NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations – PDF Download

NCERT Maths 12th 2023 ( Maths Ncert Solutions class 12th )

Pallavi Pathak
Updated on Aug 6, 2025 12:15 IST

By Pallavi Pathak, Assistant Manager Content

Differential Equation Class 12 covers basic concepts of the chapter, general and particular solutions of a differential equation, methods to solve a first-order, first-degree differential equation, formation of differential equations, and applications of differential equations in different areas. It is an important chapter as an in-depth study of differential equations is extremely significant in all modern scientific investigations.
Differential Equations Class 12 NCERT Solutions is an accurate and reliable study material for Class 12 students preparing for the CBSE Board exam and entrance tests like JEE Mains. The student can also download the Differential Equations Class 12 PDF from this page to get well-structured solutions of all the NCERT textbook questions of this chapter. To get access to the NCERT solutions of all the Maths, Physics, and Chemistry of Class 11 and Class 12, check - NCERT Solutions Class 11 and 12.

Table of content
  • Quick Summary of Differential Equations – Class 12 Maths
  • Class 12 Math Chapter 9 Differential Equations NCERT Solution PDF
  • Class 12 Math Chapter 9 Differential Equations: Key Topics, Weightage
  • Important Formulas of Differential Equation Class 12
  • Class 12 Differential Equations Exercise-wise Solution
  • Differential Equations Exercise 9.1 Solutions
Maths Ncert Solutions class 12th Logo

Quick Summary of Differential Equations – Class 12 Maths

Here is an overview of the Class 12 Differential Equations:

  • The chapter states that a differential equation is an equation involving derivatives of the dependent variable with respect to the independent variable.
  • A polynomial equation in its derivatives is the degree of a differential equation.
  • The order of the highest order derivative occurring in the differential equation is the order of the differential equation.
  • Homogeneous differential equation - a differential equation that can be expressed as math ml code are homogenous function of degree zero.

To read the chapter-wise important topics and get free PDFs, check Class 12 Maths NCERT Solutions.

Maths Ncert Solutions class 12th Logo

Class 12 Math Chapter 9 Differential Equations NCERT Solution PDF

To get access to the step-by-step solutions of all the NCERT questions of the Differential Equations Class 12, download the PDF from the link given here. The solutions are ideal for CBSE Board exam preparation and other competitive exams like JEE Mains.

Class 12 Math Differential Equations NCERT Solutions: Free PDF Download

Maths Ncert Solutions class 12th Logo

Class 12 Math Chapter 9 Differential Equations: Key Topics, Weightage

Differential Equation Class 12 is an important chapter as the concepts are used in all modern scientific investigations. Students should master the concepts to score high in the CBSE Board exam and in other competitive exams. Find below the topics covered in this chapter:

Exercise Topics Covered
9.1 Introduction
9.2 Basic Concepts
9.3 General and Particular Solutions of a Differential Equation
9.4 Methods of Solving First Order, First Degree Differential Equations

Differential Equation Class 12 Weightage in JEE Mains

Exam  Number of Questions Weightage
JEE Main 1-2 questions 3.3% to 7%

Related Links

NCERT Notes for Class 11 & 12 NCERT Class 12 Notes Class 12 Maths Notes PDF

Try these practice questions

Q1:

If x = x(y) is the solution of the differential equation y d x d y = 2 x + y 3 ( y + 1 ) e y , x ( 1 ) = 0 ; then x(e) is equal to :

View Full Question

Q2:

Let f : R ® R be a differentiable function such that f ( π 4 ) = 2 , f ( π 4 ) = 0 a n d f ' ( π 2 ) = 1  and let g ( x ) = x π / 4 ( f ' ( t ) s e c t + s e c t f ( t ) ) d t f o r x [ π 4 , π 2 ) .  Then l i m x ( π 2 ) g ( x )  is equal to:

View Full Question

Q3:

Let the solution curve y = y(x) of the differential equation (1+e2x)(dydx+y)=1 pass through the point (0,π2). Then, limxexy(x) is equal to:

Maths Ncert Solutions class 12th Logo

Important Formulas of Differential Equation Class 12

Differential Equations Important Formulae for CBSE and Competitive Exams

Students can check the important formulae for CBSE and other engineering entrance exams such as JEE Main, CUSAT CAT, and more... below;

  • General Solution:

    y = f ( x ) d x + C y = \int f(x)dx + C
  • Variable Separation:

    1 g ( y ) d y = f ( x ) d x \int \frac{1}{g(y)}dy = \int f(x)dx
  • Linear Differential Equations:

    • General form: d y d x + P y = Q \frac{dy}{dx} + Py = Q
    • Solution form: y e P d x = Q e P d x d x + C
  • Homogeneous Equations:

    • Substitution: y = v x y = vx or x = v y x = vy
    • Simplified separable form: d y d x = f ( y x ) \frac{dy}{dx} = f\left(\frac{y}{x}\right)
  • Exact Differential Equations:

    • General form: M ( x , y ) d x + N ( x , y ) d y = 0 M(x, y)dx + N(x, y)dy = 0
    • Solution: M d x + ( N y ( M d x ) ) d y = C \int Mdx + \int \left(N - \frac{\partial}{\partial y} \left( \int Mdx \right)\right)dy = C
  • Exponential Growth/Decay Differential Equations: d y d t = k y Solution:  y = y 0 e k t
Maths Ncert Solutions class 12th Logo

Class 12 Differential Equations Exercise-wise Solution

Class 12 Differential Equations is an important chapter, which consists of essential concepts of Calculus. Various exercises of Differential Equations deal with key concepts such as order and degree of a differential equation, formation of differential equations by eliminating arbitrary constants, and methods to solve them, including variable separation, homogeneous equations, and linear differential equations.  Shiksha provides exercise-wise solutions with step-by-step explanations, Students can take the help of solutions to master these concepts. Students can check the Exercise-wise Chapter 9 Differential Equation Class 12 math solutions here.

Maths Ncert Solutions class 12th Logo

Differential Equations Exercise 9.1 Solutions

Class 12 Differential Equations Exercise 9.1 focuses on Fundamental concepts such as understanding the order and degree of a differential equation, identifying differential equations from given relationships, and forming differential equations by eliminating arbitrary constants from given functions. Differential Equation Exercise 9.1 Solutions consists of 12 Questions. Students can check the complete Exercise 9.1 Solutions below;

Class 12 Chapter 9 Differential Equations Exercise 9.1 NCERT Solution

Determine order and degree (if defined) of differential equations given in Questions 1 to 10:

Q1.    d 4 y d x 4 + s i n ( y ' ) = 0

A.1. The highest order derivation present in the differential equation (D.E.) is  d 4 y d x 4  , so its order is 4.

As, the given D.E.is not a polynomial equation in its derivative ,its degree is not defined.

Q2. y' + 5y = 0

A.2. The highest order derivation present in the D.E. is y , so its order is 1.

As the given D.E. is a polynomial equation in its derivative its degree is 1.

Q3.  ( d s d t ) 4 + 3 s d 2 s d t 2 = 0

A.3. The highest order derivation present in the D.E. is  d 2 s d t 2  so its order is 2 .

As the given D.E. is a polynomial equation in its derivative its degree is 1.

Q4.  d 2 y ( d x 2 ) 2 + c o s ( d y d x ) = 0
A.4.  d 4 y d x 4  As the given D.E. is not a polynomial equation in its derivative, its degree is not defined.

 

Q&A Icon
Commonly asked questions
Q:  

For each of the differential equations in Question 11 to 12, find a particular solution satisfying the given condition:

47. (x3+x2+x+1)dydx=2x2+x

Read more
A: 

The given D.E is (x3+x2+x+1)dydx=2x2+x

dy=(2x2+xx3+x2+x+1)dxdy=2x2+xx2(x+1)+(x+1)dx=2x2+x(x+1)(x2+1)dx

Integrating both sides we get,

dy=2x2+x(x+1)(x2+1)dx

Let, 2x2+x(x+1)(x2+1)=Ax+1+Bx+cx2+1

2x2+2=A(x2+1)+(Bx+c)(x+1)=Ax2+A+Bx2+Bx+Cx+C=(A+B)x2+(B+C)x2+(A+C)

Comparing the co-efficient we get,

A+B=2(1)B+C=1(2)A+C=0(3)

Subtracting equation (1) – (2), we get

A+B(B+C)=21AC=1

But from equation (3) A=C so, we get,

A(C)C=12C=1C=12&A=(12)=12

And putting value of A in equation (1),

12+B=2B=212=412=32

Putting value of A,B and C in

2x2+x(x+1)(x2+1)=12x+1+32x12x2+1=12(x+1)+32(xx2+1)12(1x2+1)

Hence, the integration becomes

dy=12(x+1)dx+34(2xx2+1)dx12(1x2+1)dxy=12log(x+1)+34log(x2+1)12tan1x1+c

Given, At x=0,y=1

Then, 1=12log1+34log112tan1(0)+C

1=0+00+C{?log1=0tan100}c=1

 The required particular solution is:

y=12log(x+1)+34log(x2+1)12tan1x+1=14[2log(x+1)+3log(x2+1)]12tan1x+1=14[log(x+1)2+log(x2+1)3]12tan1x+1=14[log(x+1)2(x2+1)3]12tan1x+1

Q:  

41. (ex+ex)dy(exex)dx=0

A: 

Given,   (ex+ex)dy (exex)dx=0

(ex+ex)dy= (exex)dxdy=exexex+exdx

Integrating both sides

dy=exexex+exdx {? f| (x)f (x)dx=log|x|}

y=log|ex+ex|+c is the required general solution.

