Matrices Class 12 NCERT Solutions – Easy Step-by-Step Answers

NCERT Maths 12th 2023 ( Maths Ncert Solutions class 12th )

Pallavi Pathak
Updated on Aug 1, 2025 12:31 IST

By Pallavi Pathak, Assistant Manager Content

Class 12 Math NCERT Solution Matrices is an important chapter, as Matrices are one of the most powerful tools in mathematics. Its knowledge is useful in various branches of mathematics. The concepts are used in the electronic spreadsheet programs for personal computers. It is also used in science and business, like sales projection, budgeting, cost estimation, analysing the results of an experiment, etc. 
Matrices Class 12 Maths NCERT Solutions are not only used in science but also in economics, genetics, modern psychology, sociology and industrial management. The chapter covers the types, operations and transpose of matrices. The experts at Shiksha have created the NCERT solutions to help students understand the concepts better. It will help them score high in the CBSE Board exam and other entrance tests like JEE Mains.
Explore the NCERT solutions for all chapters of Class 11 and Class 12 Maths, Physics, and Chemistry, and get the key topics and free PDFs.

 

 

 

Table of content
  • Key Concepts of Class 12 NCERT Maths Solutions Matrices at a Glance
  • Class 12 Math Matrices Solution PDF: Free Download
  • Class 12 Math Chapter 3 Matrices: Key Topics, Weightage
  • Class 12 Math Ch 3 Matrices Exercise-wise Solutions
  • Class 12 Math Chapter 3 Matrices Exercise 3.1 Solutions
  • Important Formulas of Class 12 Maths NCERT Solutions Matrices
Maths Ncert Solutions class 12th Logo

Key Concepts of Class 12 NCERT Maths Solutions Matrices at a Glance

Here is a quick summary of the main concepts covered in the Matrices Class 12:

  • Class 12th Maths NCERT Solutions cover the definition of a matrix. It is an ordered rectangular array of functions or numbers. If a matrix has m rows and n columns, the matrix order is - m × n
  • It covers column matrix, row matrix, square matrix, diagonal matrix, scalar, and identity matrix.
  • Also, the zero matrix, symmetric matrix, skew-symmetric matrix, and inverse of a square matrix.

Check here for NCERT solutions of all Class 12 Maths chapters with free PDF, important topics. You will also get the weightage information for the chapters.

Maths Ncert Solutions class 12th Logo

Class 12 Math Matrices Solution PDF: Free Download

Those who are looking to download the free Matrices Class 12 NCERT PDF can find the link below. The students must download it for their exam preparation. The step-by-step solutions will help them understand the concepts clearly and score high in the exams.

Class 12 Math Chapter 3 Matrices Solution: Free PDF Download

 

Maths Ncert Solutions class 12th Logo

Class 12 Math Chapter 3 Matrices: Key Topics, Weightage

While preparing the Class 12th Maths NCERT Solutions Matrices, students should focus on the core concepts of the matrices, including subtraction, addition, multiplication, and finding the determinant and inverse of matrices. See below the topics covered in Maths Class 12 NCERT Solutions Matrices:

Exercise Topics Covered
3.1 Introduction
3.2 Matrix
3.3 Types of Matrices
3.4 Operations on Matrices
3.5 Transpose of a Matrix
3.6 Symmetric and Skew-Symmetric Matrices
3.7 Invertible Matrices

Maths Class 12 Matrices Weightage in JEE Mains

Exam Number of Questions Weightage
JEE Main 1-2 questions 6-8%

Related Links

NCERT Notes for Class 11 & 12 NCERT Class 12 Notes Class 12 Maths Notes

 




Maths Ncert Solutions class 12th Logo

Class 12 Math Ch 3 Matrices Exercise-wise Solutions

The class 12 Matrices Chapter focuses on several important topics, such as the Type of Matrices, zero, symmetric, and asymmetric Matrices, the Transpose and Inverse of Matrices, and other Matrices operations. Students will encounter different problems based on these concepts in the exercises. Each exercise deals with different concepts, Class 12 Matrices Exercise 3.1 deals with the basics of Matrix, its types and fundamentals. Class 12 Matrices Exercise 3.2  deals with operations of Matrix, its multiplication both scaler and vector and more advanced concepts. Class 12 Matrices Exercise 3.3 deals with problems finding the transpose and inverse of Matrix. Students can check Exercise-wise Class 12 Chapter 3 Matrices NCERT Solutions below;

Try these practice questions

Q1:

Let R1 = { ( a , b ) N × N : | a b | 1 3 } a n d  

R2 =   { ( a , b ) N × N : | a b | 1 3 } . Then on N :

View Full Question

Q2:

Let A and B be two 3 × 3 non-zero real matrices such that AB is a zero matrix. Then

Q3:

If the system of linear equations

2x + 3y – z = 2

x + y + z = 4

xy+|λ|z=4λ4 where λR, has no solution, then

Maths Ncert Solutions class 12th Logo

Class 12 Math Chapter 3 Matrices Exercise 3.1 Solutions

Matrices exercise 3.1 solutions focuses on the basic concepts of matrices. Definition, types of Matrices, and basic operations of matrices are several topics discussed in the solutions of Matrices Class 12 Exercise 3.1. Chapter 3 Matrices Exercise 3.1 includes 10 Questions (7 Short Answers, 3 MCQs). Students can find the solution of exercise 3.1 below;

Matrices Exercise 3.1 Solutions

Q2. If a matrix has 24 elements, what are the possible orders it can have? What, if it has 13 elements?

A.2. As, number of elements of matrix having order m × n = m.n.

(b) So, (possible) order of matrix with 24 elements are (1 × 24), (2 × 12), (3 × 8), (4 × 6), (6 × 4), (8 × 3), (12 × 2), 24 × 1).

Similarly, possible order of matrix with 13 elements are (1 × 13) and (13 × 1)

Q3.If a matrix has 18 elements, what are the possible orders it can have? What, if it has 5 elements?

