

3 a = 6 2 a = 2 2                

b = 2 3                

y = 2x + c is tangent to hyperbola

c 2 = a 2 m 2 b 2 = 2 0        

Q:  

If the tangents drawn at the points O(0, 0) and P ( 1 + 5 , 2 )  on the circle x2 + y2 – 2x – 4y = 0 intersect at the point Q, then the area of the triangle OPQ is equal to

Read more
A: 
x 2 + y 2 2 x 4 y = 0

 Centre (1, 2) r = 5  

Equation of OQ is x . 0 + y . 0 – (x + 0) – 2 (y + 0) = 0

⇒ x + 2y = 0       ……… (i)

Equation of PQ is  x ( 1 + 5 ) + 2 y ( | x + 1 + 5 ) 2 ( y + 2 ) = 0

Solving (i) & (ii), Q ( 5 + 1 , 5 + 1 2 )  

= 1 2 | 6 + 2 5 + 4 5 = 4 2 | = 6 5 + 1 0 4 = 3 5 + 5 2

Q:  

If two distinct points Q, R lie on the line of intersection of the planes x + 2y – z = 0 and 3x 5y + 2z = 0 and PQ = PR = 18 where the point P is (1, 2, 3), then the area of the triangle PQR is equal to

Read more
A: 

Let vector along L is x

x=|ijk121352|

i^j^k^

Area of ΔPQR=12|PQ×PR|

=12|i^j^k^1415343113|

= 4 3 3 8

Q:  

The acute angle between the planes P1 and P2, when P1 and P2 are the planes passing through the intersection of the planes 5x + 8y + 13z – 29 = 0 and 8x – 7y + z – 20 = 0 and the points (2, 1, 3) and (0, 1, 2), respectively, is

Read more
A: 

( 5 x + 8 y + 1 3 z 2 9 ) + λ ( 8 x 7 y + z 2 0 ) = 0  

P1 passing (2, 1, 3)

(10 + 8 + 39 – 29) + λ ( 1 6 7 + 3 2 0 ) = 0  

2 8 8 λ = 0 λ = 7 / 2               

2X – Y + Z – 6 = 0      …..(i)

For P2 passes (0, 1, 2)

( 8 + 2 6 2 9 ) + λ ( 7 + 2 2 0 ) = 0              

5 2 5 λ = 0 λ = 1 5               

P 2 : x + y + 2 z 5 = 0 . . . . . . . . ( i i )               

Acute angle between the planes

c o s θ = 2 1 + 2 4 + 1 + 1 1 + 1 + 4 = 1 2               

θ = π 3            

Q:  

Let the plane P:r.a=d contains the line of intersection of two planes r.(i^+3j^k^)=6 and r.(6i^+5j^k^)=7. If the plane P passes through the point (2,3,12) , then the value of |13a|2d2 is equal to

Read more
A: 

 P: (x+3yz6)=λ (6x+5yz7)=0

Passes  (2, 3, 12)

(2+9126)=λ (12+15127)=0

λ=1

|13a|2d2= (13)2 (93) (13)2=93

Q:  

The probability, that in a randomly selected 3-digit number at least two digits are odd, is

A: 

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Q:  

The number of real solutions of the equation e4x + 4e3x – 58e2x + 4ex + 1 = 0, is……………

A: 

e4x+4e3x58e2x+4ex+1=0

(e2x+1e2x)+4 (ex+1ex)58=0

(ex+1ex+2)2=64

ex=6±322=3±2

Q:  

The number of positive integers k such that the constant term in the binomial expansion of ( 2 x 3 + 3 x k ) 1 2 , x 0 i s 2 8 . l , w h e r e l  is an odd integer, is………..

