NCERT Class 12 Maths Chapter 8 Solutions PDF – Application of Integrals

NCERT Maths 12th 2023 ( Maths Ncert Solutions class 12th )

Pallavi Pathak
Updated on Aug 5, 2025 15:56 IST

By Pallavi Pathak, Assistant Manager Content

Application of Integrals Class 12 Maths chapter deals with the study of a specific application of integrals to find the area between lines, the area under simple curves, the area between arcs of circles, ellipses, and parabolas. Areas under the curve are known as the elementary area.
Applications of Integrals Class 12 is created by the subject matter experts at Shiksha, hence it is reliable and accurate study material for students preparing for the CBSE Board exam and competitive exams like JEE Mains. The solution is created in a step-by-step format, which is easy to understand and gives students deep concept clarity.
Those who are looking for topic-wise revision PDFs with solutions must explore - Class 12 Maths Notes PDF for CBSE Exams.

Related Links

NCERT Notes for Class 11 & 12 Class 12 Maths NCERT Solutions NCERT Solutions Class 11 and 12
Table of content
  • Dive into Class 12 Integral Applications
  • Class 12 Maths Chapter 8 Application of Integrals NCERT Solutions PDF Download
  • Class 12 Math Chapter 8 Application of Integrals : Key Topics, Weightage
  • Important Formulas for Class 12 Application of Integrals
  • Class 12th Math Exercise 8.1 Solutions
  • Topics Covered in NCERT Maths Class 12 Application of Integrals Chapter
Maths Ncert Solutions class 12th Logo

Dive into Class 12 Integral Applications

Here are quick highlights of the Integral Applications Class 12 Maths:

  • For the curve y = f (x), x-axis and the lines x = a and x = b (b > a), area is - Area = a b y d x = a b f ( x ) d x .
  • For the curve x = φ (y), y-axis and the lines y = c, y = d, area is - Area = c d x d y = c d ϕ ( y ) d y
Maths Ncert Solutions class 12th Logo

Class 12 Maths Chapter 8 Application of Integrals NCERT Solutions PDF Download

The Application of Integrals Class 12 Solutions PDF link is given below. Download the PDF from the link to prepare well for the CBSE Board exams and other entrance tests.

Download Here: NCERT Solution for Class XII Maths Application of Integrals PDF

If you are looking for quick revision notes of Class 12 Physics, Chemistry, and Maths, then check - NCERT Class 12 Notes.

Try these practice questions

Q1:

Let a = α i ^ + 2 j ^ k ^ a n d b = 2 i ^ + α j ^ + k ^ , w h e r e α R .  If the area of the parallelogram whose adjacent sides are represented by the vectors   a a n d b i s 1 5 ( α 2 + 4 ) , then the value of   2 | a | 2 + ( a . b ) | b | 2 is equal to:

View Full Question

Q2:

The area of the region {(x,y):|x1|y5x2} is equal to:

Q3:

The area of the region S = { ( x , y ) : y 2 8 x , y 2 x , x 1 }  is

View Full Question

Maths Ncert Solutions class 12th Logo

Class 12 Math Chapter 8 Application of Integrals : Key Topics, Weightage

If you are aiming to score high in an entrance exam such as JEE Mains, you should focus on practicing Class 12 Application of Integrals. It is a small chapter. Below are the topics covered in this chapter:

Exercise Topics Covered
8.1 Introduction
8.2 Area under Simple Curves

Application of Integrals Class 12 Weightage in JEE Mains

Exam Number of Questions Weightage
JEE Main 1-2 questions 6-7%

 

Maths Ncert Solutions class 12th Logo

Important Formulas for Class 12 Application of Integrals

Important Formulae for Class 12 Application of Integrals

 

  • Area under a curve:

    A = a b f ( x ) d x

    (For a function y = f ( x ) y = f(x) between x = a x = a and x = b x = b )

  • Area between two curves:

    A = a b [ f ( x ) g ( x ) ] d x

    (Where f ( x ) f(x) and g ( x ) g(x) are two functions and f ( x ) g ( x ) f(x) \geq g(x) in the given interval)

  • For curves in terms of y:

    A = c d [ g ( y ) f ( y ) ] d y

    (Where curves are given in the form x = f ( y ) x = f(y) and x = g ( y ) x = g(y) , and g ( y ) f ( y ) g(y) \geq f(y) in the given interval)

  • Area Enclosed by the x-axis and the Curve:

    A = a b f ( x ) d x A = \int_{a}^{b} |f(x)| \,dx

 

 

Maths Ncert Solutions class 12th Logo

Class 12th Math Exercise 8.1 Solutions

Q1. Find the area of the region bounded by the curve y² = x the  lines x=1, x = 4 and x-axis.