Q:  

58. In a culture the bacteria count is 1,00,000. The number is increased by 10% in 2 hours. In how many hours will the count reach 2,00,000, if the rate of growth of bacteria is proportional to the number present.

Read more
A: 

Let ‘x’ be the number of bacteria present in instantaneous time t.

Then, dxdtx

dxdt=kx,where,k= constant of proportionality.

dxx=kdt

Integrating both sides,

dxx=kdtlogx=kt+c

Given, at t=0,x=x0(say)then,

logx0=c(Initial,x0=100000)

So, the differential equation is

logx=kt+logx0logxlogx0=ktlogxx0=kt

As the bacteria number increased by 10% in 2 hours.

The number of bacteria increased in 2hours =10%×100000=10000

Hence, at t=2,

x=100000+10000=110000

So, log110000100000=2kk=12log(1110)

Hence, logxx0=[12log1110]×t

when,x=200000, then we get,

log200000100000=12log1110×t

2log2=log(1110)×tt=2log2log(1110)hours

Q:  

Determine order and degree (if defined) of differential equations given in Questions 1 to 10:

1.   d4ydx4+sin(y')=0

Read more
A: 

The highest order derivation present in the differential equation (D.E.) is d4ydx4 , so its order is 4.

As, the given D.E.is not a polynomial equation in its derivative, its degree is not defined.

Q:  

22. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

37. dydx=1cosx1+cosx

A: 

The given D.E is

dydx=1cosx1+cosx

By separable of variable,

dy=1cosx1+cosxdx{cos2x=12sin2x=2sin2x=1cos2x=2sin2x2=1cosxcos2x=2cos2x1}dy=2sin2x22cos2x2dxdy=tan2x2dx

Integrating both sides,

dy=tan2x2dx{sec2x=1+tan2}y=(sec2x21)dx

y=tanx212x+c c = constant

y=2tanx2x+c is the general solution.

Q:  

39. dydx+y=1(y1)

A: 

Given,  dydx+y=1

dydx=1y= (y1)

By separable of variable,

dy (y1)=dx

Integrating both sides,

dy (y1)=dxlog|y1|=x+c|y1|=ex+cy1=±ex.ec

y=1+Ac where A=±ec

Is the general solution.

Q:  

42. dydx=(1+x2)(1+y2)

A: 

Given,  dydx= (1+x2) (1+y2)

dy (1+y2)= (1+x2)dx

Integrating both sides

dy (1+y2)dy= (x2+1)dxtan1y1=x33+x+c

tan1y=x33+x+c is the general solution.

Q:  

65. Kindly Consider the following

A: 

Kindly go through the solution

Integrating both sides,

Q:  

18. Kindly Consider the following

A: 

Given,  y=xsinx

So,  y|=xddxsinx+sinxdxdx=xcosx+sinx

Now, L.H.S of the given D.E =xy|

=x (xcosx+sinx)

=x2cosx+xsinx

Q:  

Kindly Consider the following

25. xa+yb=1

A: 

Given: Equation of the family of curves  xa+yb=1.......... (i)

Differentiating both sides of the given equation with respect to x, we get:

1a+1bdydx=01a+1by'=0

Again, differentiating both sides with respect to x, we get:

0+1by"=01by"=0y"=0

Hence, the required differential equation of the given curve is y"=0

Q:  

21. x + y = tan-1 y   :   y2y' + y+ 1 = 0

A: 

Given,  x+y=tan1y

Differentiate with ‘x’ we get

1+dydx=11+y2dydx=1+y|=11+y2y|= (1+y|) (1+y2)=y|=1+y2y|+y|+y2=y|=y2y|+y2+1=0

 The given fxn is a solution of the given D.E

Q:  

40. sec2xtanydx+sec2ytanxdy=0

A: 

Given, sec2xtanydx+sec2ytanxdy=0

Dividing throughout by ‘ tanxtany ’ we get,

sec2xtanytanxtanydx+sec2ytanxtanxtanydy=0sec2xtanxdx+sec2ytanydy=0

Integrating both sides we get,

sec2xtanxdx+sec2ytanydy=logclog|tanx|+log|tany|=logc{f|(x)f(x)dxlog|f(x)|}log|(tanx+tany)|=logc

tanxtany=±c is the required general solution.

Q:  

43. ylogydxxdy=0

A: 

Given, ylogydxxdy=0

ylogydx=xdydyylogy=dxx

Integration both sides,

dyylogy=dxx

Put log y=t1y=dtdydyy=dt

Hence, dtt=dxx

log|t|=log|x|+log|c|=log|xc|t=±xc

logy=ax where a=±c

y=eax is the general solution.

Q:  

44. x5dydx=y5

A: 

Given,  x5dydx=y5

dyy5=dxx5

Integrating both sides

dyy5=dxx5y5dy=x5dx

y5+1 (5+1)=x5+1 (5+1)+c14y4=14x4+c

1y4=1x4+4c is the general solution.

Q:  

45. dydx=sin1x

A: 

Given,  dydx=sin1x

dy=sin1xdx

Integrating

Q:  

46. extanydx+(1ex)sec2ydy=0

A: 

Given, extanydx+(1ex)sec2ydy=0

Dividing throughout by (1ex)tany we get,

extany(1ex)tanydx+(1ex)sec2y(1ex)tanydy=0=ex1exdx+sec2ytanydy=0

Integrating both sides

=ex1exdx+sec2ytanydy=clogc=log|1ex|+log|tany|=clogc=logtany1ex=logc=tany1ex=c

=tany=(1ex)c is the general solution.

Q:  

53 Find the equation of the curve passing through the point (0,-2) given that at any point (x,y) on the curve the product of the slope of its tangent and y-coordinate of the point is equal to the x-coordinate of the point.

Read more
A: 

The slope of the tangent to then curve is dydx

dydx.y=xy.dy=xdx

So,

Integrating both sides,

y.dy=xdxy22=x22+cy2=x2+A, Where, A=2c

As the curve passes through (0, -2) we have,

(2)2=02+AA=4

 The equation of the curve is

y2=x2+4

Q:  

56. In a bank, principal increases continuously at the rate of r% per year. Find the value of r if Rs 100 doubles itself in 10 years (loge 2 = 0.6931).

Read more
A: 

Let P, r and t be the principal rate and time respectively.

Then, increase in principal dPdt=P×r%

dPdt=P.r100dPP=r100dt

Integrating both sides,

dPP=r100dtlogP=rt100+cP=ert100+c

Given at t=0,P=100

So, 100=er×0100+c

100=e0×ecec=100(?e0=1)

And at t=10,P=2×100=200

So, 200=er10100+c

200=er10.eeer10=200100=2

r10=log2r10=0.6931r=6.931

Hence, the rate is 6.931%

Q:  

57.  In a bank, principal increases continuously at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years

(e0.5  = 1.645).

Read more
A: 

Let P and t the principal and time respectively.

Then, increase in principal dPdt=P×5%

dPP=5100dt

Integrating both sides,

dPP=120dtlogP=t20+cP=et20+c

At, t=0, P=1000

So,  1000=e020+cec=1000

And at t=10,

P=e10100+c=e0.5.ecP=1.648×1000=1648

P = ?1648

Q:  

62. (xy)dy(x+y)dx=0

A: 

The Given D.E. is (xy)dy(x+y)dx=0

(xy)dy=(x+y)dxdydx=x+yxy=x(1+yx)x(1yx)=1+yx1yx=f(yx)

Hence, the given D.E. is homogenous.

Let, y=vx=yx=v,so,dydx=v+xdvdx in the D.E

Then, v+xdvdx=1+v1vxdvdx=1+v1vv=1+v1+v21v=1+v21v[1v1+v2]dv=dxx

Integrating both sides,

1v1+v2dv=dxx11+v2dv122v1+v2dv=logx+ctan1v12log(1+v2)=logx+c

Putting back v=yx,weget,

=tan1yx12log|1+y2x2|=logx+c=tan1yx12log|x2+y2x2|=logx+c=tan1yx12[log(x2+y2)logx2]=logx+c

=tan1yx12log(x2+y2)+12logx2=logx+c=tan1yx12log(x2+y2)+log(x2)12=logx+c=tan1yx12log(x2+y2)+logx=log+c=tan1yx=12log(x2+y2)+c

Q:  

38. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

54. At any point (x, y) of a curve, the slope of the tangent is twice the slope of the line segment joining the point of contact to the point (–4, –3). Find the equation of the curve given that it passes through (–2, 1).

Read more
A: 

The slope of tangent is dydx and slope of line joining line (-4,-3) and point say P(x,y)

y(3)x(4)=y+3x+4

So, dydx=2(y+3x+4)

dyy+3=2x+4dx

Integrating both sides,

dyy+3=2x+4dxlog|y+3|=2log|x+4|+log|c|log|y+3|=log(x+4)2+log|c|log|y+3|=log|c(x+4)2|y+3=c1(x+4)2,where,c1=±c

Since, the curve passes through (-2,1) we get,

y=1,at,x=21+3=c(2+4)24=c×4c=1

 The equation of the curve is y+3=(x+4)2

Q:  

55. The volume of the spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of balloon after t seconds.

Read more
A: 

Let ‘r’ and U be the radius and volume of the spherical balloon.

