NCERT Solutions for Class 12 Maths Chapter 7 Integrals – Free PDF Download

NCERT Maths 12th 2023 ( Maths Ncert Solutions class 12th )

Pallavi Pathak
Updated on Aug 5, 2025 12:29 IST

By Pallavi Pathak, Assistant Manager Content

Integrals Class 12 NCERT Solutions cover two types of integrals - definite and indefinite integrals, which are together called the Integral Calculus. Between the indefinite and definite integrals, there is a connection called the Fundamental Theorem of Calculus. This connection makes the definite integral a practical tool for engineering and science.
Class 12 Integrals concepts are important as it has applications in various industries. The definite integral is used to solve many interesting problems from various fields like probability, finance, and economics. The chapter also includes the elementary properties of the definite and indefinite integrals, including some techniques of integration.
If you are looking for Class 12 Maths notes for CBSE Board exam preparation, check - Class 12 Maths Notes. You will get the solved examples with chapter-wise PDFs.

Table of content
  • Insight into Class 12 Maths Chapter 7 Integrals NCERT Solutions
  • Class 12 Math Chapter 7 Integral: Key Topics, Weightage
  • Important Formulas of Class 12 Integrals
  • Topics Covered in NCERT Maths Class 12 Integrals Chapter
  • NCERT Maths Class 12th Solution PDF - Integrals Chapter Download
  • Integrals Questions and Answers
Maths Ncert Solutions class 12th Logo

Insight into Class 12 Maths Chapter 7 Integrals NCERT Solutions

Here is a quick review of the Integrals Class 12:

  • The chapter is about integration, which is the inverse process of differentiation. Here, the differential of a function is given, and we need to find the function. d d x F ( x ) = f ( x ) Then we write f ( x ) F ( x ) + C d x
  • Some properties of indefinite integrals are -  [ f ( x ) + g ( x ) ] d x = f ( x ) d x + g ( x ) d x k f ( x ) d x = k f ( x ) d x More generally, [ k 1 f 1 ( x ) + k 2 f 2 ( x ) + + k n f n ( x ) ] d x = k 1 f 1 ( x ) d x + k 2 f 2 ( x ) d x + + k n f n ( x ) d x
  • The chapter also includes the standard integrals, integration by partial function, integration by substitution, and integrals of some special functions.
  • Other concepts covered in this chapter include integration by parts, some special types of integrals, and the first fundamental theorem of integral calculus.

Related Links

NCERT Notes for Class 11 & 12 Class 12 Maths NCERT Solutions NCERT Solutions Class 11 and 12
Maths Ncert Solutions class 12th Logo

Class 12 Math Chapter 7 Integral: Key Topics, Weightage

Class 12 Integrals is an important chapter for entrance tests. Students should clearly understand the concepts of the chapter to score well in the CBSE Board exam and competitive exams like JEE Mains. Here are the topics covered in this chapter:

Exercise Topics Covered
7.1 Introduction
7.2 Integration as an Inverse Process of Differentiation
7.3 Methods of Integration
7.4 Integrals of Some Particular Functions
7.5 Integration by Partial Fractions
7.6 Integration by Parts
7.7 Definite Integral
7.8 Fundamental Theorem of Calculus
7.9 Evaluation of Definite Integrals by Substitution
7.10 Some Properties of Definite Integrals

Class 12 Integrals Weightage in JEE Main

Exam Number of Questions Total Marks Weightage
JEE Main 3 questions Generally worth around 12 marks 9-10%

Those who are looking for comprehensive NCERT notes of Physics, Chemistry & Maths of class 12, must explore at - NCERT Class 12 Notes.

Maths Ncert Solutions class 12th Logo

Important Formulas of Class 12 Integrals

Important Formulae for Class 12 Math Integrals

  1. e x d x = e x + C \int e^x \, dx = e^x + C
  2. a x d x = a x ln a + C \int a^x \, dx = \frac{a^x}{\ln a} + C
  3. 1 x d x = ln x + C \int \frac{1}{x} \, dx = \ln |x| + C
  4. sin x d x = cos x + C \int \sin x \, dx = -\cos x + C
  5. cos x d x = sin x + C \int \cos x \, dx = \sin x + C
  6. sec 2 x d x = tan x + C \int \sec^2 x \, dx = \tan x + C
  7. csc 2 x d x = cot x + C \int \csc^2 x \, dx = -\cot x + C
  8. sec x tan x d x = sec x + C \int \sec x \tan x \, dx = \sec x + C
  9. csc x cot x d x = csc x + C \int \csc x \cot x \, dx = -\csc x + C
Maths Ncert Solutions class 12th Logo

Topics Covered in NCERT Maths Class 12 Integrals Chapter

  • Integration as an Inverse Process of Differentiation
  • Methods of Integration 
  • Integrals of Some Particular Functions 
  • Integration by Partial Fractions
  • Integration by Parts 
  • Definite Integral 
  • Fundamental Theorem of Calculus
  • Evaluation of Definite Integrals by Substitution 
  • Some Properties of Definite Integrals
Maths Ncert Solutions class 12th Logo

NCERT Maths Class 12th Solution PDF - Integrals Chapter Download

Integrals Class 12 NCERT Solutions PDF download link is given here. Students should download it to get the well-structured solutions to all the exercises of this chapter. It offers reliable and accurate study material for exam preparation.

Download Here: NCERT Solution for Class XII Maths Integrals PDF

Maths Ncert Solutions class 12th Logo

Integrals Questions and Answers

Find an anti-derivative (or integral) of the following functions by the method of inspection.

Q1.  s i n 2 x      

A.1.

d d x c o s 2 x = 2 s i n 2 x       s i n 2 x = 1 2 d d x ( c o s 2 x )         s i n 2 x     = d d x ( 1 2 c o s 2 x )

Therefore, an anti-derivative of  s i n 2 x i s 1 2 c o s 2 x

Q2.  c o s 3 x

A.2.

d d x s i n 3 x = 3 c o s 3 x           c o s 3 x = 1 3 d x ( s i n 3 x )         c o s 3 x =   d d x ( 1 3 s i n 3 x )

Therefore, an anti-derivative of  c o s 3 x i s 1 3 s i n 3 x

Q3.  e 2 x

A.3.

d d x ( e 2 x ) = 2 e 2 x e 2 x = 1 2 d d x ( e 2 x ) e 2 x = d d x ( 1 2 e 2 x )

Therefore, an anti-derivative of  e 2 x i s 1 2 e 2 x

Q4.  ( a x + b ) 2

A.4.

d d x ( a x + b ) 3 = 3 a ( a x + b ) 2

( a x + b ) 2 = 1 3 a . a d x ( a x + b ) 3

( a x + b ) 2 = d d x ( 1 3 a ( a x + b ) 3 )

Therefore, an anti-derivative of  ( a x + b ) 3 i s 1 3 a ( a x + b ) 3

Q&A Icon
Commonly asked questions
Q:  

Kindly Consider the following

103. 5x21+2x+3x2

A: 

Let5x2=Addx(1+2x+3x2)+B 5x2=A(2+6x)+B=2A+A6x+B 

Equating thecoefficientofxandconstanttermonbothsides,wehave 5=6A;    and  2A+B=2 A= 56 B=22A B=113 Therefore,5x2=56(2+6x)+(113)I=5x21+2x+3x2dx=56(2+6x)+(113)1+2x+3x2dx=56(2+6x)1+2x+3x2dx11311+2x+3x2dxLet,I1=2+6x1+2x+3x2dxandI2=11+2x+3x2dxI=5x21+2x+3x2dx=56I1113I2(1)Let 1 + 2x+ 3x2=t

(2+6x)dx=dtI1=dtt=log|t|=log|1+2x+3x2|    ____(2)I2=11+2x+3x2dxNow,1+2x+3x2=1+3(x2+23x)Therefore,1+3(x2+23x)=1+3(x2+23x+1919)

Q:  

Kindly Consider the following

73. sin2x1+cosx

A: 

2x1+cosx= (2sinx2cosx2)22cos2x2

=4sin2x2cos2x22cos2x2=2sin2x22=1cosx=sin2x1+cosxdx= (1cosx)dx=xsinx+C

Q:  

Kindly Consider the following

79. cos2x+2sin2xcos2x

A: 

=cos2x+ (1cos2x)cos2x=1cos2x=sec2x=cos2x+2sin2xcos2xdx=sec2xd x

= tanx+ C

Q:  

Kindly Consider the following

12.

 

A: 

=(x3.x1/2+3x.x1/2+4.x1/2)dx=(x5/2+3x1/2+4x1/2)dx=x52+152+1+3·x1/2+112+1+4·x1/2+112+1=x7/27/2+3·x3/23/2+4x1/21/2+C=27x7/2+2x3/2+8x1/2+C=27x7/2+2x3/2+8√x+C.

Q:  

Kindly Consider the following

24. (logx)2x

A: 

Let, logx=t1xdx=dtI= (logx)2xdx=t2dt=t33+C= (logx)33+C

Q:  

Kindly Consider the following

27. sin(ax+b)cos(ax+b)

A: 

=sin (ax+b)cos (ax+b)=2sin (ax+b)cos (ax+b)2=sin2 (ax+b)2Put2 (ax+b)=t2adx=dtI=sin2 (ax+b)2dx=12sintdt2a=14a [cost]+C=14acos2 (ax+b)+C

Q:  

Kindly Consider the following

32. 