 

Q2. Find the area of the region bounded by the curve y² = 9x and the lines x=2,x=4 and x-axis in the first quadrant.

Q3. Find the area of the region bounded by the curve x² = 4y ,y=2,y=4 and y-axis is the first quadrant.

Q4. Find the area of the region bounded by the ellipse  x 2 1 6 + y 2 9 = 1  .
Q&A Icon
Commonly asked questions
Q:  

6. Find the area of the region in the first quadrant enclosed by x-axis,line x= √3y and the circle x2+y2=4 .

Read more
A: 

Kindly go through the solution

Q:  

33. Using the method of integration, find the area of the triangle whose vertices are A (2, 0), B (4, 5) and C (6, 3).

Read more
A: 

The given vertices of the triangle are A(2,0),B(4,5)and C(6,3)

So, equation of line AB is y0=5042(x2)

=y=52(x2)

Similarly equation of BC is

y5=3564(x4)=y=5+(x+4)y=9x

And equation of AC is y0=3062(x2)

y=34(x2)

 Area of ?ABC

area(?ABE)+area(BCDE)area(?ACD)

=24yABdx+46yBCdx26yBCdx=2452(x2)dx+46(9x)dx2634(x2)dx=52[x222x]24+[9xx22]4634[x222x]26

=52[(4222.4)(2222.2)]+[(9.6622)(9.4422)]34[(6222.6)(2222.2)]=52[(88)(24)]+[541836+8]34[18122+4]=5+86=7unit2

Q:  

34. Using the method of integration, find the area of the region bounded by the lines: 2x + y = 4, 3x – 2y = 6 and x – 3+ 5 = 0

Read more
A: 

The given equation of the lines are

2x+y=4(1)3x2y=6(2)x3y+5=0(3)

 Area of ?ABC=area(PCBQ)area(?APC)area(?AQB)

=14y(3)dx12y(1)dx24y(2)dx=14(x+5)3dx12(42x)dx24(3x62dx)

 The point of intersection of the circle and the parabola is . A(12,)&C(12,)

Taking in first quadrant

Area of (OABO)=area(OADO)+area(BADB)

 
Q:  

3. Find the area of the region bounded by the curve x² = 4y ,y=2,y=4 and y-axis is the first quadrant.

Read more
A: 

Kindly go through the solution

Q:  

5. Find the area of the region bounded by the ellipse x24+y29=

A: 

Kindly go through the solution

Q:  

12. Choose the correct answer:

Area lying in the first quadrant and bounded by the circle x² + y² = 4 and the lines x = 0  and x = 2  is

(A) π

(B) π/2

(C) π/3

(D) π/4

Read more
A: 

Given equation of the circle is

∴ option (A) is correct
Q:  

1. Find the area of the region bounded by the curve y² = x the  lines x=1, x = 4 and x-axis.

Read more
A: 

Kindly go through the solution

Q:  

2. Find the area of the region bounded by the curve y² = 9x and the lines x=2,x=4 and x-axis in the first quadrant.

Read more
A: 

Kindly go through the solution

Q:  

4. Find the area of the region bounded by the ellipse x216+y29=1 .

A: 

Kindly go through the solution

Q:  

14. Find the area of the circle 4x2 + 4y2 = 9 which is interior to the parabola x2 = 4y

Read more
A: 

The equation given circle is

4x2+4y2=9x2+y2=94x2+y2=(32)2

i.e, centre (0,0), radius r=32

since x2=4y intersect the circle

we can put x2=4y in x2+y2=(32)2

(4y)+y2=94y2+4y94=04y2+16y9=04y2+18y2y9=0

2y(2y+9)1(2y+9)=0(2y+9)(2y1)=0y=92&y=12

y=92,x2=4×(92)=18 which is not possible or x2 cannot be (-)ve

Q:  