Then, dUdt=k, k = constant

ddt(43πr3)=k4πr2drdt=k4πr2dr=kdt

Integrating both sides,

4πr2dr=kdt43πr3=kt+c

Given at t = 0, r = 3

So, 4π(3)3 = c

C = 36π

And, at t=3, r=6

So, 43π(6)3=3k+36π(c=36π)

288π36π=3kk=252π3=84π

Hence, putting value of c and k in,

43πr3=kt+c , we get,

43πr3=84π.t+36πr3=34π(84π.t+36π)r3=63t+27r=[63t+27]13

Q:  

59. The general solution of the differential equation  dydx=ex+y is:

(A) ex + e-y = C

(B) ex + ey = C

(C) e-x + ey = C

(D) e x + e-y = C

Read more
A: 

The given D.E. is

dydx=ex+ydydx=ex.eydyey=exdx

Integrating both sides,

dyey=exdxey1=ex+c1ey=exc1ey+ex=c, where, c=c1

 Option (A) is correct.

Q:  

60. (x2+xy)dy=(x2+y2)dx

A: 

The given D.E. is

dydx=x2+y2x2+x+y=x2(1+y2x2)x2(1+yx)=F(x,y)Then,F(λx,λy)=λ2x2λ2x2[1+λ2y2λ2x21+λyλx]=λ0F(x,y)=λ2F(x,y)

Hence, F(x,y) is a homogenous fxn of degree 2.

To solve it, let

y=vx,sothat,dydx=v.dxdx+xdvdxv=yxdydx=v+xdvdx

The D.E. now becomes,

v+xdvdx=1+v21+vxdvdx=1+v21+vv=1+v2vv21+v=1v1+v(1+v1v)dv=dxx

Integrating both sides,

1+v1vdv=dxx1+v1vdv=logx+c2(1v)1vdv=logx+c21vdv1dv=logx+c2log|1v|1v=logx+clog(1v)2+v=logxc

Put v=yx,

log(1yx)2+y2=logx+clog(xyx)2+logx=yxc

log[(xyx)2×x]=yxcxyx=eyxc=c1eyxc,where,c1e

(xy)2=c1.xeyx is the required solution of the D.E.

Q:  

61. Kindly Consider the following

y'=x+yx

A: 

The given D.E. is

y1=x+yx=dydx=1+yx=f (yx)

Hence, the given D.E is homogenous.

Let,  y=vxyx=v, sothat, dydx=v+xdvdx

So, the D.E. becomes

v+xdvdx=1+vxdvdx=1dv=dxx

Integrating both sides,

dv=dxxv=log|x|+c

Putting v=yx back we get,

yx=log|x|+c

Q:  

63. (x2y2)dx+2xydy=0

A: 

The Given D.E. is

(x2y2)dx+2xydy=02×ydy=(x2y2)dx=dydx=(x2y2)2xy=(y2x2)2xy=12(y2x2x2)(xyx2)=12[(yx)21](yx)=f(yx)

Hence, the given D.E. is homogenous.

Let, y=vxyx=v,sothat,dydx=v+xdvdx in the D.E

v+xdvdx=12[v21v]xdvdx=v212vv=v212v22v=1v22v(2v1+v2)dv=dxx

Integrating both sides we get,

Putting back v=yx we get,

x[y2x2+1]=cy2+x2x=c

y2+x2=xc is the required solution.

Q:  

64. x2dydx=x22y2+xy

A: 

The given D.E. is

x2dydx=x22y2++xydydx=x22y2++xyx2=12y2x2+yxdydx=12(yx)2+yx=f(yx)

Hence, the D.E. is homogenous fxn

Let, y=vx.=yx=v so that, dydx=v+xdvdx is the D.E.

Thus, v+xdvdx=12v2+v

xdvdx=12v2dv12v2=dxx

Integrating both sides,

Q:  

66. {xcos(yx)+ysin(yx)}ydx={ysin(yx)+xcos(yx)}xdy

A: 

The given D.E is

{xcos(yx)+ysin(yx)}ydx={ysin(yx)xcos(yx)}xdydydx={xcosyx+ysinyx}y{ysinyxxcosyx}x=xycosyx+y2sinyxxysinyxx2cosyx

yxcosyx+(yx)2sinyx(yx)sinyxcosyx {Dividing numerator and denominator by x2 }

=f(yx)

Hence, the given D.E is homogenous.

Let, y=vx=yx=v so that dydx=v+xdvdx in the D.E.

Then, v+xdvdx=vcosv+v2sinvvsinvcosv

xdvdx=vcosv+v2sinvvsinvcosvv=vcosv+v2sinvv2sinv+vcosvvsinvcosvvcosvvsinvcosv(vsinvcosvvcosv)dv=2dxx

Integrating both sides,

vsinvcosvvcosvdv=2dxxtanvdv1vdv=2log|x|+log|c|log|secv|log|v|=logx2+logclog|secvv|=logcx2secvv=cx2secv=cx2v

Putting back v=yx=cx2yx=cxy

secyx=cx2yx=cxy1cosyx=cxy1c=xycosyx

xycosyx=c1 where c1=1c 

Q:  

67. xdydxy=xsin(yx)=0

A: 

The given D.E. is xdydxy+xsin(yx)=0

xdydx=yxsin(yx)dydx=yxsin(yx)x=yxsinyx=f(yx)

Hence, the given D.E. is homogenous.

Let, y=vx=yx=v so that dydx=v+xdvdx in the D.E.

Then, v+xdvdx=vsinv

xdvdx=sinvdvsinv=dxxcosecvdv=dxx

Integrating both sides we get,

cosecvdv=dxxlog|cosecvcotv|=logx+logclog|cosecvcotv|=logcxcosecvcotv=cx

Putting back v=yx we get,

cosecyxcotyx=cx1sinyxcosyxsinyx=cx

x[1cosyx]=csin(yx) is the solution of the D.E.

Q:  

68. ydx=xlog(yx)dy2xdy=0

A: 

The given D.E is

ydx+xlog(yx).dy2xdy=0ydx=[2xdyxlog(yx)dy]ydx=[2xxlog(yx)]dydydx=y2xxlog(yx)=yx(2logyx)=yx2logyx=f(yx)

Hence, the given D.E is homogenous.

Let, y=vx=yx=v so that dydx=v+xdvdx in the D.E.

Then, v+xdvdx=v2logv

xdvdx=v2logvv=v2v+vlogv2logv=vlogvv2logv2logvv[logv1]dv=dxx1+1logvv[logv1]dv=dxx1[logv1]v[logv1]dv=dxx

[1v(logv1)1v]dv=dxx

Integrating both sides we get,

[1v(logv1)1v]dv=dxxdvv(logv1)logv=logx+logc

Let, logv1=t,so,ddv(logv1)=dtdv

1v=dtdvdvv=dtdttlogv=logx+logclogtlogv=logx+logclog|logv1|logv=logcx

Putting back v=yx we get,

log|log(yx)1|logyx=logcx=log[log(yx)1yx]=logcx=yx[log(yx)1]=cx

=log(yx)1=cy is the required solution.

Q:  

69. (1+exy)dx+exy(1xy)dy=0

A: 

The given D.E. is

(1+exy)dx+exy(1xy)dy=0(1+exy)dx=exy(1xy)dydxdy=exy(1xy)1+exy=f(xy)

Hence, the given D.E. is homogenous.

Let, x=yv=yx so that dydx=v+ydxdy in the D.E.

Then, v+ydvdy=ev(1v)1+ev

ydvdy=vevev1+evv=vevevvvev1+evydvdy=(ev+v)1+ev(1+evev+v)dv=dyy

Integrating both sides we get,

log|ev+v|=log|y|+log|c|

Putting back v=xy we get,

log|exy+xy|=log|cy|=exy+xy=cy

=x+yexy=c is the general solution.

Q:  

For each of the differential equations in Questions from 11 to 15, find the particular solution satisfying the given condition

70. (x + y) dy + (x – y) dx = 0; y = 1 when x = 1

Read more
A: 

The given D.E. is

(x+y)dy+(xy)dx=0=(x+y)dy=(xy)dx=dydx=yxx+y=yxxx+yy=yx11+yx=f(yx)

i.e, homogenous

Let, y=vx=v=yx so that dydx=v+ydydx in the D.E.

Then, v+xdvdx=v1v+1

=xdvdx=v1v+1v=v1v2vv+1=(v2+1)v+1=[v+1v2+1]dv=dxx

Integrating both sides,

v+1v2+1dv=dxx=122vv2+1dv+1v2+1dv=logx+c=log|v2+1|2+tan1v=logx+c

Putting back v=yx we get,

=12log|y2x2+1|+tan1yx=logx+c=12[log(y2+x2)logx2]+tan1yx+logx=c=12log(y2+x2)12logx2+logx+tan1yx=c=12log(y2+x2)logx+logx+tan1yx=c=12log(y2+x2)+tan1yx=c

Given, y=1,when,x=1

So, =12log(12+12)+tan111=c

=12log2+π4=c

Hence, the particular solution is

12log(12+12)+tan1yx=12log2+π4

Q:  

6. (y′′′) + (y′′) + (y′)4 + y5 =0

A: 

The highest order derivative present in the D.E. is y||| so its order is 3.

As the given D.E. is a polynomial equation in its derivation, its degree is 2.

Q:  

The degree of the differential equation  (d2ydx2)3+(dydx)2+sin(dydx)+1=0  is:

(A)

(B)

(C)

(D) Not defined

Read more
A: 

In the given D.E,

sindydx is a trigonometric function of derivative dydx . So it is not a polynomial equation so its derivative is not defined.

Hence, Degree of the given D.E. is not defined.

 Option (D) is correct.

Q:  

12. The order of the differential equation  2x2d2ydx23dydx+y=0  is:

(A)

(B)

(C)

(D) Not defined

Read more
A: 

The highest order derivative present in the given D.E. is d2ydx2 and its order is 2.

 Option (A) is correct.

Q:  

Kindly Consider the following

2. y' + 5y = 0

A: 

The highest order derivation present in the D.E. is y, so its order is 1.

