NCERT Solutions for Class 12 Maths Chapter 4 – Determinants (Updated 2025)

NCERT Maths 12th 2025 ( Maths Ncert Solutions class 12th )

Pallavi Pathak
Updated on Aug 1, 2025 15:40 IST

By Pallavi Pathak, Assistant Manager Content

Class 12 Determinants is an important chapter as it has a variety of applications in various fields including Social Science, Economics, Science, Engineering etc. Determinants Class 12 covers many properties of determinants, cofactors, minors and applications of determinants in finding inverse of a square matrix, adjoint, and area of a triangle, and inconsistency of system of linear equations. The chapter also covers finding the solution of linear equations in two or three variables using the inverse of a matrix.
The experts at Shiksha, with years of experience, have created the Class 12 determinants NCERT solutions to help students score well in their CBSE Board exam and other competitive exams like JEE Mains. It will help students to understand the concept better and know how to solve even the complex problems of the chapter. It offers step-by-step solutions to all the questions of this chapter in the NCERT textbook.
If you are looking for notes on all topics for Class 12 Maths with solved examples, PDF, and questions and answers, check Class 12 Maths Notes.

Table of content
  • Glance at Determinants Class 12
  • Class 12 Math Determinants NCERT Solution PDF: Free Download
  • Class 12 Math Determinants: Key Topics, Weightage
  • Important Formulas of Class 12 Determinants
  • Exercise-wise NCERT Solutions for Class 12 Math Chapter 4 Determinants
  • NCERT Class 12 Math Determinants Exercise 4.1 Solutions
Maths Ncert Solutions class 12th Logo

Glance at Determinants Class 12

See below the quick summary of the Determinants Class 12 NCERT Solutions:

  • Determinant of a matrix A = [ a i j 1 × 1 ] is given by | a i j | = a 11
  • Determinant of a matrix A = a 11 a 12 a 21 a 22 is given by | a 11 a 12 a 21 a 22 | = a 11 a 22 - a 12 a 21
  • Determinant of a matrix A = a 1 b 1 c 1 a 2 b 2 c 2 a 3 b 3 c 3 is given by (expanding along R) | a 1 b 1 c 1 a 2 b 2 c 2 a 3 b 3 c 3 | = a 1 | b 2 c 2 b 3 c 3 | - b 1 | a 2 c 2 a 3 c 3 | + c 1 | a 2 b 2 a 3 b 3 |
  • Area of a triangle with vertices ( x 1 , y 1 ) , ( x 2 , y 2 ) and ( x 3 , y 3 ) is given by Δ = 1 2 | x 1 y 1 1 x 2 y 2 1 x 3 y 3 1 |
  • The chapter includes many more such concepts and formulas.

Explore here the NCERT solutions of all three subjects - Chemistry, Physics, and Maths of Class 11 and Class 12. The subject matter experts at Shiksha have created all these solutions.

Maths Ncert Solutions class 12th Logo

Class 12 Math Determinants NCERT Solution PDF: Free Download

Students can download the free Determinants Class 12 PDF from the link below. It will help them understand the concepts clearly and improve their exam preparation. 
Class 12 Math Chapter 4 Determinants Solution: Free PDF Download

Related Links

Class 12 Maths NCERT Solutions NCERT Notes for Class 11 & 12 NCERT Class 12 Notes

 

Try these practice questions

Q1:

The number of values of a for which the system of equations :

x + y + z = a

ax + 2ay + 3z = -1

x + 3ay + 5z = 4

is inconsistent, is

Q2:

Let the plane ax + by + cz = d pass through (2, 3, -5) and its perpendicular to the planes

2x + y – 5z = 10 and  3x + 5y – 7z = 12.

If a, b, c, d are integers d > 0 and  then the value of a + 7b + c + 20d is equal to:

View Full Question

Maths Ncert Solutions class 12th Logo

Class 12 Math Determinants: Key Topics, Weightage

In Class 12 Maths Chapter 4, the focus area of preparation for students should be determinants, their properties, and applications. To score well in the exams, the students should master the fundamental concepts and practice a variety of problems. The following topics are covered in this chapter:

Exercise Topics Covered
4.1 Introduction
4.2 Determinant
4.3 Area of a Triangle
4.4 Minors and Cofactors
4.5 Adjoint and Inverse of a Matrix
4.6 Applications of Determinants and Matrices

Class 12 Determinants Weightage in JEE Mains

Exam Number of Questions Weightage
JEE Main 2 questions 6.6%
Maths Ncert Solutions class 12th Logo

Important Formulas of Class 12 Determinants

Determinants Important Formulae for CBSE and Competitive Exams

Students must learn important formulae and basic concepts of the Class 12 Determinants for a better grasp of the concepts. Students can also use these formulae to solve NCERT Determinants exercises.

Determinant of a 2 × 2 2 \times 2 Matrix: Students can check the formula to find the value of determinant for 2 × 2 Matrix.

a b c d = a d b c

Determinant of a 3 × 3 3 \times 3 Matrix: Students can check the formula to find the value of determinant for 3 ×3
Matrix.

a b c d e f g h i = a ( e i f h ) b ( d i f g ) + c ( d h e g )

Cramer's Rule:

Solution of A X = B AX = B :
x i = det ( A i ) det ( A ) ( det ( A ) 0 ) x_i = \frac{\det(A_i)}{\det(A)} \quad (\det(A) \neq 0) where A i A_i  is the matrix obtained by replacing the i th i^{\text{th}} column of A A with B B .