Read more
A: 

(2x3+3xk)12

gen term =

=12Cr212r.3r.x363rrk

For constant term

36 – 3r – rk = 0

k=363rr

for r = 1, 2, 4

12Cr212-r>28

Possible values of k = 3, 1

Maths NCERT Exemplar Solutions Class 12th Chapter Ten Logo

JEE Mains 2022

JEE Mains 2022

Q&A Icon
Commonly asked questions
Q:  

The sum, of all real values of x for which 3 x 2 9 x + 1 7 x 2 + 3 x + 1 0 = 5 x 2 7 x + 1 9 3 x 2 + 5 x + 1 2  is equal to…………….

Read more
A: 

3 x 2 9 x + 1 7 x 2 + 3 x + 1 0 = 5 x 2 7 x + 1 9 3 x 2 + 5 x + 1 2

1 + 2 x 2 1 2 x + 7 x 2 + 3 x + 1 0 = 1 + 2 x 2 1 2 x + 7 3 x 2 + 5 x + 1 2

( 2 x 2 1 2 x + 7 ) ( 1 x 2 + 3 x + 1 0 1 3 x 2 + 5 x + 1 2 ) = 0

Q:  

Let S be the set of all passwords which are six to eight characters long, where each character is either an alphabet form { A , B , C , D , E }  or a number from { 1 , 2 , 3 , 4 , 5 }  with the repetition of characters allowed. If the number of passwords in S whose at least one character is a number from { 1 , 2 , 3 , 4 , 5 } i s α × 5 6 ,  then is equal to………….

Read more
A: 

Required number = Total – no character from {1, 2, 3, 4, 5}

= ( 1 0 6 5 6 ) + ( 1 0 7 5 7 ) + ( 1 0 8 5 8 )

= 5 6 ( 2 6 × 1 1 1 3 1 ) = 5 6 × 7 0 7 3 α

= 7073

Q:  

Let P ( 2 , 1 , 1 )  and Q ( 5 6 1 7 , 4 3 1 7 , 1 1 1 1 7 ) be the vertices of the rhombus PQRS. If the direction ratios of the diagonal RS are a, -1, b where both a and b are integers of minimum absolute values, then α2 + β2 is equal to………..

Read more
A: 

R S ( α , , 1 β )

D R o f P Q ( 5 6 1 7 + 2 , 4 3 1 7 + 1 , 1 1 1 1 7 1 )

( 9 0 1 7 , 6 0 1 7 , 9 4 1 7 )

9 0 α + 9 4 β = 6 0

β = 1 5 , α = 1 5 α 2 + β 2 = 4 5 0

Q:  

Let f: [0, 1] R be a twice differentiable function in (0, 1) such that f(0) = 3 and f(1) = 5. If the line y =2x + 3 intersects the graph of f at only two distinct points in (0, 1), then the least number of points x ( 0 , 1 ) ,  at which f " ( x ) = 0 ,  is…………….

Read more
A: 

f ' ( a ) = f ' ( b ) = f ' ( c ) = 2

f’’ (x) is zero for atleast x 1 ( a , b ) & x 2 ( b , c )

Q:  

If 0 3 1 5 x 3 1 + x 2 + ( 1 + x 2 ) 3 d x = α 2 + β 3 ,  where a, b are integers, then α + β is equal to………..

Read more
A: 

Put 1 + x 2 = t 2 2 x d x = 2 t d t  

1 2 1 5 ( t 2 1 ) t d t t 2 + t 3 d t Put (1 + t) = u2

3 0 2 3 ( u 4 2 u 2 ) d u dt = 2u du

= 6 3 + 1 6 2 = α 2 + β 3

α = 1 6 , β = 6 α + β = 1 0      

Q:  

Let A = [ 1 1 2 α ] a n d B = [ β 1 1 0 ] , α , β R .  Let a1 be the value of a which satisfies ( A + B ) = A 2 + [ 2 2 2 2 ] a n d α 2 be the value of a which satisfies (A + B)2 = B2. Then | α 1 α 2 |  is equal to…………….