As the given D.E. is a polynomial equation in its derivative its degree is 1.

Q:  

3. (dsdt)4+3sd2sdt2=0

A: 

The highest order derivation present in the D.E. is d2sdt2 so its order is 2 .

As the given D.E. is a polynomial equation in its derivative its degree is 1.

Q:  

4. d2y(dx2)2+cos(dydx)=0

A: 

d4ydx4 As the given D.E. is not a polynomial equation in its derivative, its degree is not defined.

Q:  

d2ydx2=cos3x+sin3x

A: 

d4ydx4 As the given D.E. is a polynomial equation in its derivative, its degree is 1.

Q:  

7. y''' + 2y'' + y' = 0

A: 

The highest order present in the D.E. is y||| so its order is 3.

As the given D.E. is a polynomial equation in its derivative, its degree is 1.

Q:  

8. y′ + y = ex

A: 

The given order derivative present in the D.E. is y| so its order is 1.

As the given D.E. is a polynomial equation in its derivative, its degree is 1.

Q:  

9. y'′ + (y')2  + 2y = 0

A: 

The highest order derivative present in the D.E. is y|| so its order is 2.

As the given D.E. is a polynomial equation in its derivative, its degree is 1.

Q:  

10.  y'′ + 2y' + sin y = 0

A: 

The highest order derivative present in the D.E. is y|| so its order is 2.

As the given D.E. is polynomial equation in its derivative, its degree is 1.

Q:  

13.  y = ex   + 1  :  y″ – y′ = 0

A: 

Given fxn is y=ex+1

Differentiating with x we get,

y|=dydx=ex

Again,

y||=d2ydx2=ex

Substituting value of y|| and y| in the given D.E. we get

L.H.S.=y||y|=exex=0=R.H.S

 The given fxn is a solution of the given D.E.

Q:  

14. y = x2  + 2x + C  :  y′ – 2x – 2 = 0

A: 

Given,  fxn is y=x2+2x+c

So,  y|=2x+2

Substituting value of y| in the given D.E. we get,

L.H.S.=y|2x2=2x+22x2=0=R.H.S

 The given fxn is a solution of the given D.E.

Q:  

15. y = cos x + C : y′ + sin x = 0

A: 

Given,  fxn is y=cosx+c

So,  y|=sinx

Putting the value of y| in the given D.E. we get,

L.H.S.=y|+sinx=sinx+sinx=0=R.H.S

 The given fxn is a solution of the given D.E.

Q:  

16.  y = √1 + x2 ; y/= xy1+x2

A: 

Given, y= √1 + x2

Q:  

17. y = Ax   :  xy′ = y (x ≠ 0)

A: 

Given,  y=Ax:

So,  y|=Adxdx=A

Putting value of y| in L.H.S. of the given D.E.

L.H.S= xy|=xA=Ax=y =R.H.S

 The given fxn is a solution of the given D.E.

Q:  
19. xy = log y + C :       

y'=y21xy(xy1)

A: 

Given, xy=logy+c

Differentiate w.r.t. x we have

xdydx+ydxdx=ddxlogy+ddxCxdydx+y=1ydydx+0xdydx1ydydx=ydydx[x1y]=ydydx[xy1y]=ydydx=y2xy1=(1)×y2(1)×(xy1)=y21xyy|=y21xy

Hence, y is a Solution of the given D.E

Q:  

20. y – cos y = x :  (y sin y + cos y + x) y′ = y

A: 

Given ycosy=x

Differentiate w.r.t ‘x’ we get

dydx (siny)dydx=dxdxdydx [1+siny]=1dydx=11+siny=y|

So, L.H.S of given D.E = (ysiny+cosy+x)y|

= (ysiny+cosy+ycosx) [11+siny]=y (1+siny) (1+siny)=y=R.H.S

 The given fxn is a solution of the given D.E.

Q:  

23. The number of arbitrary constants in the general solution of a differential equation of fourth order are:

(A) 0

(B) 2

(C) 3

(D) 4

Read more
A: 

The number of arbitrary constant is general solution of D.E of 4th order is four.

 Option (D) is correct.

Q:  

24. The number of arbitrary constants in the particular solution of a differential equation of third order are:

(A) 3

(B) 2

(C) 1

(D) 0

Read more
A: 

In a particular solution, there are no arbitrary constant.

Hence, option (D) is correct.

Q:  

26. y2=a(b2x2)

A: 

Given: Equation of the family of curves  y2=a(b2x2)

Differentiating both sides with respect to x, we get:

2ydydx=a(2x)2yy'=2axyy'=ax..........(1)

Again, differentiating both sides with respect to x, we get:

y'.y'+yy"=a(y')2+yy"=a..........(2)

Dividing equation (2) by equation (1), we get:

(y')2+yy"yy'=aaxxyy"+x(y')2yy"=0

This is the required differential equation of the given curve.

Q:  

27. y=ae3x+be2x

A: 

Given: Equation of the family of curves  y=ae3x+be2x..........(i)

Differentiating both sides with respect to x, we get:

y'=3ae3x2be2x..........(ii)

Again, differentiating both sides with respect to x, we get:

y"=9ae3x4be2x..........(iii)

Multiplying equation (i) with (ii) and then adding it to equation (ii), we get:

(2ae3x+2be2x)+(3ae3x2be2x)=2y+y'5ae3x=2y+y'ae3x=2y+y'5

Now, multiplying equation (i) with (iii) and subtracting equation (ii) from it, we get:

(3ae3x+2be2x)(3ae3x2be2x)=3yy'5be2x=3yy'be2x=3yy'5

Substituting the values of ae3x and be2x in equation (iii), we get:

y"=9.(2yy')5+4(3yy')5y"=18y+9y'5+12y4y'5y"=30y+5y'5y"=6y+y'y"y'6y=0

This is the required differential equation of the given curve.

Q:  

Kindly Consider the following

28. y=e2x(a+bx)

A: 

Given: Equation of the family of curves  y=e2x(a+bx)..........(1)

Differentiating both sides with respect to x, we get:

y'=2e2x(a+bx)+e2x.by'=e2x(2a+2bx+b)..........(2)

Multiplying equation (1) with (2) and then subtracting it from equation (2), we get:

y'2y=e2x(2a+2bx+b)e2x(2a+2bx)y'2y=be2x..........(3)

Differentiating both sides with respect to x, we get:

y"2y'=2be2x..........(4)

Dividing equation (4) by equation (3), we get:

y"2y'y'2y=2y"2y'=2y'4yy"4y'+4y=0

This is the required differential equation of the given curve.

Q:  

29. y=ex(acosx+bsinx)

A: 

Given: Equation of the family of curves y=ex(acosx+bsinx)..........(i)

Differentiating both sides with respect to x, we get:

y'=ex(acosx+bsinx)+ex(acosx+bsinx)y'=ex[(a+b)cosx(ab)sinx]..........(2)

Again, differentiating with respect to x, we get:

y"=ex[(a+b)cosx(ab)sinx]+ex[(a+b)sinx(ab)cosx]y"=ex[2bcosx2asinx]y"=2ex(bcosxasinx)y"2=ex(bcosxasinx)..........(3)

Adding equations (1) and (3), we get:

y+y"2=ex[(a+b)cosx(ab)sinx]y+y"2=y'2y+y"=2y'y"2y'+2y=0

This is the required differential equation of the given curve.

Q:  

30. Form the differential equation of the family of circles touching the y-axis at the origin.

A: 

The centre of the circle touching the y-axis at origin lies on the x-axis.

Let (a, 0) be the centre of the circle.

Since it touches the y-axis at origin, its radius is a.

Now, the equation of the circle with centre (a, 0) and radius (a) is

(xa)2+y2=a2.x2+y2=2ax.......... (1)

Differentiating equation (1) with respect to x, we get:

2x+2yy'=2ax+yy'=a

Now, on substituting the value of a in equation (1), we get:

x2+y2=2 (x+yy')xx2+y2=2x2+2xyy'2xyy'+x2=y2

This is the required differential equation.

Q:  

31. Find the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.

Read more
A: 

The equation of the parabola having the vertex at origin and the axis along the positive y-axis is:

x2 =4ay

Differentiating equation (1) with respect to x, we get:

2x=4ay'

Dividing equation (2) by equation (1), we get:

2xx2=4ay'4ay2x=y'yxy'=2yxy'2y=0

This is the required differential equation.

Q:  

32. Form the differential equation of family of ellipse having foci on y-axis and centre at the origin.

Read more
A: 

The equation of the family of ellipses having foci on the y-axis and the centre at origin is as follows:

x2b2+y2a2=1..........(1)

Differentiating equation (1) with respect to x, we get:

2xb2+2yy'b2=0xb2+yy'a2..........(2)

Again, differentiating with respect to x, we get:

1b2+y'.y'+y.y"a2=01b2+1a2(y'2+yy")=01b2=1a2(y'2+yy")

Substituting this value in equation (2), we get:

x[1a2((y')2+yy")]+yy"a2=0x(y')2xyy"+yy'=0xyy"+x(y')2=0

This is the required differential equation

Q:  

33. Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.

Read more
A: 

The equation of the family of hyperbolas with the centre at origin and foci along the x-axis is:

x2a2+y2b2=1..........(1)

Differentiating both sides of equation (1) with respect to x, we get:

2xa22yy'b2=0xa2yy'b2=0..........(2)

Again, differentiating both sides with respect to x, we get:

1a2y'.y'+y.y"b2=01a2+1b2((y')2+yy")=0

Substituting the value of 1a2 in equation (2), we get:

xb2((y')2+yy")yy'b2=0x(y')2+xyy"yy'=0xyy"+x(y')2yy'=0

This is the required differential equation.