Properties of Determinants:

    • det ( A T ) = det ( A ) \det(A^T) = \det(A)
    • det ( A B ) = det ( A ) det ( B ) \det(AB) = \det(A) \cdot \det(B)
    • det ( k A ) = k n det ( A ) \det(kA) = k^n \cdot \det(A) for an n × n n \times n matrix.
  1. Adjoint and Inverse:

    Adj ( A ) = [ C i j ] T , A 1 = Adj ( A ) det ( A )
Maths Ncert Solutions class 12th Logo

Exercise-wise NCERT Solutions for Class 12 Math Chapter 4 Determinants

Class 12 Determinants chapter deals with important topics such as finding determinants of square Matrices, findingarea of triangle with help of determinant, co-factors, minors, adjoint and inverse of a Matrix. consistency of linear systems.  All exercise deals with different concepts, Class 12 Determinants exeercies 4.1 deals with the basics of determinants and finding the value. Class 12 Determinants Exercise 4.2  deals with finding the area of triangle. Class Determinants Exercises 4.3 deals with finding Minors and Co-factors. Class 12 Determinants Exercise 4.4 focuses on  adjoints and inverse of Matrix. Class Determinants Exercise 4.5 deals with checking consistency of system of equations. Students can check Exercise-wise Class 12 Chapter 4 Determinants NCERT Solutions below;

Maths Ncert Solutions class 12th Logo

NCERT Class 12 Math Determinants Exercise 4.1 Solutions

Ex 4.1 Class 12 Maths NCERT solutions discusses basic concept of determinants, starting with the calculation of determinants for and matrices. This exercise helps in building foundational blocks of the determinants. The Determinants Exercise 4.1 Solutions consist of 8 Questions including 2 Long, 5 Short Answers, 1 MCQ. Students can check complete solution of Exercuse 4.1 below;

Determinants Exercise 4.1 Solutions

Q1.Evaluate the determinants in Exercises 1 and 2.

| 2 4 5 1 |

A.1.  | 2 4 5 1 | =  2×(−1) – 4×(−5) = −2+20 = 18

Q2.(i)  | c o s θ s i n θ s i n θ c o s θ |  (ii)  | x 2 x + 1 x 1 x + 1 x + 1 |

A.2. (i)  | c o s θ s i n θ s i n θ c o s θ |

= c o s θ × c o s θ ( s i n θ ) × s i n θ

= cos²θ + sin²θ

=1

(ii)  | x 2 x + 1 x 1 x + 1 x + 1 |

= ( x 2 x + 1 ) ( x + 1 ) ( x 1 ) ( x + 1 )

x 3  +  x 2  −  x 2  −  x  +  x +1 – x 2   + 1

= x 3 x 2 + 2

Q3.If  [ 1 2 4 2 ]  , then show that | 2A | = 4 | A |

A.3.Given, A=  [ 1 3 4 2 ]

So, 2A= 2  [ 1 4 4 2 ]

[ 2 4 8 4 ]  .

L.H.S. =  | 2 |  =  | 2 4 8 4 |  = 2×4 – 4×8 = 8−32 = −24

R.H.S. = 4  | |  = 4  | 1 2 4 2 |  = 4(1×2 – 2×4)

= 4[2 − 8]

= 4[−6] = 24.

LHS = RHS

Q4. If A= ,then show that | 3 A | = 27 | A |

=3[36 – 6×0]

= 108

RHS = 27. |A| = 27 4 = 108

∴ LHS = RHS

Q&A Icon
Commonly asked questions
Q:  

16. |xx2yzyy2zxzz2xy|=(xy)(yz)(zx)(xy+yz+zx)

A: 

LHS |xx2yzyy2zxzz2xy|

=1xyz |x·xx·x2x·yzy·yy·y2y·zxz·zz·z2z·xy| Multiplying R1, R2& R3 by x, y&z.

=1xyz|x2x3xyzy2y3xyzz2z3xyz|.

=xyzxyz|x2x31y2y31z2z31| Taking xyz common from c3.

=|x2x31y2x2y3x311z2x223x311|221331.

|x2x31(yx)(y+x)(yx)(y2+x2+xy)0(zx)(z+x)(2x)(z2+x2+2x)0|

Expanding along c3 we get,

= 1 |(yx)(y+x)(yx)(y2+x2+xy)(zx)(z+x)(zx)(z2+x2+zx)|

= (y-x)(z-x). |y+xy2+x2+xyz+xz2+x2+zx| Taking (yx) & (zx) common from R1 and R2.

= (y-x)(z-x).  Taking (y-x) & (z-x) common from R1 and R2.

= (y-x)(z-x)[(y + x)(z2 + x2 + zx) - (z + x)(y2 + x2 + xy)]

= (y-x)(z-x)[yz2 + yx2 + xyz + xz2 + x3 + x2z-zy2-zx2-xyz-xy2-x3-x2y]

= y-x)(z-x)[yz2-zy2 + xz2-xy2]

= (y-x)(z-x)[yz (z-y) + x(z2-y2)]

= y-x)(z-x)(z-y)[yz + x (z + y)]             

= (- 1)(x-y)(z-x)(- 1)(y-z)[yz+ 1 xz + xy]

= (x-y)(y-z)(z-x)(xy + yz + xz). = R.H.S

Q:  

Kindly Consider the following

58. 2xy=23x+4y=3

A: 

The given system of eqn in matrix form is AK = B

Q:  

10. Kindly Consider the following

A: 

Kindly go through the solution

=0=RHS

Q:  

20. |1+a2b22ab2b2ab1a2+b22a2b2a1a2b2|=(1+a2+b2)3

A: 

LHS = |1+a2b22ab2b2ab1a2+b22a2b2a1a2b2|.