 
A: 

x−√x=1√x (√x1)Put, √x1=t12√xdx=dtI=1√x (√x1)dx=2tdt=2log|t|+c=2log (√x1)+c

Q:  

Kindly Consider the following

77. tan4x

A: 

tan4x=tan2xtan2x

=(sec2x1)tan2x

=sec2x.tan2xtan2x

=sec2x.tan2x(sec2x1)

=sec2x.tan2xsec2x+1

 I=tan4xdx=sec2x.tan2xdxsec2xdx+1.dx

=sec2x.tan2xdxtanπ+x+C(i)

LetI=sec2x.tan2xdx

Put tanx=t

sec2xdx=dt

I1=sec2x.tan2xdx

=t2dt

=t33=tan3x

3I=tan4xdx

=13tan3xtanx+x+ C

Q:  

Kindly Consider the following

81. cos2x(cosx+sinx)2

A: 

=cos2xcos2x+sin2x+2sinxcosx=cos2x1+sin2x

=cos2x(cosx+sinx)2dx=cos2x1+sin2xdxPut 1 + sin 2x=t

2 cos 2x dx=dt=cos2x(cosx+sinx)2dx=121tdt=12log|t|+ C=12log|1+sin2x|+ C12log|(cosx+sinx)2|+ C=log|cosx+sinx|+C

Q:  

Kindly Consider the following

82. sin1(cosx)

A: 

I=sin1 (cosx)dx=sin1 (sin {π2x})dx= {π2x}dx=π2xx22+ C

Q:  

Kindly Consider the following

83. 1cos(xa)cos(xb)

A: 

1cos(xa)cos(xb)=1sin(ab)×[sin(ab)cos(xa)cos(xb)]=1sin(ab)[sin{(xb)(xa)}cos(xa)cos(xb)]

=1sin(ab)[sin(xb)cos(xa)cos(xb)sin(xa)cos(xa)cos(xb)=1sin(ab)[tan(xb)tan(xa)]=1sin(ab)tan(xb)tan(xa)]dx=1sin(ab)[log|cos(xb)|+log|cos(xa)?]=1sin(ab)[log|cos(xa)cos(xb)|]+ C

Q:  

Kindly Consider the following

85. e2(1+x)cos2(e2x)

A: 

Lete2x=t

e2x+ ex1dx=dt

ex(x+1)dx=dt=ex(1+x)cos2(e2x)dx=dtcos2t=sec2t dt       = tan (ex,x) + C

The correct answer is (B).

Q:  

87. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

88. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

Kindly Consider the following

144. 

A: 

Kindly go through the solution

 

Q:  

Kindly Consider the following

145. xsec2x

A: 

xsec2xdx=xsec2xdxdxdxsec2xdxdx.=xtanxtanxdx=xtanx (log|cosx|)+ C=xtanx+log|cosx|+ C

Q:  

251. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

Kindly Consider the following

70. cosx1+cosx

A: 

cosx1+cosx=cos2x2sin2x22cos2x2=12[1tan2x2]=cosx1+cosxdx=12(1tan2x2)dx=12(1sec2x2+1)dx=12(2sec2x2)dx=12[2xtanx212]+ C=xtanx2+ C

Q:  

ind an anti-derivative (or integral) of the following functions by the method of inspection.

1. sin2x   

Read more
A: 

ddxcos2x=2sin2x   sin2x=12ddx (cos2x)    sin2x  =ddx (12cos2x)

Therefore, an anti-derivative of sin2x is12cos2x

Q:  

Kindly Consider the following

28. √ax + b

A: 

Put, ax+b=tadx=dtdx=1adtI= (ax+b)12dx=t12·1adt=1at12+112+1+C=1at3232+C=23a (ax+b)32+ c

Q:  

Kindly Consider the following

29. x√x + 2

A: 

Put,x+2=tdx=dtx=t2I=x√x+2dx=(t2) √tdt=(t1+322t12)dt=(t322t12)dt=t32·dt2·t12·dt=t52522t3232=25t5243t32+C=25(x+2)5243(x+2)32+C

Q:  

Kindly Consider the following

36. 1x(logx)m,x>0,m1

A: 

Put, logx=t1xdx=dtI=1x (logx)mdx=dt (t)m= (tm+11m)+C= (logx)m+1 (1m)+C

Q:  

Kindly Consider the following

71. sin4x

A: 

sin4x=sin2x.sin2x=(1cos2x2)(1cos2x2)=14(1cos2x)2=14[1+cos22x2cos2x]=14[1+(1+cos4x2)2cos2x]=14[1+12+12cos4x2cos2x]=14[32+12cos4x2cos2x]

=sin4xdx=14[32+12cos4x2cos2x]dx=14[32+12(sin4x4)2sin2x2]+ C=18[3x+sin4x42sin2x]+ C=3x814sin2x+132sin4x+ C

Q:  

Kindly Consider the following

72. cos42x

A: 

Kindly go through the solution

Q:  

Kindly Consider the following

74. cos2xcos2cosxcos

A: 

=4cos(x+2)cos(x2)=2[cos(x+2+x2)+cos(x2x2)= 2[cos(x) + cos]=2cosx+2cos=cos2xcos2cosxcosdx=(2cosx+2cos)dx

= 2[sinx+xcos] + C

Q:  

Kindly Consider the following

75. cosxsinx1+sin2x

A: 

cosxsinx1+sin2x=cosxsinx(sin2x+cos2x)+2sinxcosx=cosxsinx(sinx+cosx)2[?sin2+cos2=1&sin2x=2sinxcosx]I=cosxsinx1+sin2xdx=cosxsinx(sinx+cosx)2dxPut sinx+ cosx=t

(cosxsinx)dx=dt=dtt2=t2dt=t1+=1t+ c=1sinx+cosx+ c

Q:  

Kindly Consider the following

76. tan32x.sec2x

A: 

tan32xsec 2x= tan22xtan 2xsec 2x


 {sec2(2x)1} tan 2xsec 2x

= sec22xtan 2xsec 2x

tan 2xsec 2x

I =tan32x.sec 2x dx

=tan22xtan 2xsec 2x dxtan2x.sec 2x dx=tan22xtan2xsec2xdxsec2x2+Put sec 2x=t

2sec 2xtan 2x dx=dt

I=tan32x.sec 2x dx=12t2dtsec2x2+ C=t36sec2x2+ C=(sec2x)36sec2x2+ C

Q:  

Find the following integrals in Exercises 6 to 20:

6. (4e3x+1)dx

A: 

 4e3xdx+1dx4·e3x3+x+C

Q:  

Kindly Consider the following

41. e2x1e2x+1

A: 

Dividing both numerator and denominator by ex, we get

e2x1exe2x+1ex=exexex+exPutex+ex=t (exex)dx=dtI=e2x1e2x+1dx=exexex+exdxI=dtt=log|t|+c=log|ex+ex|+c

Q:  

Kindly Consider the following

42. e2xe2xe2x+e2x

A: 

Pute2x+e2x=t (2e2x2e2x)dx=dt

2 (e2xe2x)dx=dtI=e2xe2xe2x+e2xdx=dt2t=121tdt=12log|t|+=12log|e2x+e2x|+C

Q:  

Kindly Consider the following

60. 10x9+10xloge10dxx10+10x

A: 

Putx10+10x=t (10x9+10xloge10)dx=dtI=10x9+10xloge10x10+10xdx=dtt=logt+C=log (10x+x10)+c

Therefore, the correct answer is (D)

Q:  

Kindly Consider the following

61. dxsin2xcos2xdx

A: 

I=dxsin2xcos2x=1sin2xcos2xdx=sin2x+cos2xsin2xcos2xdx=sin2xsin2xcos2xdx+cos2xsin2xcos2xdx=sec2xdx+cosec2xdx]=tanxcotx+c

Therefore, the correct answer is B.

Q:  

Kindly Consider the following

2. cos3x

A: 

dxsin3x=3cos3x     cos3x=13dx (sin3x)    cos3x= ddx (13sin3x)

Therefore, an anti-derivative of cos3xis13sin3x

Q:  

Kindly Consider the following

3. e2x

A: 

ddx (e2x)=2e2xe2x=12ddx (e2x)e2x=ddx (12e2x)

Therefore, an anti-derivative of e2xis12e2x

Q:  

Kindly Consider the following

4. (ax+b)2

A: 

dx (ax+b)3=3a (ax+b)2

(ax+b)2=13a.adx (ax+b)3

(ax+b)2=ddx (13a (ax+b)3)

Therefore, an anti-derivative of  (ax+b)3is13a (ax+b)3

Q:  

Kindly Consider the following

5. sin2x4e3x

A: 

ddx (12cos2x43e3x)=sin2x4e3x

Therefore, an anti-derivative of  (sin2x4e3x)is12cos2x43e3x

Q:  

Kindly Consider the following

7. x2(11x2)dx

A: 

x2x2x2dx=x21dx=x2dx1dx

=x33x+C

Q:  

Kindly Consider the following

8. (ax2+bx+c)dx

A: 

=a.x2.dx+bx.dx+c1.dx=a·x33+bx22+cx+d.

Q:  

Kindly Consider the following

9. (2x2+ex)dx

A: 

2x2+exdx

=2·x2dx+exdx=2·x33+ex+ C

Q:  

Kindly Consider the following

A: 

Kindly go through the solution

Q:  

Kindly Consider the following

11. x3+5x24x2dx

A: 

(x3x2+5x2x24x2)dx= (x+54x2)dx 

=x.dx+5dx4x2dx=x22+5x4x2+12+1=x22+5x4x11=x22+5x+4x+ C

Q:  

Kindly Consider the following

13. x3x2+x1x1dx

A: 

x3x2x1+x1x1dx (x2 (x1)x1+1)dx= (x2+1)dx 

=x2.dx+1.dx=x33+x+ C

Q:  

Kindly Consider the following

14. (1x)√xdx

A: 

(√xx·x1/2)dx (√xx3/2)·dxx1/2·dxx3/2·dxx3/23/2x5/25/2+C23x3/225x5/2+ c

Q:  

Kindly Consider the following

15. ∫√x(3x2+2x+3)dx

A: 

=(3x2.x1/2+2x.x1/2+3x1/2).dz

=(3x5/2+2x3/2+3x4/2).dx

=3x5/2.dx+2x3/2.dx+3x1/2.dx=3·x7/27/2+2·x5/25/2+3·x3/23/2+ C=6·x7/27+4x5/25+63x3/2+ C=6x7/27+4·x5/25+2x3/2+ C.