Q:  

34. Form the differential equation of the family of circles having centres on y-axis and radius 3 units.

Read more
A: 

Let the centre of the circle on y-axis be (0, b).

The differential equation of the family of circles with centre at (0, b) and radius 3 is as follows:

x2+(yb)2=32x2+(yb)2=9..........(1)

Differentiating equation (1) with respect to x, we get:

2x+2(yb).y'=0(yb).y'=xyb=xy'

Substituting the value of (yb) in equation (1), we get:

x2+(xy')2=9x2[1+1(y')2]=9x2((y')2+1)=9(y')2(x29)(y')2+x2=0

This is the required differential equation.

Q:  

35. Which of the following differential equation has  y=c1ex+c2ex  as the general solution:

(A)d2ydx2+y=0(B)d2ydx2y=0(C)d2ydx2+1=0(D)d2ydx21=0

A: 

Given: y=c1ex+c2ex......... (1)

Differentiating with respect to x, we get:

dydx=c1exc2ex

Again, differentiating with respect to x, we get:

d2ydx2=c1ex+c2exd2ydx2=yd2ydx2y=0

This is the required differential equation of the given equation of curve.

Hence, the correct answer is B.

Q:  

36. Which of the following differential equations has y = x as one of its particular solutions:

(A)d2ydx2x2dydx+xy=x(B)d2ydx2+xdydx+xy=x(C)d2ydx2x2dydx+xy=0(D)d2ydx2+xdydx+xy=0

A: 

The given equation of curve is  y = x .

Differentiating with respect to x, we get:

dydx=1 .......... (1)

Again, differentiating with respect to x, we get:

d2ydx2=0.......... (2)

Now, on substituting the values of y,  d2ydx2 and dydx   from equation (1) and (2) in each of the given alternatives, we find that only the differential equation given in alternative C is correct

d2ydx2x2dydx+xy=0x2.1+x.x=x2+x2=0

Therefore, option (C) is correct.

Q:  

48. x(x21)dydx=1;y=0whenx=2

A: 

The given D.E. is

x(x21)dydx=1dy=dxx(x21)

Integrating both sides,

dy=dxx(x21)y=dxx(x21)(x+1)dx+c.

Let, 1x(x1)(x+1)=Ax+Bx1+cx+1

1=A(x1)(x+1)+B(x)(x+1)+C(x)(x1)=A(x21)+Bx2+Bx+Cx2Cx=Ax2A+Bx2+Bx+Cx2Cx=(A+B+C)x2+(BC)xA

Comparing the coefficient,

A=1A=1(1)A+B+C=0(2)BC=0B=C(3)

Putting equation (1) & (2) in (1) we get,

1+B+B=01+2B=0B=12=C

So, 1x(x1)(x+1)=1x+12x1+12x+1

=1x+12(x1)+12(x+1)

Integrating becomes,

y=1xdx+12(x1)dx+12(x+1)dx+c=log(x)+12log(x1)+12log(x+1)+c=12[2log(x)+log(x1)+log(x+1)]+c=12[logx2+log(x+1)(x1)]+c=12logx21x2+c

Given, y=0whenx=2.

Then, 0=12log22122+c

0=12log34+cc=12log34

 The required particular solution is

y=12logx21x212log34

Q:  

49. cos(dxdy)=a(aR);y=1whenx=0

A: 

Given, D.E. is

cosdydx=adydx=cos1 (a)dy=cos1 (a)dx

Integrating both sides,

dy=cos1 (a)dxy=cos1 (a)×x+cy=xcos1 (a)dx

Given,  y=1, atx=0

Then,  1=0cos1 (a)+c

c=1

The required particular solution is

Q:  

50. dydx=ytanx;y=1whenx=0

A: 

Given,  dydx=ytanx

dyy=tanxdx

Integrating both sides we get,

dyy=tanxdxlogy=log|secx|+logclogy=log|csecx|y=c1secx (where, c1=±c)

As,  y=1, at, x=0 we have,

1=c1sec (0)=cc=1

 The required particular solution is y=secx .

Q:  

51. Find the equation of the curve passing through the point (0, 0) and whose differential equation is y' = ex sin x

Read more
A: 

The given D.E. is y1=exsinx

dy=exsinxdx

Integrating both sides,

dy=exsinxdxy=I+c

Where, I=exsinxdx

=sinxexdxddxsinxexdx.dx=sinx.excosxexdx=sinxex{cosxexdxddx(cosx).I=exxdx}=sinx.ex{cosxex+sinxexdx}=sinx.excosxexII+I=ex(sinxcosx)I=ex2(sinxcosx)+c

Hence, y=ex2(sinxcosx)+c

When the curve passed point (0,0),

y=0,at,x=00=ex2(sin0cos0)+ce02(01)=cc=12

 The required equation of the curve is y=ex2(sinxcosx)+12

2y=ex(sinxcosx)+12y1=ex(sinxcosx)

Q:  

52. For the differential equation  xydydx=(x+2)(y+2) find the solution curve passing through the point (1,-1)

Read more
A: 

The Given D.E is

xydydx=(x+2)(y+2)ydyy+2=(x+2)2dxy+22y+2dy=(xx+2x)dx(12y+2)dy=(1+2x)dydx

Integrating both sides,

(12y+2)dy=(1+2x)dydxy2log|y+2|=x+2log|x|+cylog(y+2)2=x+logx2+cyx=log(y+2)2+logx2+cyx=log[(y+2)2.x2]+c

A the curve passes through (-1,1) then y=2,at,x=1

So, 11=log(1+2)2.(1)2+c

2=log1+cc=2

 The required equation of curve is,

yx=log[(y+2)2x2]2

Q:  

71. x2 dy + (xy + y2  ) dx = 0; y = 1 when x = 1

A: 

The given D.E. is

x2dy+(xy+y2)dx=0=x2dy=(xy+y2)dx=dydx=(xy+y2x2)=[yx+(y2x)]=f(yx)

i.e, the D.E is homogenous.

Let, y=vx=v=yx so that dydx=v+xdvdx in the given D.E.

Then, v+xdvdx=[v+v2]=vv2

=xdvdx=2vv2=v(2+v)=dvv(2+v)=dxx

Integrating both sides we get,

dvv(2+v)=dxx=122dv2(v+2)=dxx=12v+2vv(v+2)dv=dxx=12{1vdv1v+2dv}=dxx

=12[logvlog|v+2|]=logx+logc=12log(vv+2)=logcx=log(vv+2)12=logcx=(vv+2)12=cx=vv+2=(cx)2

Putting back v=yx we get,

=yxyx+2=(cx)2=yy+2x=(cx)2=x2yy+2x=c2

Given, y = 1 when x = 1

So, =11+2=c2=c2=13

Hence, the required particular solution is,

=x2yy+2x=13=3x2y=y+2x

Q:  

72. [xsin2(yxy)]dx+xdy=0;y=π4whenx=1

A: 

The given D.E.is

[xsin2(yx)y]dx+xdy=0=[xsin2(yx)y]dx=xdy=dydx=[xsin2(yx)y]x=[sin2(yx)yx]=f(yx)

i.e, the given D.E is homogenous.

Let, y=vx=yx=v so that, dydx=vxdvdx in the D.E.

=v+dvdx=[sin2vv]=vsin2v=dvdx=sin2v=dvsin2v=dx

Integrating both sides we get,

=cosec2vdv=dx=cotv=log|x|+c=cotv=log|x|c

Putting back v=yx we have,

cotyx=log|x|c

Then, y=π4 when, x=1

cotπ4=log|1|c=c=1

 The required particular solution is,

cotyx=log|x|+1=log|x|+logc{?loge=1}=cotyx=log|ex|

Q:  

73. dydxyx+cosec(yx)=0;y=0whenx=1

A: 

The given D.E.is

dydxyx+cosec(yx)=0=dydx=yxcosec(yx)=f(yx)

i.e, the given D.E. is homogenous.

Let, y=vx=yx=v So that, dydx=v+xdvdx in the D.E

Then, v+xdvdx=vcosecv

=xdvdx=cosecv=dvcosecv=dxx=sinvdv=dxx

Integrating both sides we get,

sinvdv=dxx=cosv=log|x|+c=cosv=log|x|c

Putting back v=yx we get,

=cosyx=log|x|c

Given, y=0,when,x=1

=cos0=log1c=c=1

 The required particular solution is

cos(yx)=log|x|+1=log|x|+log|c|=cos(yx)=log|cx|

Q:  

74. 2xy+y22x2dydx=0;y=2whenx=1

A: 

The given D.E. is

2xy+y22x2dydx=0=2x2dydx=2xy+y2=dydx=2xy+y22x2=yx+12(yx)2=f(yx)

i.e, the given is homogenous.

Let, y=vx =yx=v so that dydx=v+xdvdx is the D.E.

Then, v+xdvdx=v+12v2

=xdvdx=12v2=dvv2=dx2x

Now, =dvv2=dx2x

=v2+12+1=12log|x|+c=1v=12log|x|+c

Putting back yx=v we get,

=xy=12log|x|+c

Givenyx=vwhenx=1 and y= 2

=12=12log|1|+c=c=12

 The particular solution is,

=xy=12log|x|12=2xy=log|x|1=y=2xlog|x|1=2x1log|x|

Q:  

75. A homogeneous differential equation of the form dxdy=h(xy) can be solved by making the substitution:

(A) y = vx

(B) v = yx

(C) x = vy

(D) x = v

Read more
A: 

For a homogenous D.E. of the formula f (yx)

We put,  xy=0=x=vy

 Option (c) is correct.