Read more
A: 

A + B = [ β + 1 0 3 α ]

( A + B ) 2 = [ ( β + 1 ) 2 0 3 ( β + 1 ) + 3 α α 2 ]

[ 1 α + 1 2 α + 4 α 2 ] = [ ( β + 1 ) 2 0 3 ( α + β + 1 ) α 2 ]

= 1 = 1

B 2 = [ β 1 1 0 ] [ β 1 1 0 ]

β = 0 , α = 1 = α 2

| α 1 α 2 | = | 1 ( 1 ) | = 2

Q:  

For p, q R , consider the real valued function f(x) = (x – p)2 – q, x R  and q > 0. Let a1, a2, a3 and a4 be in an arithmetic progression with mean p and positive common difference. If | f ( a i ) | = 5 0 0 for all I = 1, 2, 3, 4, then the absolute difference between the roots of f(x) = 0 is………….

Read more
A: 

f ( x ) = 0 ( x p ) 2 q = 0  

Roots are  p + q , p q

Now, | f ( a i ) | = 5 0 0  

L e t a 1 , a 2 , a 3 . . . a r a , a + d , a + 2 d , a + 3 d               

=>  9 4 d 2 q = 5 0 0           …….(i)

and | f ( a 1 ) | 2 = | f ( a 2 ) | 2

From equation (i)

9 4 . 4 q 5 q = 5 0 0     

4 q 5 = 5 0 0           

and  2 q = 2 × 5 0 2 = 5 0

Q:  

For the hyperbola H: x2 – y2 = 1 and the ellipse E : x 2 a 2 + y 2 b 2 = 1 ,  a > b > 0, let the

(1) eccentricity of E be reciprocal of the eccentricity of H, and

(2) the line y = 5 2 x + K  be a common tangent of E and H.

Then 4(a2 + b2) is equal to……………..

Read more
A: 

e E = 1 b 2 a 2 , e H = 2

I f e E = 1 e H a 2 b 2 a 2 = 1 2

k 2 = a 2 × 5 2 + b 2 = 3 2

6 b 2 = 3 2 b 2 = 1 4 a n d a 2 = 1 2

4 ( a 2 + b 2 ) = 3

Q:  

Let x1, x2, x3,……..x20 be in geometric progression with x1 = 3 and the common ratio 1 2 .  A new data is constructed replacing each xi by (xi – i)2. If x ¯  is the mean of new data, then the greatest integer less than or equal to x ¯  is………….

Read more
A: 

x 0 1 = 3 ( 1 ( 1 2 ) ) 2 0 1 1 2 = 6 ( 1 1 2 2 0 )

= i = 1 2 0 ( x i ) 2 + ( i ) 2 2 x i i

Now, i = 1 2 0 ( x i ) 2 = 9 ( 1 ( 1 4 ) ) 2 0 ( 1 1 4 ) = 1 2 ( 1 1 2 4 0 )

x ¯ = 2 8 5 8 2 0 + ( 1 2 2 4 0 + 2 2 2 2 0 ) × 1 2 0

[ x ¯ ] = 1 4 2

Q:  

l i m x 0 ( ( x + 2 c o s x ) 3 + 2 ( x + 2 c o s x ) 2 + 3 s i n x ( x + 2 c o s x ) ( x + 2 ) 3 + 2 ( x + 2 ) 2 + 3 s i n ( x + 2 ) ) 1 0 0 x is equal to………….

A: 

l i m x 1 0 ( ( x + 2 c o s x ) 3 + 2 ( x + 2 c o s x ) 2 + 3 s i n ( x + 2 c o s x ) ( x + 2 ) 3 ± 2 ( x + 2 ) 2 + 3 s i n ( x + 2 ) ) x

e 1 0 0 1 6 + 3 s i n 2 [ 1 2 3 ( 4 ) + 8 × 1 8 + 3 c o s 2 3 c o s 2 1 ] , using L.H.L Rule, e0 = 1

2 x 2 1 2 x + 7 = 0 o r 3 x 2 + 5 x + 1 2 = x 2 + 3 x + 1 0

x 2 + x + 1 = 0

Sum of roots = 6, no solution.