Q:  

Kindly Consider the following

16. (2x3cosx+ex)dx

A: 

=2xdx3cosx+exdx

=2x223sinx+ex+ C=x23sinx+ex+C

Q:  

Kindly Consider the following

17. (2x23sinx+5√x)dx

A: 

=2x2.dx3sinx.dx+5√xdx=2x33+3cosx+5x3/232+ C=2x33+3cosx+10x3/23+ C

Q:  

Kindly Consider the following

18. secx(secx+tanx)dx

A: 

= (sec2x+secxtanx)dx

=sec2x.dx+secxtanxdx 

=tanx+secx+C

Q:  

Kindly Consider the following

19. sec2xcosec2xdx

A: 

1cos2x1cos2xdx=sin2xcos2xdx=tan2xdx

= (sec2x1)dx=sec2xdx1.dx

=tanxx+C

Q:  

Kindly Consider the following

20. 23sinxcos2xdx

A: 

(2cos2x3sinxcos2x)dx= (2sec2x3tanx.secx)dx

=2sec2x.dx3tanx.secx.dx

=2tanx 3 secx+C

Q:  

Choose the correct answer in Exercises 21 and 22.

A: 

x3/232+x1/212+ C

=23x3/2+2x1/2+ C

? The correct Answer is (C)

Q:  

Kindly Consider the following

22. ddxf(x)=4x33x4,f(2)=0

A: 

f (x)=4x33x4dx=4x443x33+ C=x4+1x3+ C

Now,  f (2)=0 f (2) =24+123+C=0

=16+18+c=0=c= (16+18)=c=1298

Therefore, correct answer is A.

Q:  

Kindly Consider the following

23. 2x1+x2

A: 

Let, 1+x2=t2xdx=dtI=2x1+x2dx=1dttlog|t|+clog|1+x2|+c

Q:  

Kindly Consider the following

25. 1x+xlogx

A: 

x (1+logx)Put, 1+logx=t=1dxx=dt=I=1x+xlogxdx=1tdt=log (t)+c=log (1+logx)+c

Q:  

Kindly Consider the following

26. sinxsin(cosx)

A: 

Kindly go through the solution

Q:  

Kindly Consider the following

30.

 

A: 

Put, 1+2x2=tdx2.2x=dtdx.4x=dt

Q:  

Kindly Consider the following

31.

 

A: 

Kindly go through the solution

 

Q:  

Kindly Consider the following

33. 

A: 

Kindly go through the solution

 

Q:  

Kindly Consider the following

34. (x31)13x5

A: 

Put,x31=t3x2dx=dt=I(x31)13x5dx=(x31)13·x3·x2·dx=t13(t+1)dt3=13(t43+t13)dt=13[t7373+t4/343]+C=13[37t73+34t43]+C=17(x31)73+14(x31)43+C

Q:  

Kindly Consider the following

35. x3(2+3x3)3

A: 

Put, 2+3x3=t9x2dx=dtI=x3 (2+3x3)3dx=19dtt3=19 [t22]+C=118 (1t2)+C=118 (2+3x3)2+C

Q:  

Kindly Consider the following

37. x94x2

A: 

Put94x2=t8xdx=dtxdx=18dt18dtt=18log|t|+c=18log|94x2|+c

Q:  

Kindly Consider the following

38. e2x+3

A: 

Put2x+3=t2dx=dtI=e2x+3dx=12et·dt=12 (et)+C=12e (2x+3)+C

Q:  

Kindly Consider the following

39. xex2

A: 

Putx2=t2xdx=dtI=xex2dx=121etdt=12 (et1)+C=12ex2+C=12ex2+C

Q:  

Kindly Consider the following

40. etan1x1+x2

A: 

Puttan1x=t1dx1+x2=dtI=etan1x1+x2dx=etdt=et+c=etan1x+c

Q:  

Kindly Consider the following

43. tan2(2x3)

A: 

Put2x3=t2dx=dtI=tan2 (2x3)dx= [sec2 (2x3)1]dx=12 (sec2t)dt1dx=12tantx+C=12tan (2x3)x+C

Q:  

Kindly Consider the following

44. sec2(74x)

A: 

Put74x=t4dx=dtI=sec2 (74x)dx=14sec2tdt=14 (tant)+C

Q:  

Kindly Consider the following

45. 

A: 

Kindly go through the solution

Q:  

Kindly Consider the following

46. 2cosx3sinx6cosx+4sinx

A: 

2cosx3sinx2 (3cosx+2sinx)Put3cosx+2sinx=t (3sinx+2cosx)dx=dt=2cosx3sinx6cosx+4sinxdx=dt2t=121tdt=12log|t|+C=12log|3cosx+2sinx|+C.

Q:  

Kindly Consider the following

47. 1cos2x(1tanx)2

A: 

sec2x (1tanx)2Put (1tanx)=tsec2xdx=dtI=sec2x (1tanx)2dx=dtt2=t2dt=1t+C=11tanx+C

Q:  

Kindly Consider the following

48. 

A: 

Kindly go through the solution

 

Q:  

Kindly Consider the following

49. 

A: 

Kindly go through the solution

 

Q:  

Kindly Consider the following

50.

A: 

Kindly go through the solution

 

Q:  

Kindly Consider the following

51. cotxlogsinx

A: 

Putlogsinx=t1sinx·cosxdx=dtcotxdx=txI=cotxlogsinxdx=tdt=t22+C= (logsinx)22+C

Q:  

Kindly Consider the following

52. sinx1+cosx

A: 

Put1+cosx=tsinxdx=dtI=sinx1+cosxdx=dtt=log|t|+c=log|1+cosx|+c

Q:  

Kindly Consider the following

53. sinx(1+cosx)2

A: 

Put1+cosx=tsinxdx=dtI=sinx (1+cosx)2dx=dtt2=t2dt=1t+C=11+cosx+C

Q:  

Kindly Consider the following

54. 11+cotx

A: 

11+cosxsinx·dx=1sinx+cosxsinxdx=sinxsin+cosx·dx=122sinxsinx+cosxdx=12(sinx+cosx)+(sinxcosx)sinx+cosxdx=121·dx+1(sinxcosx)sinx+cosxdx=121·dx+1(sinxcosx)sinx+cosxdx=12(x)+12sinxcosxsinx+cosxdxPutsinx+cosx=t(cosxsinx)dx=dt=x2+12dtt=x212log|t|+ c=x212log|sinx+cosx|+ c

Q:  

Kindly Consider the following

55. 11tanx

A: 

I=11tanxdx=11sinxcosxdx=1cosxsinxcosxdx=cosxcosxsinxdx=122cosxcosxsinxdx=12(cosxsinx)+(cosx+sinx)(cosxsinx)dx=121·dx+12cosx+sinxcosxsinxdxPutcosxsinx=t(sinxcosx)dx=dtI=x2+12dtt=x212log|cosxsinx|+C

Q:  

Kindly Consider the following

56. 

A: 

Kindly go through the solution

 

Q:  

Kindly Consider the following

57. (1+logx)2x

A: 

Put (1+logx)=t1xdx=dtI= (1+logx)2xdx=t2dt=t33+C (1+logx)33+C

Q:  

Kindly Consider the following

58. (x+1)(x+logx)2x

A: 

I= (x+1)x (x+logx)2= (1+1x) (x+logx)2Putx+logx=t1+1xdx=dtI= (1+1x) (x+logx)2dx=t2dt=t33+C= (x+logx)33+C

Q:  

Kindly Consider the following

59. x3sin(tan1x4)1+x8

A: 

Putx4=t4x3dx=dtI=x3sin(tan1x4)1+x8dx=14sin(tan1t)1+t2_____(1)Puttan1t=u11+t2dt=du

From (1), we get

I=x3sin(tan1x4)1+x8dx=14sinudu=14(cosu)+C=14cos(tan1t)+C=14cos(tan1x4)+C

Q:  

Kindly Consider the following

155. sin1(2x1+x2)

A: 

Let, I=sin1 (2x1+x2)dx

Putting x = tanθ tan-1x = θ dx = sec2θdθ we get,

I=sin1 [2tanθ1+tan2θ]sec2θdθ

Q:  

Kindly Consider the following

62. sin2(2x+5)

A: 

Here, sin2 (2x+5)=1cos2 (2x+5)2=1cos (4x+10)2Then, =sin2 (2x+5)dx=1cos (4x+10)2dx=121dx12cos (4x+10)dx=12x12sin (4x+10)4+ C=x218sin (4x+10)+ C

Q:  

Kindly Consider the following

63. sin3x.cosx4x

A: 

Here,sinAcosB=12{sin(A+B)+sin(A−B)}sin3xcos4x=12(sin(3x+4x)+sin(3x4x))Then,sin3xcos4xdx=12[sin(3x+4x)+sin(3x4x)dx=12sin(3x+4x)+sin(3x4x)dx=12sin7x+sin(x)dx=12[cos7x7+cosx]+c=cos7x14+cosx2+c

Q:  

Kindly Consider the following

64. cos2xcos4xcos6x

A: 

Here,cosAcosB=12{cos(A+B)+cos(A−B)}I=cos2x(cos4xcos6x)dx=cos2x[12cos(4x+6x)+cos(4x6x)]dx=cos2x[12(cos10x+cos(2x))]dx=12cos2xcos10x+cos2xcos(2x)dx=12cos2xcos10x+cos2xdx[cos(x)=cosx]=12[12{cos2x+10x+cos2x10}+{1+cos4x2}]dx=14cos12x+cos8x+1+cos4xdx=14[sin12x12+sin8x8+x+cos4x4x]+ C

Q:  

Kindly Consider the following

65. sin3(2x+1)

A: 

I=sin3(2x+1)dx=sin2(2x+1).sin(2x+1)dx={1cos2(2x+1)}sin(2x+1)dxPuttingcos(2x+1)=t2sin(2x+1)dx=dtsin(2x+1)dx=dt2I=12(1t2)dt=12{tt33}+ C=12{cos(2x+1)cos3(2x+1)33}+ C=cos(2x+1)2+cos3(2x+1)66+ C=12cos(2x+1)+16cos3(2x+1)+ C

Q:  

Kindly Consider the following

66. sin3xcos3x

A: 

I=sin3xcos3xdx=cos3xsin2xsinx.dx=cos3x(1cos2x).sinxdxPutcosx=tsin.x.dx=dtI=t3(1t2)dt

=(t3t5)dt={t44t66}+ C={cos4x4cos6x6}+ C=cos4x4+cos6x6+ C=16cos6x14cos4x+ C

Q:  

Kindly Consider the following

67. sinxsin2xsin3x

A: 

Here,sinAsinB=12{cos(A+B)cos(AB)}I=sinxsin2xsin3x=[sinx12{cos(2x3x)cos(2x+3x)}]dx={[sinx12{cos(x)cos5x}}dx=12sinxcosxsinxcos5xdxNow,sin2x=2sinxcosx,=12sin2x2dx12sinxcos5xdx=14[cos2x2]1212sin(x+5x)+sin(x5x)dx=cos2x814sin6x+sin(4x)dx=cos2x814[cos6x6+cos4x4]+ C=cos2x818[cos6x3+cos4x2]+ C=cos2x8+cos6x24cos4x16+ C=14[16cos6xcos4x4cos2x2]+ C.