Q:  

76. Which of the following is a homogeneous differential equation:

(A) (4x +6y +5) dy – (3y + 2x + 4) dx = 0

(B) (xy) dx – x3 + y3) dy = 0

(C) (x2 + 2y2) dx + (2xy + dy) = 0

(D) y2 dx + (x2 – xy + y2) dy = 0

Read more
A: 

In (D), each of the terms has a degree 2.

Hence, (D) is homogenous

 Option (D) is correct.

Q:  

77. Kindly Consider the following

dydx+2y=2sinx

A: 

The given D.E. is

dydx+2y=2sinx which is of form dydx+Px=Q

We have, P = 2

Q=sinx

So, I.F. =ePdx=e2dx=e2x

The solution is y×I.F=Q×(I.F)dx+c

ye2x=sinxe2xdx+c=ye2x=I+c(1)Where,I=sinxe2x=sinxe2x(ddxsinxe2xdx)dx=sinxe2x212[cosxe2xdx]=e2xsinx212[cose2xdx(ddxcosxe2xdx)dx]=e2xsinx212[cosxe2x212(cosx)e2xdx]=e2xsinx2e2xcosx414sinxe2xdx

=I=e2xsinx2e2xcosx4141=I+14I=2e2xsinxe2xcosx4=54I=e2x(2sinxcosx)4=I=e2x(2sinxcosx)5

Hence, equation, (1) becomes,

ye2x=e2x5(2sinxcosx)+c=y=(2sinxcosx)5+ce2x

Is the required solution.

Q:  

78. dydx+3y=e2x

A: 

Given, D.E. is

dydx+3y=e2x which is of the form

dydx+Py=Q

Where P=3&Q=e2x

So, I.F =ePdx=e3dx=e3x

So, the solution is =y×I.F=e2x(I.F).dx+c

=y×e3x=e2x.e3xdx+c=e3xy=exdx+c=e3xy=ex+c=y=exe3x+ce3x=y=e2x+ce3x

Is the required general solution.

Q:  

79. Kindly Consider the following

dydx+yx=x2

A: 

The given D.E. is

dydx+yx=x2 Which is in the form dydx+Py=Q

So,  P=1x=&Q=x2

I.F=ePdx=e12dx=elogx=x {? elogx=x}

Thus, the general solution is

y×I.F=Q×I.Fdx+cy.x=x2.xdx+c=xy=x3dx+c=xy=x44+c

Q:  

80. dydx+secxy=tanx(0xπ2)

A: 

The given D.E.is

dydx+(secx)y=tanx Which is in the form dydx+Py=Q

So, P=secx&Q=tanx

 I.F=ePdx=esecxdx=elog|secx+tanx|=secx+tanx

Thus, the general solution is ,

y×I.F=Q×I.Fdx+c=y×(secx+tanx)=tanx(secx+tanx)dx+c

=(tanxsecx+tan2x)dx+c=(tanxsecx+sec21)dx+c=sec+tanxx+c

=(secx+tanx)y=secx+tanxx+c{?sec2x=tan2x+1}

Q:  

81. cos2xdydx+y=tanx(0xπ2)

A: 

The given D.E.is

cos2xdydx+y=tanx=dydx+1cos2xy=tanxcos2x

=dydx+sec2xy=sec2xtanx Which is of form dydx+Py=Q

So, P=sec2x&Q=sec2xtanx

I.F=ePdx=esec2dx=etanx

Thus, the general solution is of the form.

y.etanx=sec2xtanx.etanxdx+c

Let, tanx=t=sec2xdx=dt

=yet=t.etdt+c=tetdtddttetdt.dt+c=tetetdt+c=tetet+c=et(t1)+c

yetanx=etanx(tanx1)+cy=(tanx1)+cetanx

Q:  

82. Kindly Consider the following

xdydx+2y=x2logx

 

A: 

The given D.E. is

xdydx+2y=x2logx

dydx+2x.y=xlogx which is of form dydx+Py=Q

So, P=2x&Q=xlogx

I.F=ePdx=e2xdx=e2logx=elogx2=x2

Thus, the general solution is of the form.

y×x2=xlogx.x2dx+c

=logxx3dx+c

=logxx3dxddxlogxx3dxdx+c=logx.x4414×x44dx+c

=yx2=x44logxx416+c=y=x24logxx216+cx2

Q:  

83. xlogxdydx+y=2xlogx

A: 

The given D.E. is

xlogxdydx+y=2xlogx

=dydx+yxlogx=2x2 Which is of form dydx+Py=Q

So, P=1xlogx&Q=2x2

I.F=ePdx=e1xlogxdx=e1xlogxdx=elog|logx|=logx

Thus, the general solution is of the form

y×logx=2x2×logxdx+cy.logx=2[logx1x2dxddxlogx1x2dx.dx]+c=2[logx×(x11)1x(x11)dx]+c=2[logxx+x2dx]+c=2[logxx(x11)]+c

=ylogx=2x[logx+1+c]

Q:  

84. (1+x2)dy+2xydx=cotxdx(x0)

A: 

The given D.E. is

(1+x)2dy+2xydx=cotxdx=(1+x)2dydx+2xy=cotx

=dydx+2x1+x2×y=cotx1+x2 Which is of form dydx+Py=Q

So , P=2x1+x2&Q=cotx1+x2

I.F=ePdx=e2x1+x2dx=elog|1+x2|=1+x2

Thus the solution is of the form,

y(1+x2)=cotx1+x2×(1+x2)dx+cy(1+x2)=cotxdx+c

=log|sinx|+c

y=log|sinx|1+x2+c1+x2=(1+x2)1log|sinx|+(1+x2)1c

Q:  

85. xdydx+yx+xycotx=0(x0)

A: 

The given D.E is

=dydx+y(1+xcotx)x=1 Which is of form dydx+Py=Q

So, P=(1+xcotx)x&Q=1

Pdx=(1x+xcotxx)dx=log|x|+log|sinx|=log|xsinx|

I.F=ePdxelog|xsinx|xsinx

Thus the solution is of the form.

y×xsinx=1.xsinxdx+c=xsinxddxsinxdxdx+c=2cosx+cosxdx+c=y×xsinx=xcosx+sinx+c=y=xcosxsinx+sinxxsinx+cxsinx=y=cotx+1x+cxsinx

Q:  

86. (x+y)dydx=1

A: 

The given D.E is

(x+y)dydx=1=x+y=dxdy

=dxdyx=y Which is of form =dxdy+Px=Q

So,  P=1&Q=y

I.F=ePdy=e1dy=ey

Thus the general solution is of the form,  x× (I.F)=Q (I.F)dy+c

Q:  

87. ydx+(xy2)dy=0

A: 

The given D.E. is

ydx+(xy2)dy=0=ydxdy+xy2=0=dxdy+xyy=0

=dxdy+1y.x=y Which is of form.

dxdy+Px=Q

So, P=1y&Q=y

I.F=ePdy=e1ydy=elogy=y

Thus the general solution is of form, x×(I.F)=Q×(I.F)dy+c

x.y=y.ydy+c=xy=y2dy+c=xy=y33+c=x=y23+cy

Q:  

88. (x+3y2)dydx=y(y>0)

A: 

The given D.E. is

(x+3y2)dydx=y(x+3y2)dy=ydxydxdy=x+3y2dxdy=xy+3y

dxdy1y.x=3y Which is form dxdy+Px=Q

So, P=1y&Q=3y

I.F=ePdy=e1ydy=elog|y|=elogy1=y1=1y

Thus the solution is of the form.

x×1y=3y.1ydy+c=xy=3dy+c=xy=3y+c=x=3y2+cy

Q:  

For each of the differential equations given in Questions 13 to 15, find a particular solution satisfying the given condition:

89. dydx+2ytanx=sinx;y=0whenx=π3

Read more
A: 

The given D.E. is

dydx+2ytanx=sinx

dydx+(2tanx)y=sinx Which is of form dydx+Px=Q

So, P=2tanx&Q=sinx

I.F=ePdy=e2tanxdx=e2log|secx|=elogsec2=sec2

Thus the solution is of the form y×(I.F)=Q.(I.F)dx+c

y.sec2x=sinx.sec2xdx+c=sinxcos2dx+c=tanx.secxdx+c=ysec2=secx+c=y=1secx+csec2x=cosx+ccos2=y=cosx+ccos2x

Given, y=0,Whenx=π3

=0=cosπ3+ccos2π3{c4=12,c=42,c=2}=0=12+c(12)2=0=12+c4

C = -2

 The particular solution is

y=cosx2cos2x

Q:  

90. (1+x2)dydx+2xy=11+x2;y=0whenx=1

A: 

The given D.E. is

(1+x2)dydx+2xy=11+x2

Which is of form 

dydx+Px=Q

So, P=2x1+x2&Q=1(1+x2)2

Pdx=2x1+x2dx=log|1+x2|

I.F=ePdx=elog|1+x2|=1+x2

Thus the solution is if form,

y×(I.F)=Q.(I.F)dx+c

y(1+x2)=1(1+x2)2×(1+x2)dx+c=1(1+x2)dx+cy×(1+x2)=tan1x+c

Given, y=0,when,x=1

0=tan11+cc=tan11=π4

 The particular solution is

y(1+x2)=tan1xπ4

Q:  

91. dydx3ycotx=sin2x;y=2whenx=π2

A: 

The given D.E. is

dydx3ycotx=sin2x

dydx3cotx.y=sin2x Which is of form dydx+Py=Q

So, P=3cotx&Q=sin2x

I.F=ePdx=e3cotxdx=e3cotxdx=e3log|cotxdx|=elog(sin)3=1sin3x

Thus the solution is of the form.

y×1sin3x=sin2x.1sin3xdx+c=2sinxcosxsin3xdx+c{?sin2x=2sinxcosx}=2cosecxcotxdx+c=2cosecx+c=ysin3x=2sinx+c=2y=2sin2x+csin3x

Given, y=2,when,x=π2

2=2sin212+csin3π2=2=2+c=e=2+2=4

 The particular solution is, y=2sin2x+4sin3x

Q:  

92. Find the equation of the curve passing through the origin, given that the slope of the tangent to the curve at any point (x, y) is equal to the sum of coordinates of that point.