Q&A Icon
Commonly asked questions
Q:  

The sum, of all real values of x for which 3 x 2 9 x + 1 7 x 2 + 3 x + 1 0 = 5 x 2 7 x + 1 9 3 x 2 + 5 x + 1 2  is equal to…………….

Read more
A: 

3 x 2 9 x + 1 7 x 2 + 3 x + 1 0 = 5 x 2 7 x + 1 9 3 x 2 + 5 x + 1 2

1 + 2 x 2 1 2 x + 7 x 2 + 3 x + 1 0 = 1 + 2 x 2 1 2 x + 7 3 x 2 + 5 x + 1 2

( 2 x 2 1 2 x + 7 ) ( 1 x 2 + 3 x + 1 0 1 3 x 2 + 5 x + 1 2 ) = 0

Q:  

Let S be the set of all passwords which are six to eight characters long, where each character is either an alphabet form { A , B , C , D , E }  or a number from { 1 , 2 , 3 , 4 , 5 }  with the repetition of characters allowed. If the number of passwords in S whose at least one character is a number from { 1 , 2 , 3 , 4 , 5 } i s α × 5 6 ,  then is equal to………….

Read more
A: 

Required number = Total – no character from {1, 2, 3, 4, 5}

= ( 1 0 6 5 6 ) + ( 1 0 7 5 7 ) + ( 1 0 8 5 8 )

= 5 6 ( 2 6 × 1 1 1 3 1 ) = 5 6 × 7 0 7 3 α

= 7073

Q:  

Let P ( 2 , 1 , 1 )  and Q ( 5 6 1 7 , 4 3 1 7 , 1 1 1 1 7 ) be the vertices of the rhombus PQRS. If the direction ratios of the diagonal RS are a, -1, b where both a and b are integers of minimum absolute values, then α2 + β2 is equal to………..

Read more
A: 

R S ( α , , 1 β )

D R o f P Q ( 5 6 1 7 + 2 , 4 3 1 7 + 1 , 1 1 1 1 7 1 )

( 9 0 1 7 , 6 0 1 7 , 9 4 1 7 )

9 0 α + 9 4 β = 6 0

β = 1 5 , α = 1 5 α 2 + β 2 = 4 5 0

Q:  

Let f: [0, 1] R be a twice differentiable function in (0, 1) such that f(0) = 3 and f(1) = 5. If the line y =2x + 3 intersects the graph of f at only two distinct points in (0, 1), then the least number of points x ( 0 , 1 ) ,  at which f " ( x ) = 0 ,  is…………….

Read more
A: 

f ' ( a ) = f ' ( b ) = f ' ( c ) = 2

f’’ (x) is zero for atleast x 1 ( a , b ) & x 2 ( b , c )

Q:  

If 0 3 1 5 x 3 1 + x 2 + ( 1 + x 2 ) 3 d x = α 2 + β 3 ,  where a, b are integers, then α + β is equal to………..

Read more
A: 

Put 1 + x 2 = t 2 2 x d x = 2 t d t  

1 2 1 5 ( t 2 1 ) t d t t 2 + t 3 d t Put (1 + t) = u2

3 0 2 3 ( u 4 2 u 2 ) d u dt = 2u du

= 6 3 + 1 6 2 = α 2 + β 3

α = 1 6 , β = 6 α + β = 1 0      

Q:  

Let A = [ 1 1 2 α ] a n d B = [ β 1 1 0 ] , α , β R .  Let a1 be the value of a which satisfies ( A + B ) = A 2 + [ 2 2 2 2 ] a n d α 2 be the value of a which satisfies (A + B)2 = B2. Then | α 1 α 2 |  is equal to…………….