A.3. As number of elements of matrix with order m × n

(E) Possible order of matrix with 18 elements are (1 × 18), (2 × 9), (3 × 6), (6 × 3), (9 × 2) and (18 × 1)

Similarly, possible order of matrix with 5 elements are (1 × 5) and (5 × 1)

Q4.Construct a 2 × 2 matrix,  A = [ a i j ]  , whose elements are given by:

a i j = ( i + j ) 2 2  (ii)  a i j = i j  (iii)  a i j = ( i + 2 j ) 2 2

A.4. (E) (i) aij ( i + j ) 2 2  such that i = 1, 2 and j = 1 × 2 for 2 × 2 matrix

Therefore a11 = ( 1 + 1 ) 2 2 = 2 2 2 = 2 A 2 = [ a 1 1 a 1 2 a 2 1 a 2 2 ]

a12 = ( 1 + 2 ) 2 2 = 3 2 2 = 9 2

a21 ( 2 + 1 ) 2 2 = 3 2 2 = 9 2   [ 2 9 2 9 2 8 ]

a22 = ( 2 + 2 ) 2 2 = 4 2 2 = 1 6 2 = 8

Q&A Icon
Commonly asked questions
Q:  

12.Compute the following:

(i) [abba]+[abba] (ii) [a2+b2b2+c2a2+c2a2+b2]+[2ab2bc2ac2ab]

(iii) [1468516285]+[1276805324] (iv) [cos2xsin2xsin2xcos2x]+[sin2xcos2xcos2xsin2x]

A: 

(I)  [abba]+ [abba]= [a+ab+bb+ba+a]= [2a2b02a]

Q:  

7. Find the value of a, b, c and d from the equation:

[ab2a+c2ab3c+d]=[15013]

A: 

[ab2a+c2ab3c+d]= [15013]

(5) Equating the corresponding elements of the matrices we get,

a - b = -1 - (i)

2a + c = 5 - (2)

2a - b = 0 - (3)

3c + d = 13 - (4)

Subtracting eqn (1) from (3) we get,

2a - b (a - b) = 0- (-1)

2a - b - a+ b = 0 + 1 = 1

  [a= 1]

Put a=1 eqn (2) we get,

2 × 1 + c = 5  c = 5 - 2   [c = 3]

Put c=3qn  (4) we get,

3 × 3 + d = 13  => d = 13 - 9   [d = 4.]

put a=1q2 (1) we get, 1 - b = -1  b = 1 + 1   [b= 2]

Q:  

17.Find X and Y, if

(i) X+Y=[7025] and XY=[3003]

(ii) 2X+3Y=[2340] and 3X+2Y=[2215]

A: 

(i) x + y = [7025]

x - y = [3003]

Y=12[4022]=[12×412×012×212×2] =[2011]

(ii) 2x + 3y = [2340] ___ (1)

2x + 2y = [2215] _____ (2)

Multiplying  eqn by 2 and qn(u)

2 × (2x+ 3y) = 2 × [2340]

 4x + 6y = [2×22×32×42×0]

 4x + 6y = [4680] (iii).

3 × (3x+ 2y) = 3 × [2215]

 9x + 6y = [3×(2)3×(2)3×(1)3×5]=[66315] (iv)

Subtracting  eqn  (iii) from (iv) we get,

4x+ 6y - (4x+ 6y) = [66315] [4680]

 5x = [646638150]= [2121115]

x=15[2121115]=[2×1512×1511×1515×15]= [251251153]

From eqn  (u);

3y=[2340]2x=[2340][2×252×(125)2×(11/5)2×3]

=[2340] [452452256]

=[2453(245)4(225)06]

=[5×2453×5+2454×5+2256]

=[104515+24520+2256]

=13[653q54256]= [13×6513×39513×42513×(6)]

=[251351452]

Q:  

11 Let A=[2432],B=[1325],C=[2534]

Find each of the following:

(i) A + B (ii) A – B (iii) 3A – C (iv) AB (v) BA

A: 

A =[2432], B =[1325], C =[2534]

(i) A + B = [2432]+[1325]=[2+14+3322+5]=[3717]

(ii) A - B = [2432][1325]=[21433(2)25]=[3153].

(iii) 3A - C = 3 [2432][2534]=[3×23×43×33×2][2534]=[61296][2534]

 =[6(2)1259364] = [8762]

(iv) AB = [2432][1325]=[2×1+4×(2)2×3+4×53×1+2×(2)3×3+2×5]=[286+20349+10]

[626119]

Q:  

38. If (i) [cosαsinαsinαcosα] , then verify that A' A = I

(ii) If [sinαcosαcosαsinα] , then verify that A' A = I

A: 

(i) Given, A = [cosαsinαsinαcosα]

Then, A’ = [cosαsinαsinαcosα]

∴A’ A = [cosαsinαsinαcosα][cosαsinαsinαcotα]

[cosαcosα+(sinα)(sinα)cosαsinα+(sinα)cosαsinαcosα+cosα(sinα)sinαsinα+cosαcosα]

[cos2α+sin2αcosαsinαsinαcosαsinαcosαcosαsinαsin2α+cos2α]

[1001] {?cos2x+sin2x=2}

= A ’ A = 1.

Given,

(ii) 1 A = [sinαcosαcotαsinα]

Then, A’ = [sinαcosαcotαsinα]

∴A’ A = [sinαcosαcotαsinα][sinαcosαcosαsinα]

[sinαsinα+(cosα)(cosα)sinαcosα+(cosα)cosαcosαsinα+sinα(cosα)cosαcosα+sinαsinα]

[sin2α+cos2αsinαcotαcosαsinαcosαsinαsinαcosαcos2α+sin2α]

[1001] {?cos2x+coscos2x=1}.

  A’ A. = I

Q:  

6. Find the values of x, y and z from the following equations:

A: 

(i) [43x5]=[yz15]

corresponding

By equating the elements of the matrices, we get,

x= 1

y= 4

z= 3.

(ii) [x+y25+zxy]=[6258]

By equating the corresponding elements of the matrices we get,

x+ y = 6 (I)

5 + Z = 5 z=55z=0

xy = 8

 x =8y →(2)

putting eqn(2) in (1) we get

8y + y = 6.

8 + y2 = 6y

y2 6y + 8 = 0.

y2 - 4y - 2y + 8 = 0

y (y-4) -2 (y-4) = 0

(y-4) (y-2) = 0

 y= 4 0r y = 2.

When y = 4,x= 6-y = 6-4 = and z = 0.

Wheny = 2,x = 6-y = 6-2 = 4 and z = 0.

By equating the corresponding elements of the matrices we get,

x+ y + z = 9 -------(i)

x + z = 7 --------(ii)

y + z = 7 -------(iii)

Subtracting eqn (3) from (1) and (2) from (1) we get,

x + y + z -y - z = 9 - 7 and x + y + z - x - z = 9 - 5

 x = 2 and y = 4 .

Putting x = 2 in eqn (2)

2 + z = 5

z = 5 - 2 = 3.

So, x = 2,y = 4, z = 3.