Read more
A: 

We know the slope of tangent to curve is dydx .

 dydx=x+y

=dydxy=x which has form dydx+Py=Q

So, P=1&Q=x

I.F=ePdx=edx=ex

Thus the solution is of the form .

y×ex=x.exdx+c=xexdxdxdxexdxdx+c=xex+exdx+c=yex=xexex+c=y=x1+cex=y+x+1=cex

Given, the curve passes through origin (0,0) i.e, y=0,when,x=0

0+0+1=ce0=c=1

 Thus, equation of the curve is

y+x+1=ex

Q:  

93. Find the equation of the curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangents to the curve at that point by 5.

 

Read more
A: 

We know that slope of tangent to the curve is dydx

x+y=dydx+5

dydxy=x5 Which has form dydx+Px=Q

where,P=1&Q=x5

I.F=ePdx=e1dx=ex

Thus the solution has the form

yex=(x5)exdx+c=xexdx5exdx+c=yex=I+5ex+cwhere,I=xexdx=xexdxddxxexdxdx=xex+exdx=xexex

yex=xexex+5ex+c=yex=xex+4ex+c=y=x+4+cex=y+x=4+cex

Given, the curve passes through (0,2) so y=2 when x=0

2+0=4ce024=cc=2

 The particular solution is

y+x=42ex

Q:  

94. Choose the correct answer:

The integrating factor of the differential equation  dydxy=2x2 is:

(A) ex

(B) ey

(C) 1x

(D) x

Read more
A: 

The given D.E is

xdydxy=2x2dydx1xy=2x

Which is of form dydx+Py=Q

So,  P=1x

I.E=ePdx=e1xdx=elogx=elogx1=x1=1x

 Option (c) is correct

Q:  

95. Choose the correct answer:

The integrating factor of the differential equation  (1y2)dxdy+yx=ay(1<<1) .

Read more
A: 

The given D.E. is

(1y2)dxdy+yx=y(1<y<1)

dxdy+y1y2×x=y1y2 which is of form

dxdy+Px=Q&P=y1y2&Q=y1y2pdx=y1y2dx=122y1y2dx

=12log|1y2|=log[1y2]12

I.F=ePdx=elog[1y2]12=[1y2]12

 option (D ) is correct.

Q:  

96. For each of the differential equations given below, indicate its order and degree (if defined):

(i)d2ydx2+5x(dydx)26y=logx(ii)(dydx)34(dydx)2+7y=sinx(iii)d4ydx4sind3ydx3=0

Read more
A: 

(i) Given: Differential equation   d2ydx2+5x(dydx)26y=logx

The highest order derivative present in this differential equation is d2ydx2 and hence order of this differential equation if 2.

The given differential equation is a polynomial equation in derivatives and highest power of the highest order derivative d2ydx2 is 1.

Therefore, Order = 2, Degree = 1

(ii) Given: Differential equation (dydx)34(dydx)2+7y=sinx

The highest order derivative present in this differential equation is dydx and hence order of this differential equation if 1.

The given differential equation is a polynomial equation in derivatives and highest power of the highest order derivative dydx   is 3.

Therefore, Order = 1, Degree = 3

(iii) Given: Differential equation   d4ydx4sind3ydx3=0

The highest order derivative present in this differential equation is d4ydx4 and hence order of this differential equation if 4.

The given differential equation is not a polynomial equation in derivatives therefore, degree of this differential equation is not defined.

Therefore, Order = 4, Degree not defined

Q:  

97. For each of the exercises given below verify that the given function (implicit or explicit) is a solution of the corresponding differential equation:

(i)yae2+bex+x2:xd2ydx2+2dydxxy+x22=0(ii)y=ex(acosx+bsinx):d2ydx22dydx+2y=0(iii)y=xsin3x:d2ydx2+9y6cos3x=0(iv)x2=2y2logy:(x2+y2)dydxxy=0

Read more
A: 

(i) yae2+bex+x2

Differentiating both sides with respect to x, we get:

dydx=addx(ex)+bddx(ex)+ddx(x2)dydx=aexbex+2x

Again, differentiating both sides with respect to x, we get:

d2ydx2=aexbex+2x

Now, on substituting the values of dydx and d2ydx2 in the differential equation, we get:

L.H.S

xd2ydx2+2dydxxy+x22=x(aexbex+2)+2(aexbex+2x)x(aex+bex+x2)+x22=(xaexbxex+2x)+(2aex2bex+4x)(axex+bxex+x3)+x22=2aex2bex+x2+6x20

Therefore, Function given by equation (i) is a solution of differential equation. (ii).

(ii) y=ex(acosx+bsinx)=aexcosx+bexsinx

Differentiating both sides with respect to x, we get:

dydx=a.ddx(excosx)+b.ddx(exsinx)dydx=a(excosxexsinx)+b.(exsinx+excosx)dydx=(a+b)excosx+(ba)exsinx

Again, differentiating both sides with respect to x, we get:

d2ydx2=(a+b).ddx(excosx)(ba)ddx(exsinx)d2ydx2=(a+b).[excosxexsinx]+(ba)[exsinx+excosx]d2ydx2=ex[(a+b)(cosxsinx)+(ba)(sinx+cosx)]d2ydx2=ex[acosxasinx+bcosxbsinx+bsinx+bcosxasinxacosx]d2ydx2=[2ex(bcosxasinx)]

Now, on substituting the values of d2ydx2 and dydx in the L.H.S of the given differential equation, we get:

d2ydx2+2dydx+2y=2ex(bcosxasinx)2ex[(a+b)cosx+(ba)sinx]+2ex(acosx+bsinx)=ex[(2bcosx2asinx)(2acosx+2bcosx)(2bsinx2asinx)+(2acosx+2bsinx)]=ex[(2b2a2b+2a)cosx]+ex[(2a2b+2a+2b)sinx]=0

Therefore, Function given by equation (i) is solution of differential equation (ii)

(iii) y=xsin3x

Differentiating both sides with respect to x, we get:

dydx=ddx(xsin3x)=sin3x+x.cos3x.3dydx=sin3x+3xcos3x

Again, differentiating both sides with respect to x, we get:

d2ydx2=ddx(sin3x)+3ddx(xcos3x)d2ydx2=3cos3x+3[cos3x+x(sin3x).3]d2ydx26cos3x9xsin3x

Substituting the value of d2ydx2 in the L.H.S. of the given differential equation, we get:

d2ydx2+9y6cos3x=(6.cos3x9xsin3x)+9xsin3x6cos3x=0

Therefore, Function given by equation (i) is a solution of differential equation (ii).

(iv) x2=2y2logy

Differentiating both sides with respect to x, we get:

2x=2.ddx=[y2logy]x=[2y.logy.dydx+y2.1y.dydx]x=dydx(2ylogy+y)dydx=xy(1+2logy)

Substituting the value of dydx in the L.H.S. of the given differential equation, we get:

(x2+y2)dydxxy=(2y2logy+y2).xy(1+2logy)xy=y2(1+2logy).xy(1+2logy)xy=xyxy=0

Therefore, Function given by equation (i) is a solution of differential equation (ii).

Q:  

98. Form the differential equation representing the family of curves  (xa)2+2y2=a2 where a an arbitrary constant.

Read more
A: 

Equation of the given family of curves is  (xa)2+2y2=a2

(xa)2+2y2=a2x2+a22ax+2y2=a22y2=2axx2..........(1)

Differentiating with respect to x, we get:

2ydydx=2a2x2dydx=ax2ydydx=2a2x24xy..........(2)

From equation (*1), we get:

2ax=2y2+x2

On substituting this value in equation (3), we get:

dydx=2y2+x22x24xydydx=2y2x24xy

Hence, the differential equation of the family of curves is given as dydx=2y2x24xy

Q:  

99. Prove that x2y2=c(x2+y2)2  is the general equation of the differential equation  (x33xy2)dx=(y33x2y)dy  where c is a parameter.

Read more
A: 

dydx=x33xy2y33x2y..........(1)

This is a homogenous equation. To simplify it, we need to make the substitution as:

y=vxddx(y)=ddx(vx)dydx=v+xdvdx

Substituting the values of y and dvdx in equation (1), we get:

v+xdvdx=x33x(vx)2(vx)33x2(vx)v+xdvdx=13v2v33vxdvdx=13v2v33vvxdvdx=13v2v(v33v)v33vxdvdx=1v4v33v(v33v1v4)dv=dxx

Integrating both sides, we get:

(v33v1v4)dv=logx+logC'.........(2)Now,(v33v1v4)dv=v3dv1v43vdv1v4(v33v1v4)dv=I13I2,Where,I1=v3dv1v4andI2=vdv1v4...........(3)

Let,1v4=t.ddv(1v4)=dtdv4v3=dtdvv3dv=dt4Now,I1=dt4=logt=14log(1v4)

And,I2=vdv1v4=vdv1(v2)2Let,v2=p.ddv(v2)=dpdv2v=dpdvvdv=p2I2=12dp1p2=12×2log|1+p1p|=14log|1+v21v2|

Substituting the values of I1 and I2 in equation (3), we get:

(v33v1v4)dv=14log(1v4)34log|1+v21v2|

Therefore, equation (2) becomes:

14log(1v4)34log|1+v21v2|=logx+logC'14log[(1v4)(1+v21v2)]=logC'x(1+v2)4(1v2)2=(C'x)4(1+y2x2)4(1y2x2)2=1C'4x4(x2+y2)4x4(x2y2)2=1C'4x4(x2y2)2=C'4(x2+y2)4(x2y2)=C'2(x2+y2)2x2y2=C(x2+y2)2,whereC=C'2

Hence, the given result is proved.