Q:  

Kindly Consider the following

68. sin4xsin8x

A: 

sinAsinB=12 {cos (A+B)cos (A−B)}=sin4xsin8xdx=12 {cos (4x8x)cos (4x+8x)}dx=12cos (4x)cos12xdx=12 (cos4xcos12x)dx=12 [sin4x4sin12x12]+ C

Q:  

Kindly Consider the following

69. 1cosx1+cosx

A: 

1cosx1+cosx=2sin2x22cos2x2=tan2x2=sec2x21=1cosx1+cosxdx= (sec2x21)dx= [tanx212]+ C=2tanx2+ C

Q:  

Kindly Consider the following

78. sin3x+cos3xsin3xcos3x

A: 

sin3x+cos3xsin2xcos2x=sin3xsin2xcos2x+cos3xsin2x.cos2x=sinxcos2x+cosxsin2x=tanxsecx+cotxcosecx.=sin3x+cos3xsin2xcos2xdx=(tanxsecx+cotxcosecx)dx

= secxcosecx+ C

Q:  

Kindly Consider the following

80. 1sinxcos3x

A: 

sin2x+cos2xsinxcos3x=sinxcos3x+1sinxcosx=tanxsec2x+cos2x(sinxcosxcos2x)=tanxsec2x+sec2xtanxI=1sinxcos3xdx=tanxsec2xdx+sec2xtanxdxPut tanx=t

Sec2x dx=dt=1sinxcos3xdx=tanxsec2xdx+sec2xtanxdx=tdt+1dtt=t22+log|t|+ C=12tan2x+log|tanx|+ C

Q:  

Kindly Consider the following

84. sin2xcos2xsin2cos2xdx is equal to

A: 

=sin2xcos2xsin2cos2xdx= (sec2xcosec2x)dx

= tanx+ cotx+ C.

Therefore,  the correct answer is  (A).

Q:  

Kindly Consider the following

86. 3x2x6+1

A: 

Letx3=t

3x2dx=dtI=3x2x6+1dx=dtt2+1= tan1t+C 

= tan1 (x3) +C

Q:  

89. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

Kindly Consider the following

90. 3x1+2x4

A: 

Let√2x2=t 2√2xdx=dtI=3x1+2x4dx=32√2dt1+t2=32√2 [tan1t]+C=32√2 [tan1 (√2x2)]+C

Q:  

Kindly Consider the following

91. x21x6

A: 

Letx3=t

3x2dx=dtI=x21x6dx=13dt1t2=13 [12log|1+t1t|]+C=16log|1+x31x3|+C

Q:  

92. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

93. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

94. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

95. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

Kindly Consider the following

96. 19x2+6x+5

A: 

I=19x2+6x+5dx=1 (3x+1)2+22Let  (3x+1) =t

3dx=dtI=1 (3x+1)2+22dx=131t2+22dt=13 [12tan1 (t2)]+C=16tan1 (t2)+C=16tan1 (3x+1)2)+C

Q:  

97. Kindly Consider the following

A: 

76xx2=7 (x2+6x+99)

=7 (x2+6x+9)+9

=16 (x2+6x+9) 

=16 (x+3)2

= (42) (x+3)2

Q:  

98. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

99. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

100. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

101. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

102. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

104. Kindly Consider the following

A: 

6x+7x29x+20Let6x+7=Addx(x29x+20)+B 6x+7=A(2x9)+BEquatingthecoefficientofxandconstantterm,wehave2A = 6           and  9A+B= 7

A=3                B= 34

6x+ 7 = 3(2x9) + 34

Q:  

105. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

106. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

Kindly Consider the following

107. x+3x22x5

A: 

Let(x+3)=Addx(x22x5)+B(x+3)=A(2x2)+B Equatingthecoefficientofxandconstanttermonbothside,weget Weget     2A=1    and  2A+B=3 A= 12            B=4  Therefore,(x+3)=12(2x2)+4(1)I=x+3x22x5dx=12(2x2)+4x22x5dx=122x2x22x5dx+41x22x+5dxI=x+3x22x5dx=12I1+4I2I1=2x2x22x5dxLetx2 2x 5 =t 

(2x2)dx=dtI1=dtt=log|t|=log|x22x5|(2)I2=1x22x5dx=1(x22x+1)6dx=1(x1)2(√6)2dx=12√6log(x1−√6x1+√6)(3)Substituting(2)and(3)in(1),wegetI=12log|x22x5|+42log|x1−√6x1+√6|+C

Q:  

108. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

Kindly Consider the following

109. dxx2+2x+2equals

A: 

I=dxx2+2x+2=dx (x2+2x+1)+1=dx (x+1)2+1dx=  [tan1 (x+1)] +C

Hence,  the correct Answer is  (B).

Q:  

110. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

111. x(x+1)(x+2)=A(x+1)+B(x+2)

A: 

Kindly go through the solution

Q:  

Kindly Consider the following

112. 1x29

A: 

Kindly go through the solution

Q:  

Kindly Consider the following

113. 3x1(x1)(x2)(x3)

A: 

Kindly go through the solution

S o , 3 x 1 ( x 1 ) ( x 2 ) ( x 3 ) = 1 ( x 1 ) + ( 5 ) ( x 2 ) + 4 ( x 3 ) T h e n , 3 x 1 d x ( x 1 ) ( x 2 ) ( x 3 ) = d x x 1 5 d x x 2 + 4 d x x 3 . = l o g | x 1 | 5 l o g | x 2 | + 4 l o g | x 3 | + c

Q:  

Kindly Consider the following

114. x(x1)(x2)(x3)

A: 

Kindly go through the solution

Q:  

Kindly Consider the following

115. 2xx2+3x+2

A: 

2xx2+3x+2=2x(x+1)(x+2)=A(x+1)+B(x+2)

2x = A(x + 2) + B(x + 1).

= (A + B) x + (2A + B).

Comparing the coefficients we get,

A + B = 2 ---(1)

2A + B = 0 ---- (2).

So, Eqn (2) - (1),

2A + B - (A + B) = 0 - 2

Þ A = - 2

And B = 2 - A = 2 - (-2) = 2 + 2 = 4

B = 4

S o , 2 x ( x + 1 ) ( x + 2 ) = 2 x + 1 + 4 x + 2 . 2 x d x ( x + 1 ) ( x + 2 ) = 2 d x x + 1 + 4 d x x + 2 = 2 l o g | x + 1 | + 4 l o g | x + 2 | + c = 4 l o g | x + 2 | 2 l o g | x + 1 | + c

Q:  

Kindly Consider the following

116. 1x2x(12x)

A: 

1x2x(12x) which is not a proper fraction

So, division is missing

So,1x2x(12x)=12+(x2+1)x(12x)=12+12(2x)x(12x)Let2xx(12x)=Ax+B(12x)

=> 2 -x = A(1 - 2x) + B x.

   So, - 2A + B = - 1

   A = 2.

   So, B = - 1 + 2A = - 1 + 2 ´ 2 = - 1 + 4 = 3

1 x 2 d x x ( 1 2 x ) = 1 2 d x + 1 2 ( 2 x ) x ( 1 2 x ) d x = x 2 + 1 2 { A x d x + B 1 2 x d x } = x 2 + 1 2 { { 2 x d x + 3 ( 1 2 x ) d x } = x 2 + l o g | x | + 3 2 l o g | 1 2 x | ( 2 ) + c = x 2 + l o g | x | 3 4 l o g | 1 2 x | + c

Q:  

Kindly Consider the following

117. x(x2+1)(x1)

A: 

x(x2+1)(x1)=Ax+Bx2+1+Cx1

=> x = (Ax + B)(x- 1) + C(x2 + 1)

= Ax2- Ax + Bx- B + Cx2 + C.

Comparing the co-efficients we get,

A + C = 0 ---- (1)

- A + B = 1 ---- (2)

- B + C = 0 ---- (3)

Adding (1) and (2) we get,

A + C - A + B = 0 + 1

=> B + C = 1 --- (4)

Adding (4) + (3) we get,

- B + C + B + C = 0 + 1

=> 2C = 1

And C = B from (3)

So, from Eqn (1),

A = - C

A = 1 2 . x ( x 2 + 1 ) ( x 1 ) d x = ( 1 2 x + 1 2 ) x 2 + 1 d x + 1 2 d x . = 1 2 1 x x 2 + 1 d x + 1 2 1 x 1 d x . = 1 2 1 x 2 + 1 d x 1 4 2 x d x x 2 + 1 + 1 2 l o g | x 1 | + c = 1 2 t a n 1 x 1 4 l o g ( x 2 + 1 ) + 1 2 l o g | x 1 | + c .

Q:  

Kindly Consider the following

118. x(x1)2(x2)

A: 

x(x1)2(x2)=A(x1)+B(x1)2+Cx+2

= A(x- 1)(x + 2) + B(x + 2) + C(x- 1)2

= A(x2 + 2x-x- 2) + B(x + 2) + C(x2 + 1 - 2x)

= A(x2 + x- 2) + B(x + 2) + C(x2- 2x + 1)

Comparing the co-efficient we get, A + C = 0 ¾ (1)

A + B - 2C = 1 ¾ (2)

- 2A + 2B + C = 0 ¾ (3)

EQn (3) - 2 ´ enQ. (2),

- 2A + 2B + C (2A + 2B - 4C) = 0 - 2 ´ 1.