Q:  

5.Construct a 3 × 4 matrix, whose elements are given by:

(i) aij=12|3i+j| (ii) aij=2ij

A: 

(E) (i) aij = 12 |3i+j| such that i = 1, 2, 3 and j = 1, 2, 3, 4 for 3 × 4 matrix

So, a11= 12 . |3.1+1|=12|3+1|=12|3+1|=12|2|=22=1.

a12 = 12|3.1+2|=12|1|=12

a13=12|3.1+3|=12×0=0

a14 = 12|3.1+4|=12|1|=12

a21 = 12|3.2+1|=12|6+1|=12|5|=52

a22 = 12|3.2+2|=12|6+2|=12|4|=42=2

a23 = 12|3.2+3|=12|6+3|=12|3|=32

a24=12|32+4|=12|6+4|=12+4|2|=22=1

a31=12|33+1|=12|0+1|=12|8|=82=4.

a32=12|32+2|=12|9+2|=?72=72

a33=12|33+3|=12|9+3|=+6?2=62=3

a34=12|33+4|=12|9+4|=?|5|2=52.

Q:  

70. If A =[ 31-12 ], show that A2 – 5A + 7I = 0.

A: 

Given A = [ 31-12 ]

So; A2=[3112][3112]=[3×3+1×(1)3×1+1×21×3+2×(1)1×1+2×2]

=[913+2321+4]=[8553]

∴ A2 - 5A + 7I = [8553]5[3112]+7[1001]

=[8553][155510]+[7007]

=[815+755+05+5+0310+7]=[0066]=0.

Hence Showed.

Q:  

26. If A=[102021203] prove that A36A2+7A+2I=0

A: 

Given A = [102021203]

A2 = AA = [102021203][102021203]

=[1×1+0×0+2×21×0+2×0+2×01×2+0×1+2×30×1+2×0+1×2a×0+2×2+1×00×2+2×1+1×32×1+0×0+3×22×0+0×2+3×02×2+0×1+3×3]

=[1+402+6242+32+604+9]=[5082458013]

A3 = A2A = [5082458013][102021203]

=[5×1+0×0+8×25×0+0×2+8×05×2+0×1+8×32×1+4×0+5×22×0+4×2+5×02×2+4×1+5×38×1+0×0+13×28×0+0×2+0×08×2+0×1+13×3]

[5+16010+242+1084+4+158+26016+39] =[210341282334055]

So, A3-6A2 + 7A + 2I

=[210341282334055]6[5082458013]+7[102021203]+2[100010001]

=[210341282334055][3004812243048078]+[7014014714021]+[200020002]

=[2130+7+200+0+03448+14+01212+0+0824+14+22330+7+03448+14+000+0+05578+21+2]

=[000000000]=0 (2000 matrix )

Hence proud

Q:  

9.Which of the given values of x and y make the following pair of matrices equal:

[3x+75y+123x],[0y284]

(A) x=13,y=7 (B) Not possible to find (C) y=7,x=23 (D) x=13,y=23

Read more
A: 

For the matrices to be equal, the corresponding elements

(B) heed to be equal so,

Fora11, 3x+ 7 = 0

3x = -7.

 x = 73

fora12, 5 = y - 2 

 y = + 5 + 2 = 7.

For a21, y + 1 = 8

   y = 8 - 1 = 7.

fora22, 2 - 3x = 4.

3x = 2 - 4

x=23

As the variable x and y has more than one value which is not peacetable.

Option B is correct.

Q:  

10.The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is:

(A) 27 (B) 18 (C) 81 (D) 512

Read more
A: 

A 3 × 3 order matrix will have 9 elements

(M) Since, the elements can be either 1 or 0il,  number of choices for each element is 2 .

The required no. of arrangement = 29 (4,2 × 2 × 2 9 times )  512

So, option D is correct.

Q:  

8.A= [aij]mxn\ is a square matrix, if

(A) m n (C) m = n  (D) None of these

A: 

= [aij]m×n is a square matrix if m = n

(E) Option C is correct.

Q:  

30. The bookshop of a particular school has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics books. Their selling prices are `80, `60 and`40 each respectively. Find the total amount the bookshop will receive from selling all the books using matrix algebra.

Assume X, Y, Z, W and P are matrices of order 2 × n, 3 × k, 2 × p, n × 3 and p × k, respectively. Choose the correct answer in Exercises 31 and 32.

Read more
A: 

Number of books matrix A =[10 dozen 8 dozen 10 dozen]

= (9600 + 5760 + 4800)

= ' 20160

Order of matrices,  x2×ny3×xz2×pwn×3pp×x.

Q:  

40. For the matrix [1567] verify that

(i) (A + A') is a symmetric matrix

(ii) (A – A') is a skew symmetric matrix

Read more
A: 

Given, A = [1567]

Then, A’ = [1657]

Let P = A + A’ = [1567]+[1657]=[1+15+66+57+7]=[2111114]

So, P’ = [2111114] = P

i e, ( A + A’ )’ = A + A’.

Hence, A + A’ is symmetric matrix.

Let Q = A A’ = [1567][1657]=[11566577]=[0110].

So,Q1 = [0110] = (1) [0110] = (1) Q.

Q1 = Q.

i e, (A A’)’ = -(A - A’).

Have, A - A’ is a show symmetric matrix

Q:  

Kindly Consider the following

28.

 

A: 

Kindly go through the solution

Q:  

29. A trust fund has ? 30,000 that must be invested in two different types of bonds.

The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide ? 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of:

(a) 1800 (b) 2000

Read more
A: 

let x be the investment in the first bond out of total `30,000.

(M) then, investment use for the second bond = ` 30,000 - x.

Hence, investment matrix A = [x30,000x]1×2

As there is 5% and 7% interest paid the first and second , (per year)

=[x×5100+(30000x)×7100]1×1=5x+2,10,0007x100=2,10,0002x100.

Manual total interest = ` 210,0002x100.

(a) Given, manual total interest = ` 1800.

 `2,10,0002x100=`1800.

`2,10,0002x=`1.80,000

` 210.000 - `180,000 = 2x

x=`30,0002

x = ` 15, 000

∴investment in first and second bond is x = 15,000 and ` 30,000 –x = ` 30,000 - `15,000 - ` 15,000 respectively.

(b) Given ,Annual total interest = ` 2000.

`2,10,0002x100=`2000.

` 2,10, 000 -  ` 2,00,000

` 2,10, 000  - `2; 000 = 2x

x=`10,5002

x = ` 5,000

∴investment in first and second hand is x = ` 5,000 and. ` 30,000 - x = 30,000 -` 5,000 = 25,000 respectively

Q:  

15.If A=[2315313234373223] and B=[25351152545756525] then compute 3A – 5B.