Q:  

100. For the differential equation of the family of the circles in the first quadrant which touch the coordinate axes.

Read more
A: 

The equation of a circle in the first quadrant with centre (a, a) and radius (a) which touches the coordinate axes is:

(xa)2+(ya)2=a2..........(1)

Differentiating equation (1) with respect to x, we get:

2(xa)+2(ya)dydx=0(xa)+(ya)y'=0xa+yy'ay'=0x+yy'a(1+y')=0a=x+yy'1+y'

Substituting the value of a in equation (1), we get:

[x(x+yy'1+y')]2+[y(x+yy'1+y')]2=(x+yy'1+y')2[(xa)y'(1+y')]2+[yx1+y']2=[x+yy'1+y']2(xy)2.y'2+(xy)2=(x+yy')2(xy)2[1+(y')2]=(x+yy')2

Hence, the required differential equation of the family of circles is (xy)2[1+(y')2]=(x+yy')2

Q:  

101. Kindly Consider the following

A: 

Kindly go through the solution

 

Q:  
102. Show that the general solution of the differential equation 

dydx+y2+y+1x2+x+1=0 is given by (x+y+1)A(1xy2xy), where A is parameter.

Read more
A: 

Given: Differential equation dydx+y2+y+1x2+x+1=0

dydx+y2+y+1x2+x+1=0dydx= (y2+y+1)x2+x+1dyy2+y+1=dxx2+x+1dyy2+y+1+dxx2+x+1=0

Integrating both sides,

Q:  

103. Find the equation of the curve passing through the point (0,π/4), whose differential equation is sin x cos y dx + cos x sin y dy = 0.

Read more
A: 

The differential equation of the given curve is:

sinxcosydx+cosxsinydy=0sinxcosydx+cosxsinydycosxcosy=0tanxdx+tanydy=0

Integrating both sides, we get:

log(secx)+log(secy)=logClog(secx.secy)=logCsecx.secy=C..........(1)

The curve passes through point (0,π4)

1×√2=CC=√2

On subtracting C=√2 in equation (10, we get:

secx.secy=√2secx.1cosy=√2cosy=secx/√2

Q:  

104. Find the particular solution of the differential equation (1 + e2x ) dy + (1 + y2 ) ex dx = 0, given that y = 1 when x = 0.

Read more
A: 

(1+e2x)dy+(1+y2)exdx=0dy1+y2+exdx1+e2x=0

Integrating both sides, we get:

tan1y+exdx1+e2x=C..........(1)Let,ex=te2x=t2ddx(ex)=dtdxex=dtdxexdx=dt

Substituting these values in equation (1), we get:

tan1y+dt1+t2=Ctan1y+tan1t=Ctan1y+tan1(ex)=C..........(2)Now,y=1,at,x=0

Therefore, equation (2) becomes:

tan11+tan11=Cπ4+π4=CC=π2

Substituting C=π2 in equation (2), we get:

tan1y+tan1(ex)=π2

This is the required solution of the given differential equation.

Q:  

105. Solve the differential equation: yexydx=(xexy+y2)dy(y0)

A: 

yexydx=(xexy+y2)dyyexydxdy=xexy+y2exy[y.dxdyx]=y2exy.[y.dxdyx]y2=1..........(1)

Let,exy=z

Differentiating it with respect to y, we get:

(exy)=dzdyexy.ddy(xy)=dzdyexy.[y.dxdyxy2]=dzdy..........(2)

From equation (1) and equation (2), we get:

dzdy=1dz=dy

Integration both sides, we get:

z=y+Cexyy+C

Q:  

106. Find a particular solution of the differential equation (x – y) (dx + dy) = dx – dy, given that y = –1, when x = 0. (Hint: put x – y = t)

Read more
A: 

(xy)(dx+dy)=dxdy(xy+1)dy=(1x+y)dxdydx=1x+yxy+1dydx=1(xy)1+(xy)..........(1)Let,xy=tddx(xy)=dtdx1dydx=dtdx1dtdx=dydx

Substituting the values of xy and dydx in equation (1), we get:

1dtdx=1t1+tdtdx=1(1t1+t)dtdx=(1+t)(1t)1+tdtdx=2t1+t

(1+ttdt)=2dx(1+1t)dt=2dx..........(2)

Integrating both sides, we get:

t+log|t|=2x+C(xy)+log|xy|=2x+Clog|xy|=x+y+C..........(3)

Now,y=1,at,x=0

Therefore, equation (3) becomes:

log1=01+C

C=1

Substituting C=1 in equation (3), we get:

og|xy|=x+y+1

This is the required particular solution of the given differential equation .

Q:  

107. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

108. Find the particular solution of the differential equation dydx+ycotx=4xcosecx(x0)

given that y = 0 when x = π/2

Read more
A: 

The given differential equation is:

dydx+ycotx=4xcosecx

This equation is a linear equation of the form

dydx+Py=Q,where,p=cotx&Q=4xcosecxNow,I.F=ePdx=ecotxdx=elog|sinx|=sinx

The general solution of the given differential equation is given by,

y(I.F)=(Q×I.F.)dx+C

ysinx=(4xcosecx.sinx)dx+Cysinx=4xdx+Cysinx=4.x22+Cysinx=2x2+C..........(1)Now,y=0at,x=π2

Therefore, equation (1) becomes:

0=2×π2+CC=π22

Substituting C=π22 in equation (1), we get:

ysinx=2x2π22

This is the required particular solution of the given differential equation.

Q:  

109. Find the particular solution of the differential equation (x+1)dydx=2ey1 given that y = 0 when x = 0

Read more
A: 

(x+1)dydx=2ey1dy2ey1=dxx+1eydy2ey=dxx+1

Integrating both sides, we get:

eydy2ey=log|x+1|+logC..........(1)Let2ey=tddy(2ey)=dtdyey=dtdyeydy=dt

Substituting this value in equation (1), we get:

dtt=logog|x+1|+logClog|t|=log|C(x+1)|log|2ey|=log|C(x+1)|12ey=C(x+1)2ey=1C(x+1)..........(2)

Now, at x=0& y=0, equation (2) becomes:

21=1CC=1

Substituting C=1 in equation (2), we get:

2ey=1x+1ey=21x+1ey=2x+21x+1ey=2x+1x+1y=log|2x+1x+1|,(x1)

This is the required particular solution of the given differential equation.

Q:  

110. The population of a village increases continuously at the rate proportional to the number of its inhabitants present at any time. If the population of the village was 20,000 in 1999 and 25,000 in the year 2004, what will be the population of the village in 2009?

Read more
A: 

Let the population at any instant (t) be y.

It is given that the rate of increase of population is proportional to the number of inhabitants at any instant.

dydtαy

dydt=ky (k is constant)

dyy=kdt

Integration both sides, we get:

logy=kt+C..........(1)

In the year 1999,t=0&y=20000.

Therefore, we get:

log20000=C..........(2)

In the year 2004,t=5&y=25000.

Therefore, we get:

log25000=5k+log200005k=log(2500020000)=log(54)k=15log(54)..........(3)

In the year 2009,t=10years

Now, on substituting the values of t, k, and C in equation (1), we get:

logy=10×15log(54)+log(20000)logy=log[20000×(54)2]y=20000×54×54y=31250

Hence, the population of the village in 2009 will be 31250.

Q:  

Choose the correct answer:

111. The general solution of the differential equation  ydxxdyy=0 is:

(A)xy=c(B)x=cy2(C)y=cx(D)y=cx2

A: 

The given differential equation is:

ydxxdyy=0ydxxdyxy=01xdx1ydy=0

Integration both sides, we get:

log|x|log|y|=logklog|xy|=logkxy=ky=1kxy=Cx, where, C=1k

Therefore, option (C) is correct.

Q:  

112. The general equation of a differential equation of the type dxdy+P1x=Q,is:

(A)yeP1dy=(Q1eP1dy)dy+C(B)y.eP1dx=(Q1eP1dx)dx+C(C)xeP1dy=(Q1eP1dy)dy+C(D)x.eP1dx=(Q1eP1dx)dx+C

A: 

The integrating factor of the given differential equation  dxdy+P1x=Q1

The general solution of the differential equation is given by,

x (I.F.)= (Q×I.F.)dy+Cx.eP1dy= (Q1eP1dy)dy+C

Hence, the correct answer is C.

Q:  

113. The general solution of the differential equation  exdy+(yex+2x)dx=0  is:

(A)xey+x2=C(B)xey+y2=C(C)yex+x2=C(D)yey+x2=C

A: 

The given differential equation is:

exdy+(yex+2x)dx=0exdydx+yex+2x=0dydx+y=2xex

This is a linear differential equation of the form

dydx+Py=Q,whereP=1&Q=2xexNow,I.F.=ePdx=edx=ex

The general solution of the given differential equation is given by,

y(I.F.)=(Q×I.F.)dx+Cyex=(2xex.ex)dx+Cyex=2xdx+Cyex=x2+Cyex+x2=C

Therefore, option (c) is correct.

qna

Maths Ncert Solutions class 12th Exam

Student Forum

chatAnything you would want to ask experts?
Write here...