7. Find the area of the smaller part of the circle x² + y² = a² cut off by the line x = a/√2

A: 

Kindly go through the solution

Q:  

8. The area between x = y²  and x = 4 is divided into two equal parts by the line x = a  find the value of  a

Read more
A: 

Kindly go through the solution

[ x 3 2 3 2 ] 0 a = [ x 3 2 3 2 ] a 2 3 [ a 3 2 0 ] = 2 3 [ 4 3 2 a 3 2 ] a 3 2 = 4 3 2 a 3 2 2 a 3 2 = 4 3 2
 

4a3=43 (Squaring both sides)

a3=42

a=423 (Taking cube on both sides)

Q:  

9. Find the area of the region bounded by the parabola y = x²  and y = |x|

A: 

Given that equation of

curve y=x2

line y=|x|={x,ifx0&x,ifx0}

Since the line passes through A&B in Ist and IInd quadrants

the equation must satisfy

y=x2

x=x2 for Ist quadrant and

x=x2 for IInd t quadrant

So, x2x=0 and x2+x=0

x(x1)=0 and x(x+1)=0

x=0,1 x=0,1

x=0,y=0

x=1,y=1 i.e, A has coordinate (1,1)

x=1,y=1 i.e, B has coordinate (1,1)

Now, area of AODA = area (AOM)-area (ADOM)

=01ylinedx01ycurvedx

=01xdx01x2dx=[x22]01[a33]01

=1213=326=16units2

 The required area of the region bounded by curve y=x2 and line y=|x| is 16+16=26=13units2

Q:  

10. Find the area bounded by the curve x = 4y and the line x = 4y -2

A: 

Given curve is x2=4y and the equation of line is x=4y2

The point of intersection of the curve and the line can be determine as follows.

Put, x=4y2x+2=4yyx+24

In x2=4y to determine value of x

i.e, x2=4×(x+2)4=x+2

x2x2=0x2+x2x2=0x(x+1)2(x+1)=0(x+1)(x2)=0

x=2 and x=1

x=2 , we have (2)2=4y44yy=1

And at x=1 we have (1)2=4yy=14

So, the coordinates A and B are (2,1) and ( 1,14 )

 The required area before the line & the curve is area BDιAB = area of trapezium (BNMAB)- area under curve BDA

=12ylinedx12ycurvedx=12x+24da12x24=1412xda+2412dx1412x2dx

=14[x22]12+24[x]1214[x33]12=18[22(1)2]+12[2(1)]112[23(1)3]

=38+32912=38+3234=3+4×32×38=3+1268=98unit2

Q:  

11. Find the area of the region bounded by the curve y² = 4x and the line x = 3.

A: 

The given equation of the curve is

y2=4xy=±√3

→ y=+√2x in Ist quadrant

So, area of curve enclosed by y2=4x

And x=3=2× area area (AOCA)

Q:  

13. Choose the correct answer:

Area of the region bounded by the curve y² = 4x,y - axis and the line y = 3 is:

(A) 2

(B) 9/4

(C) 9/3

(D) 9/2

Read more
A: 

As y=3 intersect y2=4x at Athen,

32=4xx=94

 A has coordinate  (a4, 3)

Hence, area of curve = y=0y=3xdy

=03y24dy= [y34×3]03=3312012=2712=94unit2

 Option (B) is correct

Q:  

15. Find the area bounded by curves (x – 1)2 + y2 = 1 and x2 + y 2 = 1 

Read more
A: 

The equation of the given circle is

=x2+y2=1 - (1)

= (x-1)2+y2=1 - (1) - (2)

Equation (1) is a circle with centre 0 (0,0) and radius 1. Equation (2) is a circle with centre c (1,0) and radius 1.