=|1+a2b2b(2b)2ab+a(2b)2b2abb(2a)1a2+b2+a(2a)2a2bb(1a2b2)2a+a(1a2b2)1a2b2|

= | 1 + a 2 b 2 + 2 b 2 2 a b 2 a b 2 b 2 a b 2 a b 1 a 2 + b 2 + 2 a 2 2 a 2 b b + a 2 b + b 3 2 a + a a 3 a b 2 1 a 2 b 2 |

= | 1 + a 2 + b 2 0 2 b 0 1 + a 2 + b 2 2 a b ( 1 + a 2 + b 2 ) a ( 1 + a 2 + b 2 ) 1 a 2 b 2 |

= (1 + a2 + b2)2 [(1 -a2 + b2) - 2a (-a)]

= (1 + a2 + b2)2 (1 -a2 + b2 + 2a2)

= (1 + a2 + b2)2 (1 + a2 + b2)

= (1 + a2 + b2)3 = R.H.S.

Q:  

Using the property of determinants and without expanding in Exercises 1 to 7, prove that:

9. 
Read more
A: 

Kindly go through the solution

 

Q:  

Kindly Consider the following

60. 5x+2y=33x+2y=5

A: 

The given system of equation in matrix form is

          AK = B

Q:  

67. Prove that the determinant  is independent of θ.

A: 

Kindly go through the solution

Q:  

By using properties of determinants, in Exercises 8 to 14, show that:

A: 

=(b-a)(c-a)[(c+a)-(b+a)]

=(b-a)(c-a)[(c+a – b – a)]

=(b-a)(c-a)(c-b)

=(-1)(a-b) ×(-1)(b-c)(c-a)

=(a-b)(b-c)(c-a).

= R.H.S.

= | 1 1 1 1 1 a b a c a a 3 b 3 a 3 c 3 a 3 | c 2 c 2 c 1 c 3 c 3 c 1

|100abacaa3(ba)(b2+a2+ab)(ca)(c2+a2+ab)| {?x3y3=(xy)(x2+y2+xy)

Expanding along R1

|baca(ba(b2+a2+ab)(ca)(c2+a2+ab)|

= (ba)(ca) |11b2+a2+abc2+a2+ab| {(ba)&(ca)c1&c3

= (b-a)(c-a) {(c2 + a2 + ab)- (b2 + a2 + ab)}

= (b-a) (c -a) {c2 + a2 + ab-b2-a2-ab}

= (b-a) (c-a)(c2-b2 + ac-ab)

= (b-a)(c-a)(c-b)(c + b) + (c-b) a}

= (b-a)(c-a)(c-b)(a + c + b).

= (- 1)(a-b)(c-a)(- 1)(b-c)(a + c + b)

= (a-b)(b-c)(c-a)(a + c + b)

= R.H.S.

Q:  

32. Using Cofactors of elements of third column, evaluate Δ=|1xyz1yzx1zxy|

A: 

Given,  Δ=|1xyz1yzx1zxy|

Co-factor of elements of third column

∴ Δ = a13A13 + a23A23 + a33A33

 = yz (z-y) + zx [- (z-x)] + xy (y-x)

 = y z2-y2z-z2x+ zx2 + xy2-x2y.

 = yz2-y2z+ (xy2-xz2) + (zx2-x2y)

 = yz (z-y) + x (y2z2) -x2 (y-z)

 = -yz (y-z) + x (y + z) (y-z) -x2 (y-z)

= (y-z) [-yz + x (y + z) -x2]

 = (y-z) [-yz + xy + xz-x2]

 = (y-z) [-y (z-x) + x (z-x)]

 = (y-z) (z-x) (x -y)

Q:  

17. (i) |x+42x2x2xx+42x2x2xx+4|=(5x+4)(4x)2

A: 

(i) LHS = |x+42x2x2xx+42x2x2xx+4|

=|x+4+2x+2x2x+x+4+2x2x+2x+x+42xx+42x2x2xx+4| R1→R1 + R2 + R3

=|5x+45x+45x+42xx+42x2x2xx+4|

Taking (5x + 4) common from R1.

= ( 5 x + 4 ) | 1 1 1 2 x x + 4 2 x 2 x 2 x x + 4 | .

= (5x + 4)[0 - (4 -x)(x- 4)]

= (5x + 4)(4 -x)(4 -x)

= (5x + 4)(4 -x)2 = R.H.S.

|y+k+y+yy+y+k+yy+y+y+kyy+kyyyy+k| R1→R1 + R2+ R3

=|3y+k3y+k3y+kyy+kyyyy+k|

= (3y + k) |111yy+kyyyy+k|

 
Q:  

65. [235325115],find  A1.Using Asolve the system of equations.

2x3y+5z=113x+2y4z=5x+y2z=3

A: 

Kindly go through the solution

Q:  

61. 2x+y+z=1x2yz=323y5z=9

A: 

The given system of solution in matrix form is AK = B.

Q:  

62. xy+z=42x+y3z=0x+y+z=2

A: 

The given system of eqn can be written in matrix form as AK = B.