A: 

3a - 5b = 3 × [2315313234373223] - 5×[25351152545756525]

=[3×233×13×533×133×233×433×733×23×23] [5×255×355×15×155×255×455×755×655×25]

=[235124762][235124762]=[223355112244776622] = [000600000]

Q:  

76.If the matrix A is both symmetric and skew symmetric, then

(A) A is a diagonal matrix (B) A is a zero matrix

(C) A is a square matrix (D) None of these

Read more
A: 

Given, A is both symmetric and skew-symmetric.

(E) Then, A' = A ____ (1) and A' = -A ____ (2)

So using (2), A' = -A.

A = -A {eqn (I)}

A + A = 0

2A = 0

A = 0.

A is a zero matrix

So, option B is correct.

Q:  

23. If F (x)=[cosxsinx0sinxcosx0001] , show that F(x) F(y) = F(x + y).

A: 

Given,  f (x)= [cosxsinx0sinxcosx001]

So, F (y) = [cosysiny0sinycosy001]

f (x)f (y)= [cosxsinx0sinxcosx001] [cosxsinx0sinxcosx001]

Q:  

Kindly Consider the following

53. [31027]

A: 

Let A = [31027]

We write, A = IA.

 [31027] = [1001] A.

 [3210727] = [100101] A. (R1R1R2)

 [1327]=[1101] A.

 [1322(1)72(3)] = [1102(1)12(1)] A. (R2→R2 - 2R1)

 [1301]=[1123] A.

 [13(0)33(1)01] = [13(2)13(3)23] A.

 [1001] = [71023] A.

∴ A-1 = [71023]

Q:  

14.if A=[123502111],B=[312425203] and C=[412032123] then compute

(A+B) and (B – C). Also, verify that A + (B – C) = (A + B) – C.

Read more
A: 

A + B = [123502111]+[312425203]=[1+3213+25+40+22+51+21+01+3]

A+B=[411927314]

B−C=[312425203][412032123] =[341122402352210(2)33]

B−C=[120412120]

Now

L.H.S. = a+ (b - c) = [123502111]+[120413120] =[11223+05+4012+31+11+21+0]

=[003915211]

R.H.S. = (a+ b) - c = [411927314][412032123] =[441113902372311(2)43]

=[003915211] = L.H.S.

∴A + (B - C) = (A + B) - C

Q:  

22. Given 3[xyzw]=[x612w]+[4x+yz+w3] , find the values of x, y, z and w.

A: 

Given,  x [xyzw]= [x612w]+ [4x+yz+w3].

(B) [3x3y3z3w]= [x+46+x+y1+2+w2w+3]

Q:  

31. The restriction on n, k and p so that PY + WY will be defined are:

(A) k = 3, p = n  (B) k is arbitrary, p = 2 (C) p is arbitrary, k = 3  (D) k = 2, p = 3

Read more
A: 

For, PY + WY to be defined

(E) Pp×k⋅Y3×x should be seen that number of columns of p

Should, be equal to no of nous of yi.e, [x = 3]

n × 3 and (PY) (p × x)

similarity, in W 3Y xwe  see thatno of columns of

W = no of rows in Y and (WY) n × x.

Again, PY + WY is defined if order of (PY) p × k and (WY)n × u are the sameie, P = n

so, option a is correct .

Q:  

34. If [123579211] and [415120131] , then verify that

(i) (A + B)'= A'+ B' (ii) (A – B) '= A'– B'

A: 

(i) Given, A = [123579211] and B = [411123501]

Then, A’ = [152271391] and B = [411123501]

A + B = [123579211] + [415120131] = [142+1355+17+29+02+11+31+1] = [532699142]

LHS. = (A + B)’ = [561394292]

RHS = A’+ B’ = [152171391]+[411123501]=[145+12+12+17+21+3359+01+1] = [561394292] = L H S

 (A + B)’ = A’+ B’

(ii) A – B = [123579211][415120131]=[1(4)213(5)517290211311]=[318459320]

L.H.S. = (A − B)’ = [343152890]

R.H.S. = A’ − B’ = [152271391] [411123501]= [1(4)51212172133(5)9011]=[343152890]

(A − B)’ = A’ − B’

Q:  

Kindly Consider the following

A: 

Kindly go through the solution

Q:  

32. If n = p, then the order of the matrix 7X – 5Z is:

(A) p × 2  (B) 2 × n  (C) n × 3  (D) p × n

Read more
A: 

The order of 7x - 5z will be same as order of x and z

as has order 2 × n and z has order 2 × p.and given n = p.

7x - 5z has order 2 × n

∴option b is correct.

Q:  

13. Kindly Consider the following

A: 

Kindly go through the solution

 

Q:  

65. If A = 3-41-1 , then prove that An1+2n-4nn1-2n , where n is any positive integer.

A: 

We have,

=[3(1+2k)+(4k)×14(1+2k)+(4k)(1)3k+1×(12k)4×k+(12k)(1)]

=[3+6k4k48k+4k3k+12k4k+2k1]=[3+2k44k1+k12k]

=[1+2+2k4(1+k)1+k122x]

=[1+2(1+k)4(1+k)1+k12(1+k)]

The results also holds for n = k + 1. Hence, An =[1+2n4nn12n]

Holds for all natural number n.

Q:  

42. Express the following matrices as the sum of a symmetric and a skew symmetric

matrix:

(i) [3511] (ii) [622231213]

(iii) [331221452] (iv) [1512]

Read more
A: 

(i) Let A = [3511].

Then, A’ = [3151].

Let P = 12 (A + A’) = 12 {[3511]+[3151]}=12[3+35+11+51+]

12[6662]=[3331].

Then, P’ = [3331] = P.

∴ P = 12 (A + A’) is symmetric matrix

Let Q = 12 (A + A’) = 12{[3511][3151]}=12[3351151(1)]

12[0440]=[0220].

Then Q.’ = [0220] = (-1) [0220] = (-1) Q.

 Q.’ = Q,

∴ Q = 12 (A - A’) is a symmetric matrix

Now, P + Q = 12 (A + A’) + 12 (A - A’)

 P + Q = [3331]+[0220]=[3+03+2321+0]=[3511] = A.

This A is represented as a sun of symmetric and skew symmetric matrix

Let A = [622231213].

Then A’ = [622231213].

Now, A + A’ = [622231213]+[622231213]

[6+62+(2)2+22+(2)3+31+(1)2+21+(1)3+3] = [1244462426]

Let P = 12 (A + A’) = 12[1244462426]=[622231213]

Then, P’ = [622231213] = P’

∴ P = 12 (A + A’) is asyntri matrix.

A - A’ = [622231213][622231213]=[000000000]

Let Q = 12 (A - A’) = 12[0000σ0σ00]=[000000000].

Q’ = (-1) [000000000] = -Q.

Q’ = -Q.