Solving (1) and (2)

Q:  

16. Find the area of the region bounded by the curves y = x+2, x

      x = 0 and x = 3

Read more
A: 

The equation of the curve is y=x2+2x2=y2 - (1) and

lines are

y=x - (2)

x=0 - (3)

x=3 - (4)

Equation (1)is a parabola with vertex (0,2)

Equation (2)is a straight line passing origin with shape = tanθ=1=θ=45?

 The required area enclosed OBCDO = area (ODCAO)-area (OBAO)

Q:  

17. Using integration, find the area of the region bounded by the triangle whose vertices are (–1, 0), (1, 3) and (3, 2).

Read more
A: 

Let A (-1,0),B(1,3) and C (3,2) be the vertices of a triangle ABC

So, equation of line AB is y0=301(1)(x(1))

=y=32(x+1) -------------(1)

Equation of line BC is y3=2331(x1)

=y=12(x1)+3=12x+12+3=x2+72 ---------------(2)

Equation of line AC is y0=203(1)[x(1)]

=y=24(x+1)=12(x+1) ------------------------------(3)

 Area of ? ABC= area ( ?ABE ) +area(BCDE) area(?ACD)

= 1 1 y e q ( 1 ) d x + 1 3 y e q ( 2 ) d x 1 3 y e q 3 d x = 1 1 3 2 ( x + 1 ) d x 1 3 ( x 2 + 7 2 ) d x 1 1 1 2 ( x + 1 ) = 3 2 [ x 2 2 + x ] 1 1 + 1 2 [ x 2 2 + 7 x ] 1 3 d x 1 2 [ x 2 2 + x ] 1 3

= 3 2 [ ( 1 2 2 + 1 2 ) ( ( 1 ) 2 2 + ( π ) ) ] + 1 2 [ ( 3 2 2 + 7 × 3 ) ( 1 2 2 + 7 × 1 ) ] 1 2 [ ( 3 2 2 + 3 ) ( ( 1 ) 2 2 + ( 1 ) ) ] = 3 2 [ 1 2 + 1 1 2 + 1 ] + 1 2 [ 9 2 + 2 1 + 1 2 7 ] 1 2 [ 9 2 + 3 1 2 + 1 ] = 3 2 [ 2 ] + 1 2 [ 1 0 ] 1 2 [ 8 ] = 3 + 5 4 = 8 4 = 4 u n i t 2

Q:  

18. Using integration, find the area of the triangular region whose sides have the equations y = 2x +1, y = 3x + 1 and = 4.

Read more
A: 

The given equation of the sides of triangle is

y=2x+1 --------------------(1)

y=3x+1 -------------------(2)

x=4 -------------------------(3)

Solving eqn (1) and (2) for x & y we get

3x+1=2x+1=3x2x=11=x=0&y=2×0+1=1

 The point of inersection of line (1)and (2)is A (0,1)

Putting x=4 in eq (1) and (2)we get,

y=2×4+1=8+1=9&y=3×4+1=12+1=13

 The point of intersection of line (1)and (3) is B(4,9) and C (4,13)

Hence the required area enclosed ABC

= 0 4 y l i n e ( 2 ) d x 0 4 y l i n e ( 1 ) d x = 0 4 [ 3 x + 1 ] d x 0 4 [ 2 x + 1 ] d x = [ 3 x 2 2 + x ] 0 4 [ 2 x 2 2 + x ] 0 4 = [ ( 3 2 ( 4 ) 2 + 4 ) ( 3 × 0 2 2 + 0 ) ] [ ( 4 2 + 4 ) ( 0 2 + ) ] = 2 4 + 4 2 0 = 8 u n i t 2

Q:  

19. Choose the correct answer:

Smaller area enclosed by the circle x2 + y2 = 4 and the line x + y = 2 is

(A) 2 (π – 2)

(B) π – 2

(C) 2π – 1

(D) 2 (π + 2)

Read more
A: 

The equation of circle is x2+y2=4 which has centre at (0,0) & radius,

π=2

And the line x+y=2=y=2x

The smaller area of circle is given by

Area (ABCA) area (BOAB) – area (BOA)              

Q:  

20. Choose the correct answer:

Area lying between the curves y2 = 4x and y = 2x is

(A) 2/3

(B) 1/3

(C) 1/4

(D) 3/4

Read more
A: 