Q:  

13. Kindly Consider the following

A: 

Kindly go through the solution

 

Q:  

70. If a, b and c are real numbers and 

  = | b + c c + a a + b c + a a + b b + c a + b b + c c + a | = 0 Show that either a+b+c=0 or a=b=c=0

A: 

? = | b + c c + a a + b c + a a + b b + c a + b b + c c + a | = 0

R 1 R 1 + R 2 + R 3 | 2 ( a + b + c ) 2 ( a + b + c ) 2 ( a + b + c ) c + a a + b b + c a + b b + c c + a | = 0

Taking  2(a + b + c) common from R1

2 ( a + b + c ) | 1 1 1 c + a a + b b + c a + b b + c c + a | = 0

Either 2(a+b+c)=0 i.e. a+b+c=0 or

| 1 1 1 c + a a + b b + c a + b b + c c + a | = 0

c 2 c 2 c 1 and c 3 c 3 c 1

| 1 0 0 c + a b c b a a + b c a c b | = 0

Expanding along R1

|bcbacacb|=0(bc)(cb)(ba)(ca)=0bcb2c2+cbbc+ab+aca2=0a2b2c2+ab+bc+ca=0

Multiplying by -2

2a2+2b2+2c22ab2bc2ca=0a2+a2+b2+b2+c2+c22ab2bc2ca=0(a2+b22ab)+(a2+c22ac)+(b2+c22bc)=0(ab)2+(ac)2+(bc)2=0ab=0,bc=0,ca=0[?x2+y2+z2=0x=0,y=0,z=0]a=b,b=c,c=aa=b=c

 Either a+b+c=0 or a=b=c

Q:  

28. If area of triangle is 35 sq units with vertices (2, – 6), (5, 4) and (k, 4). Then k is

(A) 12                     (B) –2                  (C) –12, –2                         (D) 12, –2

Read more
A: 

Given,

Area of triangle = 35 sq. Units

1 2 | 2 6 1 5 4 1 k 4 1 | = 3 5 .

∴ Option D is correct.

Q:  

Kindly Consider the following

42.  

A: 

Kindly go through the solution

Q:  

14. Kindly Consider the following

A: 

Kindly go through the solution

=a2b2c2× (−2) ( 1 × ( 1 ) 1 × 1 )

= a2b2c2× (−2)× (−2)

= 4a2b2c2

= R.H.S.

 

Q:  

85. Let A = 1sinθ1-sinθ1sinθ-1-sinθ1 , where 0 ≤θ≤ 2. Then

(A) Det (A) = 0               (B) Det (A) (2, ∞)

(C) Det (A) (2, 4)            (D) Det (A) [2, 4] 

Read more
A: 

Kindly go through the solution

Q:  

5. Evaluate the determinants

A: 

= 3 [ 0 ( 5 ) ( 1 ) ] + 1 ( 0 3 ( 1 ) 2 [ 0 × ( 5 ) 0 × 3 ]

= 15 + 3

= 12

=3 [1×1− (−2)×3]+4 [1×1− (−2)×2]+5 [3×1−2×1]

= 3 [1+6]+4 [1+4]+5 (3−2)

= 3×7+4×5+5×1

= 21+20+5

= 46

= 0 –1 [ − 1×0 – (−2)× (−3)] + 2 [−1×3 – (−2)×0]

= (− 1)× ( − 6)+2 (− 3)

= 6 – 6

= 0

= 2 [2×0− ( − 5)× (−1)]+3 [ (−1)× (− 1) – (− 2)×2]

= 2 (−5)+3 (1+4)

= 2 (−5) + 3× (5)

= −10+15

= 5

Q:  

33. If Δ=|a11a12a13a21a22a23a31a32a33| and ij is Cofactors of aij then value of Δ is given by

A: 

Option D is correct.

Q:  

Kindly Consider the following

 37.  

A: 

Kindly go through the solution

Q:  

4. If A= ,then show that | 3 A | = 27 | A |

A: 

=3 [36 – 6×0]

= 108

RHS = 27. |A| = 27 4 = 108

∴ LHS = RHS

Q:  

8. If , then x is equal to

(A) 6                    (B) ± 6                  (C) – 6               (D) 0

Read more
A: 

Kindly go through the solution

Q:  

27. (i) Find equation of line joining (1, 2) and (3, 6) using determinants.

(ii) Find equation of line joining (3, 1) and (9, 3) using determinants

Read more
A: 

(i) Let P (x, y) be any point on line joining A (1, 2) & B (3, 6)

Then, area of triangle (ABP) = 0 {the point are collinear

1 2 | 1 2 1 3 6 1 x y 1 | = 0

Q:  

31. Using Cofactors of elements of second row, evaluate Δ=|538201123|

A: 

Given,  ? =|538201123|

Co-factors of elements of second row,

? ? = a21A21 + a22A22 + a23A23

= 2 * 7 + 0 * 7 + 1 * (-7) = 14 + 0 - 7 = 7.

Q:  

Kindly Consider the following

69. Evaluate

A: 

= s i n α ( s i n 2 β s i n α s i n α c o s 2 β ) 0 ( c o s α c o s β s i n α s i n β c o s α s i n β s i n α c o s β ) + c o s α ( c o s α c o s 2 β + c o s α s i n 2 β )

= s i n 2 α ( s i n 2 β + c o s 2 β ) + c o s 2 α ( c o s 2 β + s i n 2 β )

= s i n 2 α + c o s 2 α

=1

Q:  

76. Evaluate 1xy1x+yy1xx+y

A: 

Kindly go through the solution

Q:  

21. |a2+1abacabb2+1bccacbc2+1|.=1+a2+b2+c2

A: 

LHS = |a2+1abacabb2+1bccacbc2+1|.

=1abc|a(a2+1)ab2ac2a2bb(b2+1)bc2a2cb2cc(c2+1)|

=abcabc[a2+1b2c2a2b2+1c2.a2b2c2+1]Taking a, b&c common from R1, R2&R3

[ 1 + a 2 + b 2 + c 2 b 2 c 2 a 2 + b 2 + 1 + c 2 b 2 + 1 c 2 a 2 + b 2 + c 2 + 1 b 2 c 2 + 1 ] C1→ C2 + C3.

Q:  

Choose the correct answer in Exercises 15 and 16.