∴ Q = 12 (A - A’) is a skew symmetric matrix

Have P + Q = [622231213]+[000000000]=[622231213] = A.

Then A is represented as a sum of symmetric & skew symmetric matrix

(iii) Let A = [331221452]

Then, A’ = [324325112]

Let P = 12 (A + A’) = 12{[331221452]+[324325112]}

12[3+332142+32215415+12+2]=12[615144544]

[3125212225222]

Then P’ = [3125212225222] = P.

∴ P = 12 (A + A’ ) is symmetric matrix.

Let Q = 12 (A - A’) = 12{[3312214452][324325112]}

12[333(2)1(4)232(2)1(5)4(1)5122].

12[053506360]=[0523252033230]

Then Q’ = [0523252033230] = (-1) [0523252033230] = (-1) Q.

 Q’ = Q.

∴ Q = 12 (A - A’) is a skew symmetric matrix

∴ P + Q = symmetric

= ..

[36222:221

Q:  

18. Find X, if Y=[3214] and 2X+Y=[1032]

A: 

Give, 2x + 4 = [1032]

2x=[1032] y =[1032][3214] =[13023124]

x=12[2242]=[2×122×124×122×12]= [1121]

Q:  

39. (i) Show that the matrix [115121513] is a symmetric matrix.

(ii) Show that the matrix [011101110] is a skew symmetric matrix.

Read more
A: 

(i) Given A = [115121513]

Then, A’ = [115121513]

∴A’ = A.

Here, A is symmetric matrix

(ii) Given, A = [011101110]

Then, A’ = [011101110]=(1)[011101110]

 A’ = (1) A.

 A’ = A.

Hers A is a show symmetric matrix.

Q:  

2. If a matrix has 24 elements, what are the possible orders it can have? What, if it has 13 elements?

Read more
A: 

As, number of elements of matrix having order m * n = m.n.

(b) So, (possible) order of matrix with 24 elements are (1 * 24), (2 * 12), (3 * 8), (4 * 6), (6 * 4), (8 * 3), (12 * 2), 24 * 1).

Similarly, possible order of matrix with 13 elements are (1 * 13) and (13 * 1)

Q:  

3.If a matrix has 18 elements, what are the possible orders it can have? What, if it has 5 elements?

A: 

As number of elements of matrix with order m * n

(E) Possible order of matrix with 18 elements are (1 * 18), (2 * 9), (3 * 6), (6 * 3), (9 * 2) and (18 * 1)

Similarly, possible order of matrix with 5 elements are (1 * 5) and (5 * 1)

Q:  

Kindly Consider the following

A: 

Kindly go through the solution

Q:  

67. Show that the matrix B’AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.

Read more
A: 

We have,

(E) (B'AB)' = [B' (AB]'

= (AB)' (B')'

= B'A'B.

When A is symmetric, A' = A

(B'AB)' = B'AB

ie, B'AB is symmetric.

And when A is skew-symmetric, A1 = -A

(B'AB)' = -B'AB.

ie, B'AB is skew-symmetric.

Q:  

Kindly Consider the following

A: 

Kindly go through the solution

Q:  

66. If A and B are symmetric matrices, prove that AB – BA is a skew symmetric matrix.

A: 

Given, A and B are symmetric matrices.

(E) Then A' = A and B' = B.

Now, (AB - BA)' = (AB)' - (BA)'

= B'A' - A'B'

= BA - AB

= - (AB - BA).

Hence, AB BA is skew-symmetric matrix

Q:  

Kindly Consider the following

46. [2111].

A: 

Let A = [2111].

We write, A = IA.

 [2111] = [1001] A.

 [211111] = [100101] A (R1→R1–R2)

 [1011] = [1101] A.

 [101110] = [11011(1)] = A (R2→R2–R1).

 [1001]=[1112] A.

∴ A-1  = [1112].

Q:  

Kindly Consider the following

55. [2612]

A: 

Let A = [2612]

We write, A = IA.

[2612]=[1001] A.

[216(2)12] =[100101] (R1   R1 - R2)

[1412]=[1101] A.

[14112(4)]=[11011(1)] A. (R2        R2 --------- R1)

[1402]=[1112] A.

[1401]=[11121] A. (R2 ->12 R1)

[1+4(0)4+4(1)01]=[1+4(12)1+4(1)121] A. (R1     R1 + 4R2)

[1001]=[13121] A.

∴A-1 = [13121]

Q:  

43. If A, B are symmetric matrices of same order, then AB – BA is a

(A) Skew symmetric matrix (B) Symmetric matrix

(C) Zero matrix (D) Identity matrix

Read more
A: 

Given A and B are symmetric matrices,

(E) Then, A’ = A and B’ = B.

Now, (AB - BA)’ = (AB)’-  (BA)’

= B’A’ - A’B’.

= BA - AB

(AB - BA)’ = - (AB - BA)

AB - BA is a skew symmetric matrix

∴ Option A is correct.

Q:  

77. If A is square such that A2 = A, then (I + A)3 – 7A is equal to

(A) A (B) I – A (C) I (D) 3A

A: 

Given, A2= A.

(E) we need to calculate,

(I + A)3- 7A = I3 + A3 + 3IA (I + A) - 7A { (x + y)3 = x3 + y3 + 3xy (a + y)}

Q:  

4.Construct a 2 × 2 matrix, A=[aij] , whose elements are given by:

aij=(i+j)22 (ii) aij=ij (iii) aij=(i+2j)22

Read more
A: 

(E) (i) aij(i+j)22 such that i = 1, 2 and j = 1 × 2 for 2 × 2 matrix

Therefore a11 = (1+1)22=222=2 A 2 = [a11a12a21a22]

a12 = (1+2)22=322=92

a21 (2+1)22=322=92 [292928]

a22 = (2+2)22=422=162=8

Q:  

21. Kindly Consider the following

A: 

3x + y = 5 _____ (ii)

Adding (i) and (i) we get,

2x - y + 3x + y = 10 + 5.

5x = 15

x=155 => x = 3

5x = 15

x=155 => x = 3

Putting x = 3 in (i) we gel,

2 × 3 - y = 10

6 - 10 = y

y = -4

Q:  

25. Find A2 – 5A + 6I, if A=[201213110]

A: 

Given, A = [201213110]

A2 = AA2 = [201213110][201213110]

[2×2+0×2+1×12×0+0×1+1×(1)2×1+0×3+1×02×2+1×2+3×12×0+1×1+3×(1)2×1+1×3+3×01×2+(1)×2+0×11×0+(1)×1+0×(1)1×1+(1)×3+0×0]

=[1+1124+2+3132+322113]=[512.925012]

Q:  

27. If A=[3242] and I=[1001] , find k so that A2=kA− 2I

A: 

Given,A = [3242]

A2 = A. A = [3242][3242]

=[3×3+(2)×43×(2)+(2)×(2)4×3+(2)×44×(2)+(2)×(2)]

=[986+41288+4]=[1244].