The given equation of the curve is y2=4x - (1) and

the line is y=2x - (2)

Solving (1) and (2) for x and y

( 2 x ) 2 = 4 x = 4 x 2 = 4 x = x 2 x = 0 = x ( x 1 ) = 0

So,  x=0&x=1

for x=0 we get y=2×0=0

for x=1 , we get y=2×1=2

so, the point of intersection are (0,0)and (1,2)

area (DCAO)=area (DCABO)-area ( ? OAB )

Q:  

21. Find the area under the given curves and given lines:

(i) y = x2x = 1, x = 2 and x-axis

(ii) y = x4x = 1, x = 5 and x –axis

Read more
A: 

(i) Given of curve is y=x2x2=y and the equation are x=1&x=2.

 Area enclosed

= x = 1 x = 2 y d x = 1 2 x 2 d x = [ x 3 3 ] 1 2 = 2 3 3 1 3 3 = 8 1 3 = 7 3 u n i t 2

(ii) Given equation of curve is y=x4 and the lines are x=1&x=5

So, area enclosed

= 1 5 y d x = 1 5 x 4 d x = [ x 5 5 ] 1 5 = ( 5 5 1 5 5 ) = ( 3 1 2 5 1 ) 5 = 3 1 2 4 5 = 6 2 4 . 8 u n i t 2

Q:  

22. Find the area between the curves y = x and y = x2

A: 

The given equation of the curve is y=x2 --------(1)

and that of the line is y=x ---------(2)

Solving eq (1) and (2)for x and y

x=x2=x2x=0=x(x1)=0=x=0&x=1

Where, x=0,y=02=0

And when x=1,y=12=1

 The point of intersection of the parabola y=x2 and the line y=x

Is O(0,0) and B (1,1)

Hence, area between the curve and the line is

area(DCAO)=area(?OAB)area(OABO)

=01ylinedx01ycurvedx=01xdx01x2dx=[x22]01[x33]01

=1213=326=16unit2

Q:  

23. Find the area of the region lying in the first quadrant and bounded by y = 4x2x = 0, y = 1 and = 4

Read more
A: 

Given curve is y=4x2x2=14y - (1)

x = 0  i.e, y-axis and y=4 and y=1

Hence, the required area in Ist quadrant i.e, area ABCD = y=1y=4xdy

Q:  

24. Sketch the graph of y = |x + 3| and evaluate 

A: 

Given equation of lines is y=|x+3| -------(1)

The point (x,y)satisfying (1)are

Hence plotting the above in graph we get     

Now, 60|x+3|dx=63|x+3|dx+30|x+3|dx

We know that, 60|x+3|dx=63|x+3|dx+30|x+3|dxy=|x+3|={x+3,if,x+30x3(x+3),if,x+30x3}

So, 60|x+3|dx=63(x+3)dx+30(x+3)dx

=[x22+3x]63+[x22+3x]30={[(3)22+3(3)][(6)22+3(6)]}+{[022+3×0][(3)22+3×(3)]}={929362+18}+{92+9}=92+9+181892+9=9unit2

Q:  

25. Find the area bounded by the curve y = sin between x = 0 and x = 2π

Read more
A: 

The given equation of the curve is y=sinx

 The required area bounded by the curve

=0πydx+π2πydx=0πsinxdx+π2πsinxdx=| [cosx]0π|+| [cosx]0π|=| [cosxcosθ]|+| [cos2πcosπ]|=| [11]|+| [1+1]|=|2|+|2|=2+2=4unit2

Q:  

26. Find the area enclosed between the parabola y2 = 4ax and the line y mx

Read more
A: 

The equation of the parabola is y2=4a2 -----------(1)

and that of line is y=mx ------(2)

The Point of intersection of(1)and (2) is given by

(mx)2=4axm2x24ax=0x(m2x4a)=0x=0&x=4am2

For, x=0,y2=4a×0y=0 i.e, O(0,0)

For, x=4am2,y2=4a×4am2y=4am (in first quadrant)

i.e, A(4am2,4am)

Hence, the required area enclosed by the curve and the lines is

a r e a ( D A C O ) = a r e a ( O C A B O ) a r e a ( ? O A B )