22. Let A be a square matrix of order 3 × 3, then | kA| is equal to

(A) k| A|           (B) | A |                             (C) | A |              (D) 3k | A |

Read more
A: 

Then, KA = k[a11a12a13a21a22a23a31a32a33]

=[ka11ka12ka13ka4ka22ka23ka31ka32ka33]

|KA|=|a11ka1213a2122ka2331a32ka33|

=k3|a11a12a13a21a22a22a31a32a33|

=k3|A|

So, option c is correct.

Q:  

Kindly Consider the following

38.

A: 

Kindly go through the solution

Q:  

48. For the matrix A = [111123213].

A: 

Given, A=  [11123213]

Q:  

56. 5xy+4z=52x+3y+5z=25x2y+6z=1

A: 

The given system of eqn in matrix form is AK = B

= 5 x 28 -13 + 4 x (-9)

= 140 - 13 - 76

= 51 ≠ 0 .

The given system of eqn are consistent

Q:  

66. The cost of 4 kg onion, 3 kg wheat and 2 kg rice is `60. The cost of 2 kg onion, 4 kg wheat and 6 kg rice is `90. The cost of 6 kg onion 2 kg wheat and 3 kg rice is `70. Find cost of each item per kg by matrix method.

Read more
A: 

Let k, y and z be the cost per kg of onion, wheat and rice. Then, we form a system of equations as follows

         4k + 3y + 2z = 60

         2k + 4y + 6z = 90

         6k + 2y + 3z = 70

In matrix form we can write,

AX = B

= 0 - 3 (-30) + 2 (-20)

= 90 - 40

= 50 ≠ 0.

∴ The system has a unique solution.

The cost of onion, wheat and rice per kg are? 5? 8 and? 8 respectively.

Q:  

68. Without expanding the determinants, prove that 

| a a 2 b c b b 2 c a c c 2 a b | = | 1 a 2 a 3 1 b 2 b 3 1 c 2 c 3 |

A: 

L.H.S.= | a a 2 b c b b 2 c a c c 2 a b |

Multiplying R1, by a, R2 by b and R3 by c

= 1 a b c | a 2 a 3 a b c b 2 b 3 a b c c 2 c 3 a b c |

Taking abc common from c3 = = a b c a b c | a 2 a 3 1 b 2 b 3 1 c 2 c 3 1 |

Inter changing c1 and c3 = = | 1 a 3 a 2 1 b 3 b 2 1 c 3 c 2 |

Inter changing c2 and c3 = = | 1 a 2 a 3 1 b 2 b 3 1 c 2 c 3 | = R . H . S

Q:  

Kindly Consider the following

41.

A: 

Kindly go through the solution

Q:  

24. Find area of the triangle with vertices at the point given in each of the following:

(i) (1, 0), (6, 0), (4, 3)

(ii) (2, 7), (1, 1), (10, 8)

(iii) (–2, –3), (3, 2), (–1, –8)

Read more
A: 

(i) Area of triangle is given by,

Δ = 12 |x1y11x2y21x3y31|=12|101601431|

= 1 2 | [ 3 + 1 8 ] | = 1 5 2 =7.5sq. units.

(ii) Area of the triangle is given by,

Δ = 12 |2711111081|

= 1 2 | [ 2 ( 1 8 ) 7 ( 1 1 0 ) + 1 ( 8 1 0 ) ] |

= 1 2 | ( 2 × ( 7 ) 7 × ( 9 ) + 2 1 × ( 2 ) ] |

= 1 2 | [ 1 4 + 6 3 2 ] | = 1 2 | 4 7 |

472 =23.5 sq. units

(iii) Area of triangle is given by,

Δ = 12 |231321181|.

= 1 2 | [ 2 × 1 0 + 3 ( 4 ) + ( 2 4 + 2 ) ] |

= 1 2 | [ 2 0 + 1 2 2 2 ] |

= 1 2 | 3 0 | = 3 0 2  = 15 sq. units.

Q:  

74.        Let A = . Verify that

(i) [adj A]-1 = adj (A-1                          (ii) (A-1)-1 = A

Read more
A: 

Kindly go through the solution

Q:  

6. If A= ,find | A |

A: 

= 1 [1× (−9) – 4× (−3)]–1 [2× (–9)–5× (– 3)]– 2 [2×4 −5×1]

= 1 [− 9 + 12] −1 [− 18+15] − 2 [8 − 5]

= 3 + 3 −6

= 0

Q:  

11. Kindly Consider the following

A: 

Kindly go through the solution

 

Q:  

35. [112235201]

A: 

We have,

A11= (1)1+1×|3501|= (3×15×0)=3

A12= (1)1+2×|2521|= (1) (2×15× (2)=1 (2+10)=12

A13= (1)1+3×|2320|= [2×0 (2)×3]=6

Q:  

Kindly Consider the following

40.

A: 

Kindly go through the solution

Q:  

Kindly Consider the following

43. [112023324]

A: 

Let A =  [112023324] Then |A| = |112023324|

||=1×|2324| (1)|0334|+2|0232|

= (8 - 6) + (0 - (- 9) + 2 (0 - 6)

= 2 + 9 - 12 = - 1 ¹ 0

So, A-1 exist

Q:  

3. If [1242] , then show that | 2A | = 4 | A |

A: 

Given, A=  [1342]

So, 2A= 2  [1442]

[2484] .

L.H.S. = |2| = |2484| = 2×4 – 4×8 = 8−32 = −24

R.H.S. = 4 || = 4 |1242| = 4 (1×2 – 2×4)

= 4 [2 − 8]

= 4 [−6] = 24.