=> - 4A + 5C = - 2 ¾ (4)

Eqn (4) + 4 ´ Eqn (1) we get,

- 4A + 5C + 4A + 4C = - 2 + 4 ´ 0

=> 9C = - 2

C = 2 9 PuttingC=29, in (1) Putting value of A and C in (3) we get, 2 × 2 9 + 2 B 2 9 = 0 2 B = 2 9 + 4 9 2 B = 6 9 : 2 3 B = 1 3 .

Q:  

Kindly Consider the following

119. 3x+5x3x2x+1

A: 

Kindly go through the solution

Q:  

Kindly Consider the following

120. 2x3(x21)(2x+3)

A: 

Kindly go through the solution

Q:  

Kindly Consider the following

121. 5x(x+1)(x24)

A: 

Kindly go through the solution

Q:  

Kindly Consider the following

122. x3+x+1x21

A: 

Kindly go through the solution

Q:  

Kindly Consider the following

123. 2(1x)(1+x2)

A: 

Kindly go through the solution

Q:  

Kindly Consider the following

124. 3x1(x+2)2

A: 

Kindly go through the solution

Q:  

Kindly Consider the following

125. 1x41

A: 

Kindly go through the solution

⇒A=12Andfrom(1)weget,12dxy21=12dxy112dxy+1=12dxx2112dxx21{y=x2}=12×121log|x1x+1|12tan1x+ C=14log|x1x+1|12tan1x+ C

Q:  

Kindly Consider the following

126. 1x(xn+1)

A: 

1x(xn+1)=xn1xn1x(xn+1)=xn1xn(xn+1)

Putting xn = t Þ n xn- 1dx = dt

dxx(xn+1)=xn1dxxn(xn+1)=1ndtt(t+1)=1n(t+1t)t(t+1)dt=1n{t+1t(t+1)tt(t+1)}dt.=1n{dttdtt+1}=1n{logtlog(t+1)}+C.=1nlog?tt+1+ C=1nlog|xnxn+1|+C.

Q:  

Kindly Consider the following

127. c o s x ( 1 s i n x ) ( 2 s i n x )

A: 

Putting sin x = t cos xdx = dt

dt (1t) (2t)= (2t) (1t) (1t) (2t)dt.=dt1tdt2t=log|1t| (1)log|2t| (1)+c=log|2t1t|+c=log|2sinx1sinx|+c

Q:  

Kindly Consider the following

128. (x2+1)(x2+2)(x2+3)(x2+4)

A: 

Kindly go through the solution

Q:  

Kindly Consider the following

129. 2x(x2+1)(x2+3)

A: 

Putting x2 = t such that 2xdx = dt

2xdx(x2+1)(x2+3)=dt(t+1)(t+3)=122dt(t+1)(t+3)=12(t+3)(t+1)dt(t+1)(t+3)=12{dtt+1dtt+3}=12{log|t+1|log|t+3|}+ c=12log|t+1t+3|+ c

Q:  

Kindly Consider the following

130. 1x(x41)=x3x4(x41)

A: 

Putting x4 = tÞ 4x3dx = dt

1x (x41)dx=14dtt (t1)=14t (t1)t (t1)dt=14 {dtt1dtt}=14 {log|t1|logt}+ C

=14log|t1t|+ C=14log|x41x4|+ C

Q:  

Kindly Consider the following

131. 1ex1

A: 

Putting ex = t so that ex dx = dt=>dx = dtex=dtt

dxex1=dt (t1)×t=dtt (t1)=t (t1)t (t1)dt=dtt1dtt=log|t1|log|t|+ C=log|en1|logex+C.

Q:  

Kindly Consider the following

132. x(x1)(x2)equals

A: 

Kindly go through the solution

Q:  

Kindly Consider the following

133. 1x(x2+1)equals

A: 

1x(x2+1)=xx2(x2+1)Putting,x2=t2xdx=dt

dxx(x2+1)=xdxx2(x2+1)=12dtt(t+1)=12(t+1)tt(t+1)dt=12{dttdtt+1}=12[log|t|log|t+1|]+ C=12log|x2|12log|x2+1|+ C=22log|x|12log|x2+1|+c=log|x|12log|x2+1|+cSo,option(A)iscorrect.

Q:  

Kindly Consider the following

134. xsinx

A: 

xsinxdx=xsindxddxxsinxdxdx=x (cosx) (cosx)dx

Q:  

Kindly Consider the following

135. xsin3x

A: 

xsin3xdx=xsin3xdxdxdxsin3xdxdx.=xcos3x3+cos3x3=xcos3x3+sin3x3×3+c=x3cos3x+19sin3x+c

Q:  

Kindly Consider the following

136. x2ex

A: 

x2exdx=x2exdxdx2dxexdxdx=x2·ex2xexdx=x2ex2 [xexdxdxdxexdxdx]=x2ex2 [xexexdx]=x2ex2xex+2ex+c=ex [x22x+2]+c

Q:  

Kindly Consider the following

137. xlogx

A: 

xlogxdx=logxxdxddxlogx·xdxdx=logx×x221x×x22dx=x22·logx12xdx=x22logx12×x22+c=x22logxx24+c.

Q:  

Kindly Consider the following

138. xlog2x

A: 

xlog2xdx=log2x·xdxddxlog2xxdxdx=x22·log2x12x×d(2x)dx×x22dx+C=x22·log2x12x×2×x221dx+C=x22log2x12xdx+c=x22log2x12·x22+c=x22log2xx24+c

Q:  

Kindly Consider the following

139. x2·logx

A: 

x2·logx·dx=logx·x2dxddxlogx·x2dxdx=logx·x331x·x33dx=x33·logxx23dx=x33·logx13×x33+c=x33logxx39+c.

Q:  

Kindly Consider the following

140. xsin1x

A: 

Kindly go through the solution

Q:  

Kindly Consider the following

141. xtan1x

A: 

xtan1xdx=tan1xxdxddxtan1x·xdx.dx=tan1x·x2211+x2·x22dx.=x22tan1x12x21+x2dx=x22tan1x12(1+x2)11+x2dx=x22·tan1x12[(1+x2)1+x2dxdx1+x2]=x22·tan1x12[dxtan1x]=x22tan1x12[xtan1x]+C.=12[x2tan1xx+tan1x]+C.=12[(x2+1)tan1x·x]+C

Q:  

Kindly Consider the following

142. xcos1x

A: 

Let,I=xcos1xdx

Putting cos-1 x =θ=> x = cosθ=>dx = - sinθdθ.

So,I=?cosθ×θ(sinθ)dθ.

=12?θ(2sinθcosθ)dθ {θsin 2θ = 2 sinθ cosθ}

=12?θsin2θdθ.=12[θ?sin2θdθ?dθdθ?sin2θdθdθ]

=12[θ(cos2θ)θ?((cos2θ)2)dθ]=θ4cos2θ14sin2θ2+C=θ4cos2θ18(2sinθcosθ)+C.=θ4[2cos2θ1]14sinθcosθ+C. {?cos2θ=2cos2θ1}.

Q:  

Kindly Consider the following

143. (sin1x)2

A: 

LetI=?(sin1x)2dx

Putting sin-1x =θ=> x = sinθ, dx = cosθdθ.

So,I=?θ2cosθdθ=θ2?cosθdθ?ddθθ2?cosθdθdθ. 

=θ2sinθ?2θsinθdθ.=θ2sinθ2?θsinθdθ. 

=θ2sinθ2[θ?sinθdθ?dθdθ?sinθdθdθ]

=θ2sinθ2[θ(cosθ)?(cosθ)dθ]

=θ2sinθ+2θcosθ2sinθ+C

Q:  

Kindly Consider the following

146. tan1x

A: 

tan1xdx= (tan1x)1dx.=tan1xdxddxtan1xdxdx=xtan1x11+x2xdx.=xtan1x122x1+x2dx=xtan1x12log|1+x2|+ C

Q:  

Kindly Consider the following

147. x(logx)2

A: 

x(logx)2=(logx)2xdxddx(logx)2xdxdx=(logx)2×x222logx×12×x22dx=x22(logx)2logxxdx

=x22(logx)2[logxxdxddxlogxxdxdx]=x22(logx)2x22logx+x2dx=x22(logx)2x22logx+x24+ C

Q:  

Kindly Consider the following

148. (x2+1)logx

A: 

(x2+1)logxdx=logx(x2+1)dx(x2+1)dxddxlogx(x2+1)dxdx=logx[x33+x]1x×[x33+x]dx=[x33+x]logx[x23+1]dx=[x33+x]logxx33×3x+ C=[x33+x]logxx39x+ C

Q:  

Kindly Consider the following

149. ex(sinx+cosxdx)

A: 

∴f (x) = sin x

f (x) = cos x.

ex [f (x) + f (x)] dx = exf (x) + C

ex (sinx+cosx)dx=exsinx+c

Q:  

Kindly Consider the following

150. xex(x+1)2

A: 

Let,I=xex(x+1)2dx=x+11(x+1)2exdx

=ex[(x+1)(x+1)2+(1)(x+1)2]dx. is of the form

ex [f(x) + f(x)] dx

Where,f(x)=x+1(x+1)2=1x+1So,f(x)=d(x+1)1dx=(1)(x+1)2.xex(1+x2)dx=ex[1x+1]+ C

Q:  

Kindly Consider the following

151. ex(1+sinx1+cosx)

A: 

Let,=ex(1+sinx1+cosx)dx.,

=ex1+2sinx2cosx22cos2x2dx. {∴ sin 2x = 2sin x cos x. cos 2x = cos- 2x- 1 1 + cos 2x = 2cos2x.