Q:  

27. Find the area enclosed by the parabola 4y = 3x2 and the line 2y = 3x + 12

A: 

The given equation of parabola is 4y=3x2x2=43y ------------(1)

And the line is 2y=3x+12y=32x+6 ----------------------(2)

Solving (1) and (2) for x and y,

x2=43(32x+6)=2x+8x22x8=0x24x+2x8=0x(x4)+2(x4)=0(x4)(x+2)=0x=4&x=2

At, x=4,y=32×4+6=6+6=12

And x=2,y=32×(1)+6=3+6=3

Thus, the point of intersection of (1)&(2)are A(4,12)&B(2,3)

 Area of the enclosed region (BOAB)

=area (CBAD) – area (OADC)

= 2 4 y l i n e d x 2 4 y c u r v e d x = 2 4 ( 3 2 x + 6 ) d x 2 4 3 x 2 4 d x = [ 3 2 x 2 2 + 6 x ] 2 4 [ 3 4 × x 3 3 ] 2 4 = [ ( 3 4 × 4 2 + 6 × 4 ) ( 3 4 ( 2 ) 2 + 6 × ( 2 ) ) ] 1 4 [ 4 3 ( 2 ) 3 ] = [ 1 2 + 2 4 3 + 1 2 ] 1 4 [ 6 4 + 8 ] = 4 5 1 8 = 2 7 u n i t 2

Q:  

28. Find the area of the smaller region bounded by the ellipse and the line

A: 

Given equation of the ellipse is x29+y24=1 Which as major axis aling x- axis and that of the line is x3+y2=1 which has x and y intercepts at 3 and 2respectively.

Required area of enclosed region is area area (BCAB)=area (OBAO)? area (ABOA)

Q:  

29. Find the area of the smaller region bounded by the ellipse x 2 a 2 + y 2 b 2 = 1 and the line x a + y b = 1

A: 

The Given equation of the ellipse is x2a2+y2b2=1

And the equation of the line in xa+yb=1

With x and y intersept a and b

So, required area of the enclosed region is

a r e a ( B C A B ) = a r e a ( O B C A O ) a r e a ( ? O B A )

Q:  

30. Find the area of the region enclosed by the parabola x2 = y, the line y = x + 2 and x-axis

Read more
A: 

The given equation of the parabola is x2=y ---------(1)

and that the line is y=x+2 --------------(2)

Solving (1) and (2) for x and y

x2=x+2x2x2=0=x2+x2x2=0=x(x+1)2(x+1)=0=(x+1)(x2)=0=x=1&x=2

When x=1,y=(1)2=1

And x=2,y=22=4

 The point of intersection of the parabola and the lines A(1,1)&B(2,4)

Hence the required area enclosed region is ea(AOBA)=area(DABCD)area(DAOBCD)

=12ylinedx12ycurvedx=12(x+2)dx12x2dx=[x222x]12[x33]12

=[(2222.2)((1)22+2(1))][233(1)33]=[2+412+2][8+13]=1523=92unit2

Q:  

31. Using the method of integration, find the area enclosed by the curve |x| + |y| = 1

[Hint: the required region is bounded by lines x + y = 1, x – y = 1, – x + y = 1 and – x – y = 11]

Read more
A: 

Given equation of the curve is |x|+|y|=1 , which can be break down into each quadrant .

For Ist quadrant,  |x|=x, |y|=y

i.e.,  x+y=1 - (1)

Similarly for IInd, IIIRd nad IVth quadrant

x+y=1 - (2)

xy=1 - (3)

xy=1 - (4)

We draw the above focus lines on a graph and find the area enclosed which is a square.

 Required area  (? ABCD)=4×area (? AOB) .