LHS = RHS

Q:  

1.Evaluate the determinants in Exercises 1 and 2.

| 2 4 5 1 |

A: 

|2451|= 2× (−1) – 4× (−5) = −2+20 = 18

Q:  

7. Find values of x, if

A: 

Kindly go through the solution

Q:  

26. Find values of k if area of triangle is 4 sq. units and vertices are

(i) (k, 0), (4, 0), (0, 2)           (ii) (–2, 0), (0, 4), (0, k)

Read more
A: 

(i) Area of the triangle = 4 sq. units (given)

1 2 | k 0 1 4 0 1 0 2 1 | = 4

(ii) Area of the triangle = 4 sq units

Q:  

34. [1234]

A: 

We have,

A 1 1 = ( 1 ) 1 + 1 × 4 = 4
A 1 2 = ( 1 ) 1 + 2 × 3 = 3
A 2 1 = ( 1 ) 2 + 1 × 2 = 2
A 2 2 = ( 1 ) 2 + 2 × 1 = 1 .
Q:  

Kindly Consider the following

36. [2346]

A: 

Let A= [2346]|A|= (2× (6)3× (4))=12+12=0

A11= (1)1+1× (6)=6A12= (1)1+2× (4)=4

A21= (1)2+1× (3)=3A22= (1)2+2×2=2

Q:  

Kindly Consider the following

39.

A: 

Kindly go through the solution

Q:  

44. [1000cossin0sincos]

A: 

Kindly go through the solution

Q:  

Kindly Consider the following

49.

A: 

Kindly go through the solution

Q:  

Kindly Consider the following

75. Evaluate

A: 

Expanding along C1

=2 (x+y) { (x) (xy)y.y}

=2 (x+y) (x2+xyy2)

=2 (x+y) (x2xy+y2)

=2 {x3x2y+xy2+x2yxy2+y3}

2 (x3+y3)

Q:  

81. |sinαcosαcos(α+δ)sinβcosβcos(β+δ)sinγcosγcos(γ+δ)|=0

A: 

L . H . S . = | s i n α c o s α c o s ( α + δ ) s i n β c o s β c o s ( β + δ ) s i n γ c o s γ c o s ( γ + δ ) | = 1 s i n δ c o s δ | s i n α s i n δ c o s α c o s δ c o s ( α + δ ) s i n β s i n δ c o s β c o s δ c o s ( β + δ ) s i n γ s i n δ c o s γ c o s δ c o s ( γ + δ ) |

Applying cos(A+B)=cosAcosBsinAsinB in c3

c1c1+c3?=1sinδcosδ|cosαcosδcosαcosδcosαcosδsinαsinδcosβcosδcosβcosδcosβcosδsinβsinδcosγcosδcosγcosδcosγcosδsinγsinδ|c1=c2?=0=R.H.S.

Q:  

82. Solve the system of equations

2x+3y+10z = 4

4x-6y+5z = 1

6x+9y-20z = 2

A: 

Given equations are :-

2x+3y+10z=4

4x6y+5z=1

6x+9y20z=2

This system of equation can be written, in matrix form, as AX= B, Where

⇒ x = 2, y = 3, z = 5.

Q:  

2. (i) |cosθsinθsinθcosθ| (ii) |x2x+1x1x+1x+1|

A: 

(i) |cosθsinθsinθcosθ|

=cosθ×cosθ (sinθ)×sinθ

= cos²θ + sin²θ

=1

(ii) |x2x+1x1x+1x+1|

= (x2x+1) (x+1) (x1) (x+1)

x3 + x2 − x2 − x + x +1 – x2  + 1

= x3x2 + 2

Q:  

12. Kindly Consider the following

A: 

Kindly go through the solution

 

Q:  

18. (i) |abc2a2a2bbca2b2c2ccab|=(a+b+c)3

|x+y+2zxyzy+z+2xyzxz+x+2y|=2(x+y+z)3

A: 

(i) LHS = |abc2a2a2bbca2b2c2ccab|

=|abc+2b+2c2a+bca+2c2a+2b+cab2bbca2b2c2ccab|R1→ R1 + R2 + R3

=|a+b+ca+b+ca+b+c2bbca2b2c2ccab|

= (a + b + c) |1112bbca2b2c2ccab| Taking (a + b + c) common from R1

= (a + b+ c) |111112bbca2b2b2b2c2c2ccab2c|2131

= (a + b + c) |1002bbca02c0cab|.

= (a + b + c) × 1. |(a+b+c)00(a+b+c)| Expand along R1

= (a + b + c){(a + b + c)2- 0}

= (a + b +c)3 = R.H.S

(ii) LHS = |x+y+2zxyzy+z+2xyzxz+x+2y|

=|x+y+2z+x+yxyz+y+z+2x+yy+z+2xyz+x+z+x+2yxz+x+2y
C1→ C1 + C2 + C3.

=|2(x+y+z)xy2(x+y+z)y+z+2xy2(x+y+z)xz+x+2y|.

= 2 (k + y + z) |1xy1y+z+2xy1xz+x+2y| Taking 2

Q:  

19. |1xx2x21xxx21|=(1x3)2

A: 

LHS = |1xx2x21xxx21|

=|1+x2+xx+1+x2x2+x+1x21xxx21|R1→ R1 + R2 + R3

= (1 + x2 + x) (1 -x)2 [ (1 + x)× 1 - (-x) x].

= (1 + x2 + x) (1 -x)2 (1 + x + x2).

= { (1 + x2 + x) (1 -x)}2

= {1 -x + x2-x3 + x-x2}2

= (1 -x3)2 = R.H.S.

Q:  

23. Which of the following is correct

(A) Determinant is a square matrix.

(B) Determinant is a number associated to a matrix.