So,A2= xA2I.

[1244]=u[3242]2[1001].

[1244]=[3x2x4x2x][2002]=[3x22x4x2x2].

Q:  

41. Find 12(A+A') and 12(A−A') , when A=[0aba0cbc0]

A: 

Given, A = [0aba0cbc0]

Then, A’ = [0aba0cbc0]

So, A + A’ = [0aba0cbc0]+[0aba0cbc0]=[0aabba+a0ccb+bc+c0]=[000000000]

12 (A + A’) = 12[000000000]=[000000000].

And A - A’ = [0aba0cbc0][0aba0cbc0]=[0a(a)b(b)aa0c(c)bbcc0]

[02a2b2a02c2b2c0]

12 (A - A’) = 12[02a2b2a0a2c2b2c0] = [0aba0cbc0].

Q:  

44 .If [cosαsinαsinαcosα] and A + A'?= I, then the value of  is

A: 

Given, A = [cosαsinαsinαcosα] . Then, A’ = [cosαsinαsinαcosα]

and A + A’ = I.

 [cosαsinαsinαcosα] + [cosαsinαsinαcosα] = [1001].

 [2cosα+cosαsinα+sinαsinαsinαcosα+cosα] = [1001]

 [2cotα002cotα] = [1001].

Equating the corresponding element of the matrix we get,

2 cos α = 1

 cos α=12

 α = cos -112 = cos-1(cos3)

Option B is correct

Q:  

Kindly Consider the following

45. [1123].

A: 

Let A= [1123].

We write A = IA.

[1123]=[1001]1A.

[1122(1)32(1)]=[1102(1)10] (R2 → R2 –2R1)

[1105]=[1021]A.

[110585]=[102515]A(R215R2)

[1101]=[102515].

[1+01+101]=[12/50+1/52515]A(R1R1+R2)

[1001]=[35152515]A.

∴ A-1  = [35152515]

Q:  

62.Matrices A and B will be inverse of each other only if

(A) AB = BA (B) AB = BA = 0

(C) AB = 0, BA = I (D) AB = BA = I

Read more
A: 

Matrices A and B will be inverse of each other if.

(E) AB = BA = I.

Here option D is correct.

Q:  

63. Let A = 0100 , show that (aI + bA)n = anI + nan – 1 bA, where I is the identity matrix of order 2 and n N.

Read more
A: 

We shall prove the result by using principal of mathematical induction

we have,

P (n) :- If A = [0100] , then (a I + b A)n = an I + nan - 1b A where I is identity matrix of order 2, n∈N

P (1): (a I + b A)1 = a1I + 1 ´a1 - 1b A

= a I + a0bA

= a1I + b A {Qx0 = 1}

So the result is true for n = 1.

Let the result be true for n = k. So,

P (k): (a I + b A)u = auI + u. au-1b A. _____ (1)

Now, we prove that the result holds for n = k + 1,

P (k + 1): (a I + b A)k + 1 = (a I + b A). (a I + b A)k

= (a I + b A) (auI + k au 1b A){using eqn (1)}

= a.akI2 + k. a au - 1b IA + akb.AI + a zzk 1b2k A2

= ak + 1I2 + k au - 1+1b IA + ak b AI + ak - 1b2 k A2 _____ (2)

Now, I2 = [1001][1001] = [1001] = I

IA = [1001][0100]=[0100] = A

AI = [0100][1001]=[0100] = A.

A2 = A.A = [0100][0100]=[0000] = 0.

Putting these values in eqn (2). We get,

P (k + 1) = ak + 1 I + kab A + ak + 1 - 1b A + 0.

= ak + 1 I + (k + 1) a(k + 1)-1b A.

The result is true for n = k + 1. Thus by principle of mathematical induction

(a I + b A)n = an I + nan -1bA for A = [0100]

holds true for all natural number n.

Q:  

68. Find the values of x, y, z if the matrix A = 02yzxy-zx-yz satisfy the equation A’A = I.

A: 

Given, A1[22yzxyzxyz]Then, [0xz2yyyzzz]

Since, = we can write,

[22yzxyzxyz][0xz2yyyzzz]

[0xx2yyyzzz][02yzxyzxyz]=[100010001]

[0+x2+x20+xyxy0xz+xz0+xyxy4y2+y2+y22yzyzyz02x+2x2yzyzyzz2+z2+z2]=[100010001]

[2x20006y20003z2]=[100010001]

Q:  

Kindly Consider the following

A: 

Kindly go through the solution

Q:  

Kindly Consider the following

A: 

Kindly go through the solution

Q:  

74. If A and B are square matrices of the same order such that AB = BA, then prove by induction that ABn = BnA. Further, prove that (AB)n = AnBn for all n Î N.

Read more
A: 

We have, AB = BA. (given)

(E) P (n):AB’ = B’A.

P (i):AB1 = B1A. Þ AB = BA

so, the result is true for n = 1.

Let the result be true for n = k.

P (k):ABk = BkA

Then,

P (k + 1) : ABk + 1 = A. Bk. B = BkA.B = Bk.BA {? } AB=BA

= Bk + 1.A .

So, ABk + 1 = Bk + 1A.

The result also holds for n = k + 1.

Hence, AB^n = B^n A^n holds for all natural number ‘n’.

Q:  

Kindly Consider the following

47. [1327].

A: 

Let A = [1327].

We write, A = IA.

 [1327]=[1001] A.

[1322(1)72(3)]=[1002(1)10] A (R2→R2–2R1)

[1301] = [1021] A.

[1033(1)01] = [13(2)03(1)21] A(R1→R1–3R2)

[1001] = [7321] A.

∴A-1 = [7321].

Q:  

64. If A = 111111111 , prove that An3n-13n-13n-13n-13n-13n-13n-13n-13n-1 , n ∈ N.

A: 

We have,

(E) P (n) : If A = [
111111111
 ]. then An[3n13n13n13n13n13n13n13n13n1] n ? N.

P (1) : A1= [311311311311311311311311311] = [303030303030303030] =[
111111111
 ]

So, the result holds true for n = 1.

