Maths NCERT Exemplar Solutions Class 12th Chapter Two: Overview, Questions, Preparation

Maths NCERT Exemplar Solutions Class 12th Chapter Two 2025 ( Maths NCERT Exemplar Solutions Class 12th Chapter Two )

Payal Gupta
Updated on Jul 25, 2025 14:53 IST

By Payal Gupta, Retainer

Table of content
  • Inverse Trigonometric Functions Long Answers Type Questions
  • Inverse Trigonometric Functions More Long Answers Type Questions
  • Inverse Trigonometric Functions Short Answers Type Questions
Maths NCERT Exemplar Solutions Class 12th Chapter Two Logo

Inverse Trigonometric Functions Long Answers Type Questions

Q1.

Sol. 

Q2. Find the simplified form of c o s 1 ( 3 5 c o s   x + 4 5 s i n   x ) , where  x [ 3 π 4 , π 4 ] .

Sol.
Q3. Prove that s i n 1 8 1 7 + s i n 1 3 5 = s i n 1 7 7 8 5 .
 Sol.
Q4. Show that s i n 1 5 1 3 + c o s 1 3 5 = t a n 1 6 3 1 6 .
Sol.
Maths NCERT Exemplar Solutions Class 12th Chapter Two Logo

Inverse Trigonometric Functions More Long Answers Type Questions

Q5. Prove that
Q6. Find the value of 4   t a n 1 1 5 t a n 1 1 2 3 9 .

Sol.

4 t a n 1 1 5 t a n 1 1 2 3 9 2 . ( 2 t a n 1 1 5 ) t a n 1 1 2 3 9 2 [ t a n 1 2 × 1 5 1 1 2 5 ] t a n 1 1 2 3 9 [ 2 t a n 1 x = t a n 1 2 x 1 x 2 ] 2 t a n 1 5 1 2 t a n 1 1 2 3 9 t a n 1 ( 2 × 5 1 2 1 2 5 1 4 4 ) t a n 1 1 2 3 9 t a n 1 ( 1 2 0 1 1 9 ) t a n 1 ( 1 2 3 9 ) t a n 1 [ 1 2 0 1 1 9 1 2 3 9 1 + 1 2 0 1 1 9 × 1 2 3 9 ] [ t a n 1 x t a n 1 y = t a n 1 x y 1 + x y ] t a n 1 [ 1 2 0 × 2 3 9 1 1 9 1 1 9 × 2 3 9 + 1 2 0 ] = t a n 1 [ 2 8 6 8 0 1 1 9 2 8 4 4 1 + 1 2 0 ] t a n 1 [ 2 8 5 6 1 2 8 5 6 1 ] = t a n 1 ( 1 ) = π 4

Q7. Show that and justify why the other value is ignored?

 

 Sol.

Q8. If a 1 , a 2 , a 3 , , a n  is an arithmetic progression with common difference  d  , then evaluate the following expression:

tan[  t a n 1 ( d 1 + a 1 a 2 ) + t a n 1 ( d 1 + a 2 a 3 ) + t a n 1 ( d 1 + a 3 a 4 ) + t a n 1 d 1 + a n 1 a n ) ] .

Sol. I f a 1 , a 2 , a 3 , , a n a r e t h e t e r m s o f a n a r i t h m e t i c p r o g r e s s i o n d = a 2 a 1 = a 3 a 2 = a 4 a 3 t a n [ t a n 1 ( a 2 a 1 1 + a 1 a 2 ) + t a n 1 ( a 3 a 2 1 + a 2 a 3 ) + t a n 1 ( a 4 a 3 1 + a 3 a 4 ) + + + t a n 1 ( a n a n 1 1 + a n 1 . a n ) ] t a n [ ( t a n 1 a 2 t a n 1 a 1 ) + ( t a n 1 a 3 t a n 1 a 2 ) + ( t a n 1 a 4 t a n 1 a 3 ) + + ( t a n 1 a n t a n 1 a n 1 ) ] t a n [ t a n 1 a 2 t a n 1 a 1 + t a n 1 a 3 t a n 1 a 2 + t a n 1 a 4 t a n 1 a 3 + + t a n 1 a n t a n 1 a n 1 ] t a n [ t a n 1 a n t a n 1 a 1 ] t a n [ t a n 1 ( a n a 1 1 + a 1 a n ) ] a n a 1 1 + a 1 a n [ t a n ( t a n 1 x ) = x ]
Maths NCERT Exemplar Solutions Class 12th Chapter Two Logo

Inverse Trigonometric Functions Short Answers Type Questions

Q1. Find the value of t a n 1 ( t a n 5 π 6 ) + c o s 1 ( c o s 1 3 π 6 ) .

Sol:

W e k n o w t h a t 5 π 6 ( π 2 , π 2 ) a n d 1 3 π 6 [ 0 , π ] t a n 1 ( t a n 5 π 6 ) + c o s 1 ( c o s 1 3 π 6 ) = t a n 1 [ t a n ( π π 6 ) ] + c o s 1 [ c o s ( 2 π + π 6 ) ] = t a n 1 [ t a n ( π 6 ) ] + c o s 1 [ c o s ( π 6 ) ] = t a n 1 ( t a n π 6 ) + c o s 1 ( c o s π 6 ) = t a n 1 ( t a n π 6 ) + c o s 1 ( c o s π 6 ) [ t a n 1 ( x ) = t a n 1 x ] = π 6 + π 6 = 0 H e n c e , t a n 1 ( t a n 5 π 6 ) + c o s 1 ( c o s 1 3 π 6 ) = 0

Q2. Evaluate

Sol.