(C) Determinant is a number associated to a square matrix.

(D) None of these

Read more
A: 

Option 'C' is correct as determinant is a number associated to a square matrix.

Q:  

25. Show that points

A (a, b + c),            B (b, c + a),         C (c, a + b) are collinear.

Read more
A: 

The area of triangle from by the given points is area ( ΔABC) = 12 |ab+c1bc+a1ca+b1|

=12|a+b+c+1b+c1b+c+a+1c+a1c+a+b+1a+b1|C1→ C1 + C2 + C3

=12 (a+b+c+1)|1b+c11c+a11a+b1| Taking (a + b + c + 1) common from C1

= (a+b+c+1)2×0 {? c=c3}

= 0

Hence the points A, B C are collinear.

Q:  

29. (i) |2403| (ii) |acbd|

A: 

(i) We know that,

Minor of element aij is mij and its co-factor is Aij = (–1)i+j Mij

So,

M11 = 3 and A11 = (- 1)1 + 1 M11 = 1 * 3 = 3

M12 = 0 and A12 = (-1)1+2 M12 = -1 * 0 = 0

M21 = -4 and A21 = (-1)2+1 M21 = (-1) * (-4) = 4

M22 = 2 and A22 = (-1)2+2 M22 = 1 * 2 = 2

(ii) Given A = |acbd|

So,

M11 = d and A11 = (-1)1+1 M11 = 1 * d = d

M12 = b and A12 = (-1)1+2 M12 = (-1) * b = -b

M21 = c and A21 = (-1)2+ 1 M21 = (–1) * c = –c

M22 = a and A22 = (-1)2+2 M22 = 1 * a = a

Q:  

30. (i) |100010001| (ii) |104351012|

A: 

(i) Given, A = |10001001|

So,

(ii)Given,  Δ=|104351012|

Q:  

Kindly Consider the following

45.

A: 

Kindly go through the solution

Q:  

Kindly Consider the following

46.

A: 

Given, A= [3112]

we have, A2 = A?A = [3112][3112]

=[3×3+1×(1)3×1+1×2(1)×3+(1)×2(1)×1+2×2]

=[913+2321+4]=[8553]

Hence, A2 – 5A+71= [8553]5[3112]+7[1001]

=[85×3+7×155×1+7×055×(1)+7×035×2+7×1]=[0000]=0

Now, A2 – 5A+7I=0.

A?A – 5A= –7I.

A A(A–1)–5(AA–1)= –7I(A–1)          (Multiplying by A-1on both sides)

AI – 5I= –7A–1

7A–1= –(AI – 5I)

A–1= 17[A+5I]

17{(1)[3112]+5[1001]}

17{[(1)×3+5×11+5×0(1)×(1)+5×0(1)×2+5×1]}

A–1= 17[2113]

Q:  

Kindly Consider the following

47.

A: 

Kindly go through the solution

⇒ b = 1

Q:  

Kindly Consider the following

50.

A: 

Given, A is an invertible matrix of order 2.

∴ Option (B) is correct.

Q:  

51. x + 2 y = 2 2 x + 3 y = 3

A: 

The given system of equation can be written in the form of AK = B

Now,  = 3 × 1 - 2 × 2 = 3 - 4 = -1 ≠ 0.

∴ The system has unique soln  and hence equation are consistent

Q:  

Kindly Consider the following

52. 2xy=5x+y=4

A: 

The given system of eqn can be written in the form AK = B where

Now, = 2 – (-1) = 2 + 1 = 3 ≠ 0.

∴ The system of eqnis consistent.

Q:  

Kindly Consider the following

53. 2x+3y=52x+6y=8

A: 

The given system of equation can be written in the form AK = B

Hence the given system of eqn are inconsistent.

Q:  

54. x+y+z=12x+3y+2z=2ax+ay=2az=4

A: 

The given system of eqn using matrix method can be expressed as

                 AK = B

= ( 6 a 2 a ) ( 4 a 2 a ) + ( 2 a 3 a )

= 4a – 2a – a

= a ≠ 0.

Hence, the given system of eqn is consistent

Q:  

55. 3xy2z=22yz=13x5y=3

A: 

The given system of eqn using matrix form can be written as AK = B

= 3 ( 0 5 ) + 1 ( 0 + 3 ) 2 ( 0 6 )

= -15 + 3 + 12

 = -15 + 15

= 0

Q:  

Kindly Consider the following

57. 5x+2y=47x+3y=5

A: 

The given system of eqn in matrix form is AK = B.

Then, |A| = 5 x 3 - 7 x 2 = 15 - 14 = 1 ≠ 0

∴ The system has a unique solution.

∴ k = 2 and y = -3

Q:  

Kindly Consider the following

59. 4x3y=33x5y=7

A: 

The given system of eqn can be written in matrix form as

       AK = B

Q:  

63. 2x+3y+3z=5x2y+z=43xy2z=3

A: 

The given system of equation can be represented in matrix form as AK = B

Q:  

64. xy+2z=73x+4y5z=52xy+3z=12

A: 

The given system of eqn can be written in matrix form as

          AK = B

x= 2, y = 1 and z = 3 .

Q:  

71. Solve the equation |x+axxxx+axxxx+a|=0,a0

A: 

|x+axxxx+axxxx+a|=0R1R1+R2+R3|3x+a3x+a3x+axx+axxxx+a|=0

Taking 3x+a common from R1

(3x+a)|111xx+axxxx+a|=0

Either 3x+a=0x=a3

Or

|111xx+axxxx+a|=0c2c2c1,c3c3c1|100xa0x0a|=0

Expanding along R1 , a2=0

a=0

 x=a3 is the only solution.