Let the result be for n = k. So,

P (k): Au= [3k13k13k13k13k13k13k13k13k1]

Then P (k+1): Ak + 1 = Ak. A = [3k13k13k13k13k13k13k13k13k1] [
111111111 ]

[3k1+3k1+3k13k1+3k1+3k13k1+3k1+3k13k1+3k1+3k13k1+3k1+3k13k1+3k1+3k13k1+3k1+3k13k1+3k1+3k13k1+3k1+3k1]

= Ak + 1 = [3(k+1)13(k+1)13(k+1)13(k+1)13(k+1)13(k+1)13(k+1)13(k+1)13(k+1)1]

The result holds for n = k + 1. Hence,

An = [3n13n13n13n13n13n13n13n13n1] holds for all natural number.

Q:  

16.Simplify cosθ[cosθsinθsinθcosθ]+sinθ[sinθcosθcosθsinθ]

A: 

cosθ[cosθsinθsinθcosθ]+sinθ[sinθcosθcosθsinθ]

(E) =[cor2θcotθsinθcosθsinθcos2θ] +[sin2θsinθcosθ.sinθcosθsin2θ]  

=[cos2θ+sin2θcosθsinθsinθcosθcosθsinθ+sinθcosθcos2θ+sin2θ]

=[1001]

Q:  

19. Find x and y, if 2[130x]+[y012]=[5618]

A: 

Given, 2[130x]+ [y012] =[5618]

[2×12×32×02×x] +[y012]=[5618]

[2+y6+02x+2]=[5618]

Equating the corresponding elements of the matrices we get,

2 + y = 5

y = 5 - 2 = 3

And 2x + 2 = 8

2x = 8 - 2

x=62 

x = 3

∅x = 3, y - 3.

Q:  

20. Solve the equation for x, y, z and t, if 2[xzyt]+3[1102]=3[3546]

A: 

2[xzyt]+3[1102]=3[3546]

[2×x2×22×y2×t]+[3×13×(1)3×03×2]=[3×33×53×43×6]

 [2x2z2y21]+[3306]=[9151218].

[2x+32z32y+021+6]=[9151218]

Equating the corresponding elements of the matrices u get,

2x + 3 = 9

2x = 9 - 3

x=62

x = 3

2z - 3 = 15

2z = 15 + 3

z=182

z = 9

2y = 12

y=122 => y = 6

2t + 6 = 18

2t = 18 - 6

2t = 12 => t = 122 t = 6

Q:  

24. Show that

(i) [5167][2134][2134][5167]

(ii) [123010110][110011234][110011234][123010110]

A: 

Kindly go through the solution

Q:  

35. Kindly Consider the following

 

A: 

Kindly go through the solution

Q:  

36. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

37. Kindly Consider the following

(i) 

A: 

Kindly go through the solution

Q:  

Kindly Consider the following

50. [2513].

A: 

Let A = [2513].

We write, A = IA

 [2513] = [1001] A.

 [1325] = [0110] A. (R1  R2)

 [1322(1)52(3)] = [0112(0)02(1)] A. (R2→R22R1)

 [1301] = [0112] A.

 [1301] = [0112] A. (R2→ (1)R2)

 [13(0)33(1)01] = [03(1)13(2)12] A. (R1→R13R2)

 [1001] = [3512] A.

∴ A-1 = [3512].

Q:  

Kindly Consider the following

60. [132305250]

A: 

Let A = [132305250]

We write A = IA

[132305250]=[100010001] A.

[1323+3(1)0+3(3)5+3(2)22(1)52(3)02(2)]=[1000+3(1)1+00+002(1)0010] A. (R2R2+3R1R3R32R1)

=[132091101.4]=[100310201] A.

[132014p0911]=[100201310] A. (R2        R3)

[1320140911]=[100201310] A. (R2   (-1) R2)

[1320140099(1)119(4)]=[10020139(2)1009(1)] A. (R3     R3--> 4R2)

[1320140025]=[1002011519] A.

[132014001]=[1002013512595] A. (R3125R3)

[1320+01+04+4(1)001]= =[102+4(35)0+4(125)1+4×(925)325125925] A. (R2     R2 + 4R3)

[132010001]=[10025425112535125925] A.

[1+03+02+2(1)010001]=[1+2(35)0+2(125)0+2(923)25425112535125925] A. (R1  R1 + 2R3)

[130010001]=[15225182525425112535125925] A.

[1+033(1)0+0010001]= [153(25)2253(425)18253(1125)254511253525925] A. (R1   R1 3R2)

[100010001]=[1102515252542512535125925] A.

[100010001]=[1253525425112535125925] A.

∴A-1 = [1253525425112535125925]

Q:  

Kindly Consider the following

A: 

Kindly go through the solution

Q:  

Kindly Consider the following

48. [2357]

A: 

Let A = [2357]

We write, A = 1A.

[2357] = [1001] A.

[5723] = [0110] A((R2 R1)

 [52(2)72(3)23] = [02(1)12(0)10] A. (R1→R1–2R2)

 [1123] = [2110] A.

 [1122(1)32(1)] = [2112(2)02(1)] A.(R2→R2–2R1)

 [1101] = [2152] A.

 [101101] = [251(2)52] A(R1→R1–R2)

 [1001] = [7352] A.

∴ A-1 = [7352]

Q:  

Kindly Consider the following

49. [2174].

A: 

Let A = [2174].

We write, A = IA,

 [2174] = [1001] A.

 [7421] = [0110] A. (R1  R2)

 [73(2)43(1)21] = [03(1)13(0)10] A.(R1→R1 3R2)

 [1121] = [3110] A.

 [1122(1)12(1)] = [3112(3)02(1)] A. (R2→R2 2R1)

 [1101] = [3172] A.

 [1101] = [3172] A. (R2→(1)R2)

 [101101] = [3(7)1272] A. (R1→R1R2)

 [1001] = [4172] A.

∴A-1 = [4172]

Q:  

Kindly Consider the following

51. [3152]

A: 

Let A = [3152]

We write A = IA.

 [3152] = [1001] A.

 [2×32×152] = [2×12×001] A. (R1→2R1)

 [6252] = [2001] A.

 [652252] = [200101] A. (R1→R1R2)

 [1052]=[2101] A.

 [1055(1)25(0)] = [2105(2)15(1)] A.(R2→R2 - 5R1)

 [1002] = [21106] A.

 [1001] = [2153] A. (R212R2)

∴ A-1 = [2153]

Q:  

Kindly Consider the following

52. [4534]

A: 

Let A = [4534]

We write A = IA

 [4534] = [1001] A.

 [435434] = [100101] A. (R1→R2 - R2)

 [1134] = [1101] A.

 [1133(1)43(1)] = [1103(1)13(1)] A. (R2→R2 - 3R1)

 [1101] = [1134] A.

 [101101] = [1(3)1434] A. (R1→R1 - R2)

 [1001] = [4534] A.