Read more
A: 

A + B = [ β + 1 0 3 α ]

( A + B ) 2 = [ ( β + 1 ) 2 0 3 ( β + 1 ) + 3 α α 2 ]

[ 1 α + 1 2 α + 4 α 2 ] = [ ( β + 1 ) 2 0 3 ( α + β + 1 ) α 2 ]

= 1 = 1

B 2 = [ β 1 1 0 ] [ β 1 1 0 ]

β = 0 , α = 1 = α 2

| α 1 α 2 | = | 1 ( 1 ) | = 2

Q:  

For p, q R , consider the real valued function f(x) = (x – p)2 – q, x R  and q > 0. Let a1, a2, a3 and a4 be in an arithmetic progression with mean p and positive common difference. If | f ( a i ) | = 5 0 0 for all I = 1, 2, 3, 4, then the absolute difference between the roots of f(x) = 0 is………….

Read more
A: 

f ( x ) = 0 ( x p ) 2 q = 0  

Roots are  p + q , p q

Now, | f ( a i ) | = 5 0 0  

L e t a 1 , a 2 , a 3 . . . a r a , a + d , a + 2 d , a + 3 d               

=>  9 4 d 2 q = 5 0 0           …….(i)

and | f ( a 1 ) | 2 = | f ( a 2 ) | 2

From equation (i)

9 4 . 4 q 5 q = 5 0 0     

4 q 5 = 5 0 0           

and  2 q = 2 × 5 0 2 = 5 0

Q:  

For the hyperbola H: x2 – y2 = 1 and the ellipse E : x 2 a 2 + y 2 b 2 = 1 ,  a > b > 0, let the

(1) eccentricity of E be reciprocal of the eccentricity of H, and

(2) the line y = 5 2 x + K  be a common tangent of E and H.

Then 4(a2 + b2) is equal to……………..

Read more
A: 

e E = 1 b 2 a 2 , e H = 2

I f e E = 1 e H a 2 b 2 a 2 = 1 2

k 2 = a 2 × 5 2 + b 2 = 3 2

6 b 2 = 3 2 b 2 = 1 4 a n d a 2 = 1 2

4 ( a 2 + b 2 ) = 3

Q:  

Let x1, x2, x3,……..x20 be in geometric progression with x1 = 3 and the common ratio 1 2 .  A new data is constructed replacing each xi by (xi – i)2. If x ¯  is the mean of new data, then the greatest integer less than or equal to x ¯  is………….

Read more
A: 

x 0 1 = 3 ( 1 ( 1 2 ) ) 2 0 1 1 2 = 6 ( 1 1 2 2 0 )

= i = 1 2 0 ( x i ) 2 + ( i ) 2 2 x i i

Now, i = 1 2 0 ( x i ) 2 = 9 ( 1 ( 1 4 ) ) 2 0 ( 1 1 4 ) = 1 2 ( 1 1 2 4 0 )

x ¯ = 2 8 5 8 2 0 + ( 1 2 2 4 0 + 2 2 2 2 0 ) × 1 2 0

[ x ¯ ] = 1 4 2

Q:  

l i m x 0 ( ( x + 2 c o s x ) 3 + 2 ( x + 2 c o s x ) 2 + 3 s i n x ( x + 2 c o s x ) ( x + 2 ) 3 + 2 ( x + 2 ) 2 + 3 s i n ( x + 2 ) ) 1 0 0 x is equal to………….

A: 

l i m x 1 0 ( ( x + 2 c o s x ) 3 + 2 ( x + 2 c o s x ) 2 + 3 s i n ( x + 2 c o s x ) ( x + 2 ) 3 ± 2 ( x + 2 ) 2 + 3 s i n ( x + 2 ) ) x

e 1 0 0 1 6 + 3 s i n 2 [ 1 2 3 ( 4 ) + 8 × 1 8 + 3 c o s 2 3 c o s 2 1 ] , using L.H.L Rule, e0 = 1

2 x 2 1 2 x + 7 = 0 o r 3 x 2 + 5 x + 1 2 = x 2 + 3 x + 1 0

x 2 + x + 1 = 0

Sum of roots = 6, no solution.

qna

Maths NCERT Exemplar Solutions Class 12th Chapter Ten Exam

Student Forum

chatAnything you would want to ask experts?
Write here...