Q3. Prove that  c o t 1 ( π 4 . 2 c o t 1 3 ) =  7

Sol:

L . H . S . c o t ( π 4 2 c o t 1 3 ) = c o t [ t a n 1 ( 1 ) 2 t a n 1 1 3 ] [ c o t 1 x = t a n 1 1 x ] = c o t [ t a n 1 ( 1 ) t a n 1 2 × 1 3 1 ( 1 3 ) 2 ] [ 2 t a n 1 x = t a n 1 2 x 1 x 2 ] = c o t [ t a n 1 ( 1 ) t a n 1 2 3 8 9 ] = c o t [ t a n 1 ( 1 ) t a n 1 3 4 ] = c o t [ t a n 1 ( 1 3 4 1 + 1 × 3 4 ) ] = c o t [ t a n 1 1 4 7 4 ] = c o t [ t a n 1 1 7 ] [ t a n 1 1 x = c o t 1 x ] = c o t [ c o t 1 7 ] = 7 = R . H . S . H e n c e p r o v e d .

Q4. Find the value of

Sol.

Q5. Find the value of t a n 1 ( t a n 2 π 3 ) .

Sol:

W e k n o w t h a t 2 π 3 [ π 2 , π 2 ] t a n 1 ( t a n 2 π 3 ) = t a n 1 [ t a n ( π π 3 ) ] = t a n 1 ( t a n π 3 ) = t a n 1 ( t a n π 3 ) [ t a n 1 ( x ) = t a n 1 x ] = π 3 [ π 2 , π 2 ] H e n c e , t a n 1 ( t a n 2 π 3 ) = π 3 .

Q6. Show that 2 t a n 1 ( 3 ) = π 2 + t a n 1 ( 4 3 ) .

Sol:

L . H . S . 2 t a n 1 ( 3 ) = 2 t a n 1 ( 3 ) = c o s 1 [ 1 ( 3 ) 2 1 + ( 3 ) 2 ] [ 2 t a n 1 x = c o s 1 ( 1 x 2 1 + x 2 ) ] = c o s 1 [ 1 9 1 + 9 ] = c o s 1 ( 8 1 0 ) = c o s 1 ( 4 5 ) = [ π c o s 1 ( 4 5 ) ] = π + c o s 1 ( 4 5 ) = π + t a n 1 ( 3 4 ) [ c o s 1 4 5 = t a n 1 3 4 ] = π + π 2 c o t 1 ( 3 4 ) [ t a n 1 x = π 2 c o t 1 x ] = π 2 c o t 1 ( 3 4 ) = π 2 t a n 1 ( 4 3 ) [ t a n 1 x = c o t 1 1 x ] = π 2 + t a n 1 ( 4 3 ) R . H . S . H e n c e p r o v e d .

 

Q7. Find the real solutions of the equation

Sol:

Q8. Find the value of the expressions

 Sol.

Q9. If  2   t a n 1 ( c o s   θ ) = t a n 1 ( 2 c o s e c   θ )  , then show that  θ = π 4  . where n is any integer.

Sol:

2 t a n 1 ( c o s θ ) = t a n 1 ( 2 c o s e c θ ) t a n 1 ( 2 c o s θ 1 c o s 2 θ ) = t a n 1 ( 2 c o s e c θ ) [ 2 t a n 1 x = t a n 1 2 x 1 x 2 ] ( 2 c o s θ 1 c o s 2 θ ) = ( 2 c o s e c θ ) 2 c o s θ s i n 2 θ = 2 s i n θ c o s θ s i n θ = s i n 2 θ c o s θ s i n θ s i n 2 θ = 0 s i n θ ( c o s θ s i n θ ) = 0 s i n θ = 0 o r c o s θ s i n θ = 0 s i n θ = 0 o r 1 t a n θ = 0 θ = 0 o r t a n θ = 1 θ = 0 0 o r θ = π 4 H e n c e p r o v e d .

Q10. Show that c o s ( 2   t a n 1 1 7 ) = s i n ( 4   t a n 1 1 3 ) .

Sol.

L . H . S . c o s ( 2 t a n 1 1 7 ) = c o s [ c o s 1 1 1 4 9 1 + 1 4 9 ] [ 2 t a n 1 x = c o s 1 1 x 2 1 + x 2 ] = c o s [ c o s 1 4 8 5 0 ] = c o s [ c o s 1 2 4 2 5 ] = 2 4 2 5 R . H . S . s i n ( 4 t a n 1 1 3 ) = s i n [ 2 t a n 1 ( 2 × 1 3 1 1 9 ) ] [ 2 t a n 1 x = t a n 1 2 x 1 x 2 ] = s i n [ 2 t a n 1 ( 2 3 8 9 ) ] = s i n [ 2 t a n 1 3 4 ] = s i n [ s i n 1 ( 2 × 3 4 1 + 9 1 6 ) ] [ 2 t a n 1 x = s i n 1 2 x 1 + x 2 ] = s i n [ s i n 1 2 4 2 5 ] 2 4 2 5 L . H . S . = R . H . S . H e n c e p r o v e d .

Q11. Solve the following equation: c o s ( t a n 1 x ) = s i n ( c o t 1 3 4 ) .

Sol:
qna

Maths NCERT Exemplar Solutions Class 12th Chapter Two Exam

Student Forum

chatAnything you would want to ask experts?
Write here...