∴ A-1 = [4534]

Q:  

Kindly Consider the following

54. [3142]

A: 

Let A = [3142]

We write A = IA.

 [3142] = [1001] A.

 [341+242] = [1+00+101] A. (R1→R1+R2)

 [1142] = [1101] A.

 [1142]=[1101] A. (R1→(1)R1)

 [114+4(1)2+4(1)] = [110+4(1)1+4(1)] A. (R2→R2 + 4R1)

 [1102] = [1143] A.

 [1101] = [11232] A. (R2(12)R2)

 [1+01+101]=[1+21+32232] A. (R1→R1 + R2)

[1001]=[112232] A.

∴ A-1 = [112232]

Q:  

Kindly Consider the following

56. [6321]

A: 

Let A = [6321]

We write A = IA.

[6321]=[1001] A.

[663621]=[160601] A. (R116R1)

[11221]=[16001] A.

[1122+2(1)11+2(12)] [1600+2(16)1+2(0)] A. (R2       R2 + 2R1)

[11200]=[160131] A.

As all the elements of 2nd row on the lift side matrix are 2000, A-1 does not exit .

Q:  

Kindly Consider the following

57. [2312]

A: 

Let A = [2312]

We write A = IA.

[2312]=[1001] A .

[2+2(1)3+2(2)12]=[1+2(0)0+2(1)01] A (R1R1+2R2)

[0112][213+212]=[1+00+101] A. (R1    R1 + R2)

[1112]=[1101] A.

[111+121]=[110+11+1] A .(R2      R2 + R1)

[1101]=[1112] A .

[1+01+101]=[1+11+212] A. (R1       R1 + R2)

[1001]=[2312] A .

∴A-1 = [2312]

Q:  

Kindly Consider the following

58. [2142]

A: 

Let A = [2142]

We write, A = IA.

[2142]=[1001] A.

[11242]=[12001] A. (R112R1)

[11244(1)24(12)]=[12004(12)14(02)] A. (R2       R2 --->4R1)

[11200]=[12021] A.

∴A-1 does not exit

Q:  

Kindly Consider the following

59. [233223322]

A: 

Let A = [233223322]

We write, A = IA

[233223322]=[100010001] A.

[322223233]=[001010100] A. [R3R1)

[322223223233][000110010100] A. (R1   R1 -->R2)

[141223233]=[0110101000] A.

|14122(1)2+2(4)32(1)22(1)3+2(4)32(1)|=[01102(0)12(1)02(1)12(0)02(1)02(1)] A.

(R2R22R1

R3R32R1)

[1410105055]=[011032122] A.

1:x236+y216=1

[1410010555055]=[01101322(2)122] A. (R2   R2 --->R3)

[141050055]=[011110122] A.

[141010011]=[01115150152525] A. (R215R2R315R3)

[141010001110]=[011151501/5(15)25150(25)0] A. (R3       R3 -->R2)

[141010001]=[01115150251525] A.

[1+04+01+1010001]=[0+251+151+(25)15150251525] A. (R1      R1 + R3)

[140010001]=[25453515150251525] A.

[1+04+4(1)0+0010001]= [25+4(15)45+4(15)35+4(0)15150251525] A. (R1      R1 + 4R2)

[100010001]=[2503515150251525] A.

∴A-1 = [2503515150251525]

Q:  

Kindly Consider the following

61. [201510013]

A: 

Let A = [201510013]

 

[112201013]=[210100001] A.

[11222(1)02(1)12(2)013]=[21012(2)02(1)02(0)001] A. (R2      R2  ----> 2R1)

[112025013]=[210520001] A.

[112013025]=[210001520] A. (R2  <-->R3)

[1120130+2(0)2+2(1)5+2(3)]=[2100015+2(0)2+2(0)0+2(1)] A. (R3 ->R3 + 2R2)

[112013001]=[210001522] A.

[12(0)12(0)22(1)03(0)13(0)33(1)001]=[22(5)12(2)02(2)03(5)03(2)13(2)522] A. (R1R12R3R2R23R3)

[110010001]=[12541565522] A.

[101100010001]=[12(+15)564(5)1565522] A. (R1 --->R1 - R2).

[100010001]=[3111565522] A.

∴ A1 = [3111565522]

Maths Ncert Solutions class 12th Logo

Important Formulas of Class 12 Maths NCERT Solutions Matrices

Matrices Important Formulae for CBSE and Competitive Exams

Students can check important formulae and basic concepts of the Matrices chapter below for a better understanding of questions. Students can also use these formulae to solve exercises.

Matrix Basics

  • Order of a Matrix:
    • If a matrix has m m rows and n n columns, its order is m × n m \times n .
  • Elements:
    • A = [ a i j ] A = [a_{ij}] , where a i j a_{ij} represents the element in the i th i^{\text{th}} row and j th j^{\text{th}} column.

Matrix Operations

  • Addition/Subtraction:

    ( A ± B ) i j = a i j ± b i j (A \pm B)_{ij} = a_{ij} \pm b_{ij}
  • Scalar Multiplication:

    ( k A ) i j = k a i j (kA)_{ij} = k \cdot a_{ij}
  • Matrix Multiplication:

    ( A B ) i j = k = 1 n a i k b k j (AB)_{ij} = \sum_{k=1}^n a_{ik} \cdot b_{kj}
    • Condition: Number of columns in A A = Number of rows in B B .
  • Transpose of a Matrix:

    ( A T ) i j = a j i (A^T)_{ij} = a_{ji}

Properties of Matrix Operations

  • Transpose Properties:

    ( A T ) T = A (A^T)^T = A ( A + B ) T = A T + B T (A + B)^T = A^T + B^T ( k A ) T = k A T (kA)^T = kA^T ( A B ) T = B T A T (AB)^T = B^T A^T
  • Symmetry:

    A T = A ( Symmetric ) A^T = A \quad (\text{Symmetric}) A T = A ( Skew-Symmetric ) A^T = -A \quad (\text{Skew-Symmetric})
  • Identity Matrix Properties:

    A I = I A = A AI = IA = A

Determinant and Inverse of Square Matrices

  • Adjoint Formula for Inverse:

    A 1 = Adj ( A ) det ( A ) A^{-1} = \frac{\text{Adj}(A)}{\det(A)}
  • Determinant Property:

    det ( A T ) = det ( A ) \det(A^T) = \det(A)

Applications of Matrcies

  • Solving Linear Equations: A X = B       X = A 1 B AX = B \implies X = A^{-1}B
  • Consistency of Linear Equations:
    • If det ( A ) 0 \det(A) \neq 0 , the system has a unique solution.
qna

Maths Ncert Solutions class 12th Exam

Student Forum

chatAnything you would want to ask experts?
Write here...