=ex[12cos2x2+2sinx2cosx22cos2x2]dx]=ex[12sec2x2+cosxsinx2cosx2]dx

=ex[tanx2+12sin2x2]dx is in the form

  ex [f(x) + f(x)].dx where

f(x)=tanx2f(x)=ddrtanx2=sec2x2ddx(x2)=12sec2x2=exf(x)+c=extanx2+ C

Q:  

Kindly Consider the following

152. ex(1x1x2)dx

A: 

Let, I=ex (1x1x2)dxex [f (x)+f (x)]dxWhere, f (x)=1xf (x)=dxdx=1x2=1x2

So, I = exf (x) + C

=ex1x+ c=exx+ c

Q:  

Kindly Consider the following

153. x3ex(x1)3

A: 

Let, I =x3(x1)3exdx.=(x1)2(x1)3exdx.=ex[x1(x1)32(x1)3]dx=ex[1(x1)2+(2)(x1)3]dx,whichisinforeex[f(x)+f(x)]dx,Wheref(x)=1(x1)2f(x)=ddx(x1)2=2(x1)3.I=exf(x)+c=ex1(x1)2+c=ex(x1)2+ C

Q:  

Kindly Consider the following

154. e2xsinx

A: 

Let, I=e2xsinxdx.=sinxe2xddxsinxe2xdxdx=sinxe2x2cosxe2x2dx=e2x2sinx12cosx×e2xdx=e2x2sinx12{cosxe2xdxddxcosxe2xdxdx}=e2x2sinx12{cosxe2x2+sinxe2x2dx}=e2x2sinxe2x4cosx14I+ CI+I4=e2x2sinxe2x4cosx+ C5I4=e2x2sinxe2x4cosx+ CI=45[e2x2sinxe2x4cosx]+ C=e2x5[2sinxcosx]+ C

Q:  

Kindly Consider the following

156. x2ex3dx.equals

A: 

LetI=x2ex3dx.let, t=x3dt=3x2dxdt3=x2dxSo, =etdt3=13etdt.=13et+ C=ex33+C.

So, option (A) is correct.

Q:  

Kindly Consider the following

157. exsecx(1+tanx)dx

A: 

Kindly go through the solution

Q:  

158. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

159. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

160. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

161. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

162. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

163. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

164. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

165. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

166. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

167. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

168. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

Kindly Consider the following

169.   abxdx

A: 

We know that  abf(x)dx=limh0nh[f(a)+f(a+h)+f(a+2h)+......+f(a+(n1)h)]

where  nh=ba

Here, a = a, b= b and f(x) = x

abxdx=limh0h[a(a+h)+(a+2h)+......+(a+(n1)h)]

abxdx=limh0h[na+(1+2+3+.....+(n1))]

abxdx=limh0h[anh+hn(n1)2]

=limh0h[anh+nh(nhh)2]

=limh0h[a(ba)+(ba)(bah)2][?nh=ba]

=[a(ba)+(ba)(ba)2]=(ba)[a+ba2]=(ba)[2a+ba2]=(ba)(b+a)2=b2a22

Q:  

Kindly Consider the following

170. 05(x+1)dx

A: 

We know that  abf(x)dx=limh0nh[f(a)+f(a+h)+f(a+2h)+......+f(a+(n1)h)]

where nh = b - a

Here, a = 0, b = 5, nh = 5 and f(x) = x + 1

05(x+1)dx=limh0nh[1+(h+1)+(2h+1)+.....+((n1)h+1)]05(x+1)dx=limh0nh[n+h(1+2+3.....+(n1))]05(x+1)dx=limh0nh[nh+hn(n1)2]=limh0n[nh+nh(nhh)2]

=limh0[5+5(5h)2]=[5+5(50)2]=5+252=352

Q:  

Kindly Consider the following

171. 23x2dx

A: 

We know that  abf(x)dx=limh0nh[f(a)+f(a+h)+f(a+2h)+......+f(a+(n1)h)]

where nh = b - a

Here, a = 2, b = 3, nh = 1 and f(x) = x2

abx2dx=limh0nh[4+(4+4h+h2)+(4+8h+22h2)+......+(4+4(n1)h+(n1)2h2)]=limh0nh[4n+4h+(1+2+3+......+(n1))+h2(12+22+......(n1)2)]=limh0nh[4nh+4hhn(n1)2+hhhn(n1)(2n1)6]=limh0nh[4nh+4hh(nhh)2+nh(nhh)(2nhh)6]

=limh0h[4+2(1h)+(1h)(2h)6]=[4+2(10)+(10)(20)6]=6+13=193

Q:  

Kindly Consider the following

172.  14(x2x)dx

A: 

We know that  abf(x)dx=limh0nh[f(a)+f(a+h)+f(a+2h)+......+f(a+(n1)h)]

where nh = b - a

Here, a = 1, b = 4, nh = 3 and f(x) = x2 - xf(x) =  x2 - x 

14(x2+x)dx=limh0nh[0+h+h+2h+4h2+......+(n1)h+(n1)2h2]=limh0nh[h(1+2+3+......+(n1))+h2(12+22+......(n1)2)]=limh0nh[4nh+4hhn(n1)2+hhhn(n1)(2n1)6]=limh0nh[h(1+2+3+......+(n1))+h2(12+22+......(n1)2)]=limh0h[3(3h)2+3(3h)(2.3h)6]=[3(30)2+3(30)(60)6]=[92+9]=272

Q:  

Kindly Consider the following

173. 11exdx

A: 

We know that  abf(x)dx=limh0nh[f(a)+f(a+h)+f(a+2h)+......+f(a+(n1)h)]

where nh = b - a

Here, a = -1, b = 1, nh = 2 and f(x) = ex

14exdx=limh0nh[e1+e1e+e1e2h+......+e1e(n1)h]=limh0nhe1[(eh)n1]eh1

?  The series within brackets is a G.P. and  Sn=arn1r1 ]

=limh0nhe(enh1)eh1=limh0he1(e21)eh1=e1(e21)limh0heh1=e1(e21)×1[?limx0xex1=1]=e1+2e1=ee1=e1e

Q:  

Kindly Consider the following

174.  04(x+e2x)dx

A: 

We know that  abf(x)dx=limh0nh[f(a)+f(a+h)+f(a+2h)+......+f(a+(n1)h)]

where nh = b - a

04(x+e2x)dx=limh0nh[1+(h+e2h)+(2h+e4h)+......+((n1)h+e2(n1)h)]=limh0nh[(h+2h+......+(n1)h)+(1+e2h+e4h+......+e2(n1)h)]=limh0nh[h(1+2+......+(n1))+a(rn1r1)]

=limh0h[h.hn(n1)2+1((e2n)n1)e2h1]

=limh0h[nh(nhh)2+h((e2nh)n1)e2h1]=limh0h[4(4h)2+h((e24)1)e2h1]=[4(40)2+(e81)limh0he2h1]=8+(e81)12limh02he2h1=8+(e81)2=e8152[?limx0xex1=1]

Q:  

Kindly Consider the following

175. 11(x+1)dx

A: 

11 (x+1)dx=11.xdx+11dx= [x22]11+ [x]11= [122 (1)22]+ [1 (1)].= [1212]+ [1+1]=2.

Q:  

Kindly Consider the following

176. 231xdx

A: 

231xdx=231xdx= [logx]23=log3log2=log32

Q:  

Kindly Consider the following

177. 12(4x35x2+6x+9)dx.

A: 

12(4x35x2+6x+9)dx.=[4×x445×x33+6x22+9x]12=[x453x3+3x2+9x]12=[245x×23+3×22+9×2][1453×13+3×12+9×1]=[16403+12+18][153+3+9]=[4840+36+543][35+9+273]=983343=643.

Q:  

Kindly Consider the following

178. 0/4sin2xdx

A: 

0/4sin2xdx= [cos2x2]0π/4= [cos2×π/42+cos2×02]=cosπ/22+cos02=0+12=12

Q:  

Kindly Consider the following

179. 0π/2cos2xdx

A: 

0π/2cos2xdx= [sin2x2]0π/2=sin2×π/22sin2×02=si20=0

Q:  

Kindly Consider the following

180. 45exdx

A: 

45exdx= [ex]45=e5e4=e4 (e1)

Q:  

Kindly Consider the following

181. 0π/4tanxdx

A: 

Kindly go through the solution

Q:  

Kindly Consider the following

182. 

A: 

Kindly go through the solution

 

Q:  

Kindly Consider the following

183. 

A: 

Kindly go through the solution

 

Q:  

Kindly Consider the following

184. 01dx1+x2

A: 

1dx1+x2= [tan1x]01=tan1 (1)tan1 (0)= π/40= π/4

Q:  

Kindly Consider the following

185. 23dxx21

A: 

23dxx21= [12×1logx1x+1]23=12log|313+1|12log|212+1|

=12log2412log13=12 [log12log13]=12log1/21/3=12log32.

Q:  

Kindly Consider the following

186. 

A: 

Kindly go through the solution

 

Q:  

Kindly Consider the following

187. 23xdxx2+1

A: 

23xdxx2+1=12232xx2+1dx=12 [log|x2+1|]23

=12log|32+1|12log|22+1|=12 [log|9+1|log|4+1|]=12log105=12log2.

Q:  

Kindly Consider the following

188. 012x+35x2+1dx

A: 

Kindly go through the solution

Q:  

Kindly Consider the following

189. 01xex2dx

A: 

01xex2dx=Isay, Putting, x2=t2xdx=dtxdx=dt2=01etdt2=1201etdt

When,

x = 0, t = 0

x = 1, t = 1

=12 [et]01=12 [e1e0]= (e1)2

Q:  

Kindly Consider the following

190. 125x2x2+4x+3

A: 

Kindly go through the solution

Q:  

Kindly Consider the following

191. 

A: 

Kindly go through the solution

Q:  

Kindly Consider the following

192. 

A: 

Kindly go through the solution

Q:  

Kindly Consider the following

193. 026x+3x2+4dx

A: 

026x+3x2+4dx=026xx2+4dx+023x2+4dx=3022xx2+4dx+3021x2+22dx=3[log|x2+4|]02+32[tan1x2]02=3[log|22+4|log|02+4|]+32[tan122tan102]=3[log84]+32[π/40]=3log2+

Q:  

Kindly Consider the following

194. 01(xex+sinπx4)dx

A: 

Kindly go through the solution

Q:  

Kindly Consider the following

195. 