=4×01ydx=401 (x)dx=4 [xx22]01=4 [112]=4×12=2unit2

Q:  

32. Find the area bounded by curves {(x, y) : y ≥ x2 and y = |x|}.

A: 

Given that equation of

curve y=x2

line y=|x|={x,ifx0&x,ifx0}

Since the line passes through A&B in Ist and IInd quadrants

the equation must satisfy

y=x2

x=x2 for Ist quadrant and

x=x2 for IInd t quadrant

So, x2x=0 and x2+x=0

x(x1)=0 and x(x+1)=0

x=0,1 x=0,1

x=0,y=0

x=1,y=1 i.e, A has coordinate (1,1)

x=1,y=1 i.e, B has coordinate (1,1)

Now, area of AODA = area (AOM)-area (ADOM)

=01ylinedx01ycurvedx

=01xdx01x2dx=[x22]01[a33]01

=1213=326=16units2

 The required area of the region bounded by curve y=x2 and line y=|x| is 16+16=26=13units2

Q:  

35. Find the area of the region {(x, y) : y2 ≤ 4x, 4x2 + 4y2 ≤ 9}.

A: 

The given equation of curve y24x i.e,  y2=4x - (1) is a parabola and

4x2+4y29x2+y294x2+y2= (32)2 - (2) is a circle

With centre (0,0)and radius 

Solving (1) and (2) for x and y,                                 

x 2 + 4 x = 9 4 = x 2 + 4 x 9 4 = 0 = 4 x 2 + 1 6 x 9 = 0

Q:  

36. Choose the correct answer:

Area bounded by the curve y = x3, the x-axis and the ordinates x = –2 and x = 1 is

(A) -9

(B) -15/4

(C) 15/4

(D) 17/4

Read more
A: 

Given is y=x3 and the ines x=2&x=1

For y=x3

a r e a ( O A B ) = 0 1 y d x = 0 1 x 3 d x = [ x 4 4 ] 0 1 = 1 4 a r e a ( O D C ) = 2 0 y d x = 2 0 x 3 d x = | [ x 4 4 ] 2 0 | = | [ 0 4 4 ( 2 ) 4 4 ] | = 4

Total area of the bounded region = 1 4 + 4

= 1 7 4 u n i t 2

Q:  

37. Choose the correct answer:

The area bounded by the curve y = x|x|, axis and the ordinates x = –1 and x = 1 is given by:

[Hint: y = x2 if x > 0 and y = –x2 if x < 0]

(A) 0

(B) 1/3

(C) 2/3

(D) 4/3

Read more
A: 

The given curve is y=x|x|

={(x.xifx0)(x.(x)ifx0)}={(x2if,x0)(x2if,x0)}

Which is in the form of a parabola nad the lines are x=1&xaxis

At x=1>0,y=12=1

At x=1<0,y=12=1

Shaded area of the Ist quadrant

=01ydx=01x2dx=[x33]01=13

Shaded area of the IInd quadrant

=10ydx=10x2dx=[x33]10=13

 Total area of the enclosed region =13+13

=23unit2

 Option (c) is correct.

Q:  

38. Choose the correct answer:

The area of the circle x2 + y2 = 16 exterior to the parabola y2 = 6x is

a. 43(4π)

b.  43(4π+)

c. 43(8π)

d. 43(4π+)

Read more
A: 

The given area of the circle is x2+y2=16(1) is a circle with centre (0,0) and radius, π=4 and the parabola is y2=6x -------------(2)

Solving (1) and (2) for x and y.

x2+6x=16=x2+6x16=0=x2+8x2x16=0=x(x+8)2(x+8)=0=(x+8)(x2)=0=x=8&x=2

For, x=8,y2=6(8)=48

Which is not possible.

For, x=2,y2=6(2)=12

y=±2√3

areaOACBO=2×{area(OADO)+area(ACDA)}

Q:  

39. Choose the correct answer:

The area bounded by the y-axis, y = cos x and y = sin x when  0 ≤ x ≤ π/2.

(A) 2(√2 - 1)

(B) √2 - 1

(C) √2 + 1

(D) √2

Read more
A: 

Given curve is y=cosx

y=sinx for 0xπ2

And yaxis

We know that sinx=cosx at x=π4and<π4<π2 i.e,  cosπ4=sinπ4=1/√2

So the point of intersection is at x=π4

Maths Ncert Solutions class 12th Logo

Topics Covered in NCERT Maths Class 12 Application of Integrals Chapter

  • Area under Simple Curves
qna

Maths Ncert Solutions class 12th Exam

Student Forum

chatAnything you would want to ask experts?
Write here...