Q:  

72. Prove that |a2bcac+c2a2+abb2acabb2+bcc2|=4a2b2c2

A: 

L.H.S=|a2bcac+c2a2+abb2acabb2+bcc2|

=|a2bcc(a+c)a(a+b)b2acabb(b+c)c2|

Taking a, b, c common from c1, c2 and c3 respectively

=abc|aca+ca+bbabb+cc|R1R1R2R3=abc|2b2b0a+bbabb+cc|c2c2c1=abc|2b00a+baabcc|

Expanding along R1

abc(2b)(2ac)=4a2+b2+c2=R.H.S.

Q:  

73. If A-13-11-156-55-22 and B = 12-2-1300-21 find (AB)-1

A: 

Kindly go through the solution

Q:  

77. |αα2β+γββ2γ+αγγ2α+β|=(βγ)(γα)(αβ)(α+β+γ)

A: 

  L . H . S . = | α α 2 β + γ β β 2 γ + α γ γ 2 α + β | c 3 c 3 + c 1 = | α α 2 α + β + γ β β 2 α + β + γ γ γ 2 α + β + γ | = ( α + β + γ ) | α α 2 1 β β 2 1 γ γ 2 1 |

R 2 R 2 R 1 and R 3 R 3 R 1

= ( α + β + γ ) | α α 2 1 β α β 2 α 2 0 γ α γ 2 α 2 0 |

Expanding along c 3

= ( α + β + γ ) | β α β 2 α 2 γ α γ 2 α 2 | = ( α + β + γ ) | β α ( β α ) ( β + α ) γ α ( γ α ) ( γ + α ) | ( α + β + γ ) ( β α ) ( γ α ) | 1 β + γ 1 γ + α | ( α + β + γ ) ( β α ) ( γ α ) { γ + 2 ( β γ ) } ( α + β + γ ) ( β α ) ( γ α ) ( γ β ) ( α + β + γ ) ( α β ) ( β γ ) ( γ α ) = R . H . S .

Q:  

78. |xx21+px3yy21+py3zz21+pz3|=(1+pxyz)(xy)(yz)(zx

A: 

L . H . S . = | x x 2 1 + p x 3 y y 2 1 + p y 3 z z 2 1 + p z 3 | = | x x 2 1 y y 2 1 z z 2 1 | + | x x 2 p x 3 y y 2 p y 3 z z 2 p z 3 | = ? 1 + ? 2 ( 1 ) N o w ? 2 = | x x 2 p x 3 y y 2 p y 3 z z 2 p z 3 | = p x y z | 1 x x 2 1 y y 2 1 z z 2 | c 1 c 3 = p x y z | x 2 x 1 y 2 y 1 z 2 z 1 | c 1 c 2 = p x y z | x x 2 1 y y 2 1 z z 2 1 | = p x y z ? 1

Putting value in (1)

?1+pxyz?1=(1+pxyz)?1(2)Now?1=|xx21yy21zz21|

R2R2R1 and R3R3R1

=|xx21yxy2x20zxz2x20|

Expanding along c3

?1=|(yx)(yx)(y+x)(zx)(zx)(z+x)|=(yx)(zx)|1y+x1z+x|=(yx)(zx)(z+xyx)=(xy)(yz)(zx)

Putting ?1 in (2)

L.H.S.=(1+pxyz)(xy)(yz)(zx)=R.H.S

Q:  

79.  | 3 a a + b a + c b + a 3 b b + c c + a c + b 3 c | = 3 ( a + b + c ) ( a b + b c + c a )

A: 

L . H . S . = | 3 a a + b a + c b + a 3 b b + c c + a c + b 3 c | c 1 c 1 + c 2 + c 3 = | a + b + c a + b a + c a + b + c 3 b b + c a + b + c c + b 3 c | ( a + b + c ) | 1 a + b a + c 1 3 b b + c 1 c + b 3 c |

R2R2R1and R3R3R1

=(a+b+c)|1a+ba+c03b+abb+a0a+b+ab3c+ac|

Expanding along c1

=(a+b+c)|2b+aabac2c+a|=(a+b+c)[4bc+2ab+2ac+a2+ac+abbc]=(a+b+c)(3ab+3bc+3ac)=3(a+b+c)(ab+bc+ac)=R.H.S.

Q:  

80. Using properties of determinants,

Prove that: |11+p1+p+q23+2p4+3p+2q36+3p10+6p+3q|=1

A: 

L . H . S . = | 1 1 + p 1 + p + q 2 3 + 2 p 4 + 3 p + 2 q 3 6 + 3 p 1 0 + 6 p + 3 q | R 2 R 2 2 R 1 R 3 R 3 3 R 1 = | 1 1 + p 1 + p + q 0 1 2 + p 0 3 7 + 3 p | R 3 R 3 3 R 2 = | 1 1 + p 1 + p + q 0 1 2 + p 0 0 1 |

Expanding along c1

?=|12+p01|=1=R.H.S.

Q:  

83. Choose the correct answer

If a, b, c are in AP, then the determinant |x+2x+3x+2ax+3x+4x+2bx+4x+5x+2c|

A. 0

B. 1

C. Z

D. 2x

A: 

|x+2x+3x+2ax+3x+4x+2bx+4x+5x+2c|=0

Q:  

84. If x, y, z are nonzero real numbers, then the inverse of matrix A = x000y000z is

(A) x-1000y-1000z-1 (B) xyz x-1000y-1000z-1

(C) 1xyzx000y000z (D) 1xyz100010001

Read more
A: 

Kindly go through the solution

qna

Maths Ncert Solutions class 12th Exam

Student Forum

chatAnything you would want to ask experts?
Write here...