A: 

Kindly go through the solution

 

Q:  

Kindly Consider the following

196. 02/3dx4+9x2equals

A: 

02/3dx4+9x2equals=02/3dx22+ (3x)2

 =12× [tan13x2]02/33=16 [tan132×23tan132×0]=16 [tan1 (1)tan (0)]=16 [π/40]=π/24

? Option (c) is correct.

Q:  

228. 1xx3           

A: 

From (2) C = - B => C = -

12.

So, 1xx3=1x+121(1x)121(1+x)

dxxx3=dxx+12dx1x12dx1+x

= log |x| + 12 log log|1x|(1)12 log |1 + x|

12[2log|x|log|1x|log|1+x|]+ C

12[logx2log(1x)(1+x)]+ C

12log(x21x2)+ C

Q:  

229. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

230. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

231. dxx2(x4+1)34      

A: 

Let I = dxx2(x4+1)34

dxx2[x4(1+1x4)]34 = dxx2x4×34[1+1x4]34

dxx2+3[1+1x4]34

1x5[1+1x4]34dx.

Putting 1+1x4=t4x5dx=dt

dxx5=dt4.

I = t34dt4=14t34+134+1+ C

14t1414+ C

t14+ C

[1+1x4]14+ C

Q:  

232. dxx12+x13      

A: 

Let I = dxx12+x13=dxx13(x16+1)

Putting x16=t x = t6. dx = 6t5dt.

I = 6t5dtt2(t+1)dt

6t3(t+1)dt.

6[(t2t+1)(t+1)1(t+1)]dt

6{(t2t+1)dtdtt+1}

6{t33t22+tlog|t+1|}+ C

2x123t13+6x166log|x16+1|+ C

Q:  

233. 5x(x+1)(x2+9)   

A: 

From (1), B = - A = (12)=12

From (2) C = 5 - B = 5 12=1012=92

5x(x+1)(x2+9)dx={12x+1+12x+92x2+9}dx

=12dxx+1+12xx2+9dx+92dxx2+9

=12log|x+1|+149xx2+9dx+12dxx2+32.

=12log|x+1|+14log(x2+9)+92×13tan1x3+ C

=12log|x+1|+14log(x2+9)+32tan1x3+ C

Q:  

234. sinxsin(xa)dx

A: 

=sinxsin (xa)dx

Let x- a = t=> dx = dt.

 I =sin (t+a)sintdt=sintcosa+costsinasintdt

=cosadt+sinacottdt

=tcosa+sina·log|sint|+ C

= (xa)cosa+sinalog|sin (xa)|+ C

=xcosa+sinalog|sin (xa)|+C1

Where C1 = C - a cos a

Q:  

235. e5logxe4logxe3logxe2logxdx

A: 

e5logxe4logxe3logxe2logxdx=elogx5elogx4elogx3elogx2dx {? nlogm=logmn

=x5x4x3x2dx {? elogx=x

=x4 (x1)x2 (x1)dx=x2dx=x33+ C

Q:  

236. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

237. sin8xcos8x12sin2xcos2xdx  

A: 

sin8xcos8x12sin2xcos2xdx=(sin4x+cos4x)(sin4xcos4x)(sin2x+cos2x)sin2xcos2xsin2xcos2xdx

=(sin4x+cos4x)(sin2x+cos2x)(sin2xcos2x)sin2x(1cos2x)+cos2x(1sin2x)dx{?a2b2=(a+b)(ab)1=sin2x+cos2x.

=?(sin4x+cos4x)(sin2x+cos4x)(sin2xcos2x)×1sin2xsin2x+cos2xcos2xdx

=(sin4x+cos2x)(sin2xcos2x)(sin4x+cos4x)dx

=(cos2xsin2x)dx

=cos2xdx

=sin2x2+ C

Q:  

238. 1cos(x+a)cos(x+b)dx

A: 

I =1cos(x+a)cos(x+b)dx

=1sin(ab)sin(ab)cos(x+a)cos(x+b)·dx

=1sin(ab)sin[(x+a)(x+b)]cos(x+a)cos(x+b)dx

=1sin(ab)·sin(x+a)cos(x+b)cos(x+a)sin(x+b)cos(x+a)cos(x+b)dx

=1sin(ab)[tan(x+a)dxtan(x+b)dx]

=1sin(ab)[log|cos(x+a)|+log|cos(x+b)|]+ C

=1sin(ab)log|cos(x+b)cos(x+a)|+ C

Q:  

239. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

240. ex(1+ex)(2+ex)dx   

A: 

Let I=ex (1+ex) (2+ex)dx

Putting ex = t=>exdx = dt.

=dt (1+t) (2+t)= (t+2) (t+1) (t+1) (t+2)dt

=dtt+1dtt+2

=log|t+1|log|t+2|+C

=log|t+1t+2|+C.

=log [ex+1ex+2]+C.

Q:  

241. 1(x2+1)(x2+4)dx

A: 

Let I = 1(x2+1)(x2+4)dx

Putting x2= y then,

1 - A (y + 4) + 1B (y + 1)

Comparing the co-efficient,

A + B = 0 _____ (1)

4A + B = 1 ______ (2)

Equation (2) - (1),

4A + B - A - B = 1 - 0

3A = 1 =>A = 13.

and B = - A = -13.

1(x2+1)(x2+4)=131(y+1)131(y+4)

=131(x2+1)131(x2+4)

∴I=13dxx2+113dxx2+22

=13tan1x16tan1x2+ C

Q:  

242. cos3xelogsinxdx.

A: 

Let I = cos3xelogsinxdx.

=cos3xsinxdx {? elogx=x}

Putting cos x = t =>-sin x dx = dt =>sin x dx = -dt.

I =t3 (dt)=t3dt=t44+C=cos4x4+C.

Q:  

243. e3logx(x4+1)1dx

A: 

Let I=e3logx (x4+1)1dx

=elogx3 (x4+1)dx

=x3x4+1dx=144x3x4+1dx

=14log|x4+1|+ C

Q:  

244. f(ax+b)·[f](ax+b)ndx.

A: 

Let I =? f? (ax+b)· [f] (ax+b)ndx.

=1a? [f] (ax+b)n* [af? (ax+b)]dx.

Putting f (ax + b) = t.

f? (ax+b)ddx (ax+b)=dtdx

af'  (ax + b) dx = dt

? =1a? txdt

=1a [tn+1n+1]

=1a (x+1) [f] (ax+b)n+1+ C

Q:  

245. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

246. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

247. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

248. 2+sin2x1+cos2xexdx

A: 

Let I = ?2+sin2x1+cos2xexdx

=?ex[2+2sinxcosx2cos22]dx{sin2θ=2sinθcosθcos2θ=2cos2θ1}

=?ex[1cos2x+sinxcosx]dx

=?ex[tanx+sec2x]dx is in the form

?ex[f(x)+f(x)]dx  

f(x)=tanx

f(x)=sec2x.

I=exf(x)+c=extanx+c.

Q:  

249. x2+x+1(x+1)2(x+2)dx

A: 

Let I=?x2+x+1(x+1)2(x+2)dx

The integrate is of form,

x2+x+1(x+1)2(x+2)=Ax+1+B(x+1)2+Cx+2.

x2+x+1=A(x+1)(x+2)+B(x+2)+C(x+1)2. 

=A(x2+3x+2)+B(x+2)+C(x2+1+2x)

Comparing the co-efficients,

A + C = 1 ..........(1)

3A + B + C = 1 ..........(2)

2A + 2B + C = 1 .........(3)

Equation. (2) – 2 × Equation (1),

3A+B+2C2A2C=12×1.

A + B = –1 .......(4)

Equation (3) - (1),

2A + 2B + C = A – C = 1 – 1

A + 2B = 0 ........(5)

Equation (5) - Equation (4),

A + 2B - A - B = 0 - (-1)

 B = 1.

From (4), A = -1 - B = -1 - 1 = -2.

And from (1), C = 1 - A = 1 - (–2) = 1+2=3

x2+x+1(x+1)2(x+2)=2x+1+1(x+1)2+3x+2

I=?2x+1dx+?1(x+1)2dx+?3x+2dx

=2log|x+1|+?(x+1)2dx+3log|x+2|+C.

=2log|x+1|+(x+1)2+12+1+3log|x+2|+c

=2log|x+1|1x+1+3log|x+2|+c.

Q:  

250. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

252. π2πex(1sinx1cosx)dx.

A: 

Let I = π2πex(1sinx1cosx)dx.

π2πex[12sinx2cosx22sin2x2]dx.

π2πex[12cosec2x2cotx2]dx

= – π2πex[cotx212cosec2x2]dx

[ex·cotx2]π2π {?ex[f(x)+f(x)]dx=enf(x)

[eπcotx2πe2cotπ22]

[eπ×0eπ2·cot14]

0+eπ2×1.

eπ2

Q:  

253. 0π4sinxcosxcos4x+sin4xdx.

A: 

Let I = 0π4sinxcosxcos4x+sin4xdx.

0π4sinxcosxcos4x(1+sin4xcos4x)dx

0π4sinxcosx·cosxcosx1cos2x(1+tan4x)dx

0π4tanx·sec2x1+tan4xdx

120π42tanx·sec2x1+tan4xdx.

Putting tan2x = t =>2 tan x?sec2xdx = dt

When x = 0, t = tan2x = tan2 0 = 0

x = π4 t = tan2 π4 = 12 = 1.

? I = 1201dt1+t2=12[tan1t]01

12[tan1(1)tan1(0)]

12[π40]=π8

Q:  

254. 0π2cos2xcos2x+4sin2xdx

A: 

=0π2cos2xcos2x+4sin2xdx

0π2cos2xcos2x+4(1cos2x)dx{?1=cos2x+sin2x.

0π2cos2xcos2x+44cos2xdx

0π2cos2x43cos2xdx

130π23cos2x43cos2xdx

130π2(43cos2x)443cos2xdx

13[0π2dx0π2443cos2xdx]

13{[x]0π20π2443×1sec2xdx}

13{π20π24sec2x4sec2x3dx}

13{π20π24sec2x4(1+tan2x)3dx}{sen2x=1+tan2x}

π6+231

where I1 = 0π22tan2x1+4tan2xdx.

Putting 2tan x = t =>2 sin2xdx = dt& when x = 0, t = 2 tan (0) = 0

x = π2 , t = 2 tan π2 = ∞

I1 = 0dt1+t2.

[tant]0

= tan–1 (∞) – tan–10

π20 = π2.

? I = π6+23×π2=π6+π3=π6.

Q:  

255. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

256. Kindly Consider the following

A: 

Kindly go through the solution

Q:  

257. 0π4sinx+cosx9+16sin2xdx

A: 

Let I = 0π4sinx+cosx9+16sin2xdx

Let sin x – cos x = t. =>(cosx + sin x) dx = dt.

and (sin x – cos x)2 = t2

sin2x + cos2x – 2 sin x cos x = t2

1 – sin2x = t2.

sin2t = 1 - t2.

When x = 0, t = sin 0 – cos 0 = –1

? I = 10dt9+16(1t2)=10dt9+1616t2

10dt2516t2

10dt16(2516t2)

11610dt(54)2t2

116[12×(54)log|54+t54t|]10{dxa2x2=12alog|a+xax|}

116×42×5[log|5+4t54t|]10

140[log5+4×054×0log5+4(1)54(1)]

140[log55log19]

140[log1log9(1)]

140[0(1)log9]

140log9

140log32=240log3

120log3

Q:  

258. 0π/2sin2xtan1(sinx)dx

A: 

Let I = 0π/2sin2xtan1(sinx)dx

0π22sinxcosxtan1(sinx)dx

Putting sin x = t =>cos xdx = dt.

whenx = 0, t = sin 0 = 0.

x=π/2t=sinπ/2=1

? I = 012·ttan1(t)dt

2[tant01tdt01ddttanttdtdt]

2{[tan1t×t22]010111+t2×t22dt}

2{[tan1(1)×12tan1(0)×02]1201(1+t2)11+t2dt}

2[π80]22{011+t21+t2dt01dt1+t2}

π401dt+[tan1t]01

π4[t]01+[tan1(1)tan1(0)]

π41+π4=2×π41=π21

Q:  

259 0nxtanxsecx+tanxdx

A: 

2I=0nπtanxsecx+tanxdx2I=π0nsinxcosx1cosx+sinxcosxdx2I=π0πsinx+111+sinxdx2I=π0π1.dxπ0π11+sinxdx2I=π0π1.dxπ0π(1sinx)(1+sinx)(1sinx)dx

2I=π[x]0ππ0π1sinxcos2xdx2I=π2π0π(sec2xtanxsecx)dx2I=π2π[tanxsecx]0π

2I=π2π[tanπsecπtan0+sec0]2I=π2π[0(1)0+1]2I=π22π2I=π(π2)I=π2(π2)

Q:  

260. 14[|x1|+|x+2|+|x3|]dx

A: 

Let I = 14[|x1|+|x+2|+|x3|]dx

I = 14|x1|dx+14|x+2|dx+14|x3|dx

I = I1 + I2 + I3______(1)

So, I1 = 4 |x – 1| dx . {(x1)x1>0x>1(x1)x1<0x<1

14(x1)dx

[x22x]14=(422122)(41)

1523=1562=92.

I2 = 14|x2|dx {x2x2>0,x>2(x2)x2<0,x<2.

12(x2)dx+24(x2)dx

[x222x]12+[x222x]24

[(22212)(2×22×1)]+[(422222)(2×42×2)]

[412(42)]+[(82)(84)]

32+2+64

3+4+1282=52

 I3 = 14|x3|dx {(x3)x3>0,x>3(x3)x3<0,x<3

13(x3)dx+34(x3)dx

[x223x]13+[x223x]34

[(322122)(3·33·1)]+[(422322)(3×43×3)]

[826]+[723]

4+6+723=8+12+762=52

Hence Equation (1) becomes

I = 92+52+52

I = 192

Q:  

261. 13dxx2(x+1). =23+log23

A: 

Let I=13dxx2(x+1).

The integrand is of the form.

1 = Ax (x + 1) + B (x + 1) + Cx2

= A (x2 + x) + B (x + 1) + Cx2

Comparing the coefficients,

A + C = 0 ____ (1)

A + B = 0 ______ (2)

B = 1 ________ (3)

Putting Equation (3) in (2),

A + 1 = 0

A = -1.

and putting value of A in Equation (1),

-1 + C = 0

C = 1

1x2(x+1)=1x+1x2+1x+1

I=13dxx2(x+1)=13dxx+13dxx2+13dxx+1

=[log|x|]13+[x2+12+1]13+[log?x+1]13

=[log3+log1][1x]13+[log|3+1|log|1+1|]

=log3+0[131]+log4log2

=log3(13)3+log22log2

=log3(2)3+2log2log2

=log2log3+23

=23+log23

Hence proved.

Q:  

262. 01xexdx=1     

A: 

LHS= 01xexdx=x01exdx01dxdxexdxdx

= [xex]0101exdx

= [1e10×e0] [ex]01

= (e10) (e1e0)

= e-e + e0

= e0 = 1=RHS

Q:  

263. 11x17·cos4xdx =0

A: 

=11x17·cos4xdx

Here f (x) = x17 cos4x

f ( -x) = ( -x)17 cos4 ( -x)

= -x17 cos4x

= f (x)

i e, odd fxn

As aaf (x)dx=0 for odd fxn

therefore, I = 0.

Q:  

264. 0π2sin3xdx.=23

A: 

LHS = I=0π2sin3xdx.{sin3A=3sinA4sin3 A

=0π214(3sinxsin3x)dx.sin3A=14(3sinAsin3A)

=14[30π2sinxdx0πqsin3xdx]

=14{3[cosx]0π2[cos3x3]0π2}

=34(cosπ2+cos0)112(cos3π2+cos3×0)

=34(0+1)112(0+1)

=34112=9112=812=23

Q:  

265. 0π4·2tan3xdx=1log2

A: 

Let I 0π4·2tan3xdx

=20π4tan2xtanxdx

=20π4(sec2x1)tanxdx{?sec2x=tan2x+1}

=20π4sec2xtanxdx20π4tanxdx

=2I1+2[log](cosx)0π4

=2I1+2[log(cosπ4)log(cos0)]

=2I1+2(log1/√2
log1)

=2I1+2(log·2120)

I=2I1+2×(12)log2=2I1log2.____(1).

Where I1=0π4sec2xtanxdx

Let tan x = t =>sec2xdx = dt

When, x = 0, t = tan 0. = 0

x=π4,t=tanπ4=1

1=01tdt=[t22]01=120=12

So, Equation (1) becomes,

=2×12log2

=1 - log 2.

Q:  

266. 01sin1xdx.=π21

A: 

Kindly go through the solution

Q:  

267. Evaluate 01e23xdx as a limit of a sum.

A: 

Let I=01e23xdx

We know that,

abf(x)dx=(ba)limn1n[f(a)+f(a+h)+...+f(a(n1)h)]

Where, h=ban

Here, a=0,b=1 and f(x)e23x

h=10n=1n

01e23xdx=(10)limn1n[f(0)+f(0+h)+...+f(0+(n1)h)]

=limn1n[e2+e23x+...+e23(n1)h]=limn1n[e2{1+e3h+e6h+e9h+...+e3(n1)h}]=limn1n[e2{1(e3h)n1(e3h)}]=limn1n[e2{1e3nn1e3n}]=limn1n[e2(1e3)1e3n]=e2(e31)limn1n[1e3n1]=limn1n[e2(1e3)1e3n]=e2(e31)limn1n[1e3n1]

=e2(e31)limn(13)[3ne3n1]=e2(e31)3limn[3ne3n1]=e2(e31)3(1)=e1+e23=13(e21e)

Q:  

268. dxex+ex is Equal to

A: 

Let =dxex+ex

=dxex+1ex.=exdxex·ex+1

=exdxe2x+1

Putting ex = t

exdx = dt.

=dtt2+1.

= tan- 1 t + c

= tan- 1 (ex) + c

therefore, Option A is correct.

Q:  

269. cos2xdx(sinx+cosx)2 is Equal to

A: 

Let =cos2xdx(sinx+cosx)2

=cos2xsin2x(sinx+cosx)2dx{?cos2x=cos2xsin2x

=(cosx+sinx)(cosxsinx)(sinx+cosx)2dx{?a2b2=(x+b)(xb)

=(cosxsinx)sinx+cosx.dx

=log|sinx+cosx|+c{f(x)f(x)dx=log|f(x)|+c

So, option B is correct.

Q:  

270. If f(a+bx)=f(x),then,abxf(x) is Equal to

A: 

Giver, f(a + bx) = f(x). _________ (1)

Let I =abx+(x)=ab(a+bx)f(a+bx)dx_____(2)

{?abf(x)dx=abf(a+bx)dx.

=ab(a+bx)f(x)dx. ___________ (3) {because Equation (1)}

+=ab[(a+bx)f(x)+xf(x)]dx

2I=ab(a+bx+x)f(x)dx

2I=ab(a+b)f(x)dx

=a+b2abf(x)dx.

therefore, Option D is correct.

Q:  

271. The value of 01tan1(2x11+xx2)dx is

A.1

B. 0

C.-1

D. π4

A: 

Consider, I=01tan1(2x11+xx2)dx

I=01tan1(x(1x)1+x(1x))dxI=01[tan1xtan1(1x)]dx(1)I=01[tan1(1x)tan1(11+x)]dxI=01[tan1(1x)tan1x]dxI=01[tan1(1x)tan1(x)]dx(2)

Adding (1) and (2), we get

2I=01[tan1xtan1(1x)tan1(1x)tan1x]dx2I=0I=0

Thus, the correct option is B.

qna

Maths Ncert Solutions class 12th Exam

Student Forum

chatAnything you would want to ask experts?
Write here...