NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability – Free PDF

NCERT Maths 12th 2023 ( Maths Ncert Solutions class 12th )

Pallavi Pathak
Updated on Aug 4, 2025 15:10 IST

By Pallavi Pathak, Assistant Manager Content

Class 12 Continuity and Differentiability introduces concepts of continuity, differentiability and relations between them. It also covers the differentiation of inverse trigonometric functions, exponential, and logarithmic functions. It also includes the Logarithmic Differentiation, Exponential and Logarithmic Functions, and Derivatives of Functions in Parametric Forms.
Continuity and Differentiability Class 12 is an important chapter of Class 12 Maths. It introduces some fundamental theorems related to the topic and the exponential and logarithmic functions which lead to powerful techniques of differentiation. Students preparing for the Class 12 CBSE Board exams and other entrance exams like JEE Main can prepare from this solution. 
Shiksha offers NCERT solutions of all chapters of Physics, Chemistry and Maths of Class 11 and Class 12. These solutions are created by the subject matter experts. Students also get the key topics and free PDFs for each chapter.

Table of content
  • Key Concepts of Continuity and Differentiability – Class 12 Guide
  • Class 12 Chapter 5 Maths Solutions – Continuity and Differentiability PDF
  • Class 12 Continuity and Differentiability : Key Topics, Weightage
  • Continuity and Differentiability Class 12 Maths Important Formulas
  • Class 12 Math Continuity and Differentiability Exercise-wise Solutions
  • Class 12 Math Continuity and Differentiability Exercise 5.1 Solutions
Maths Ncert Solutions class 12th Logo

Key Concepts of Continuity and Differentiability – Class 12 Guide

Here are a few highlights of the Continuity and Differentiability Class 12 NCERT Solutions:

  • Continuity and Differentiability states that a real-valued function at a point is called continuous if at that point the limit of the function equals the value of the function. If a function is continuous on the whole of its domain, then it is a continuous function.
  • The addition, difference, product and quotient of continuous functions are continuous. If f and g are continuous functions then - (f + g) ( x ) = f ( x ) + g ( x ) is continuous (f \cdot g) ( x ) = f ( x ) \cdot g ( x ) is continuous f g ( x ) = f ( x ) g ( x ) (wherever g ( x ) \neq 0 ) is continuous
  • These are some of the standard derivatives (in appropriate domains):

d d x ( sin - 1 x ) = 1 1 - x 2

d d x ( cos - 1 x ) = - 1 1 - x 2

d d x ( tan - 1 x ) = 1 1 + x 2

d d x ( e x ) = e x

d d x ( log x ) = 1 x

To get a comprehensive NCERT Solutions for Class 12 Maths with free PDFs and important topics, explore - Class 12 Maths NCERT Solutions.

Maths Ncert Solutions class 12th Logo

Class 12 Chapter 5 Maths Solutions – Continuity and Differentiability PDF

Students can download the Continuity and Differentiability Class 12 Solutions PDF from the link given here. The PDF provides detailed and ideal study material for exam preparation. By preparing from the PDF, students can get a high score in the CBSE Board exam and competitive exams like JEE Main.
Class 12 Math Chapter 5 Continuity and Differentiability Solution: FREE PDF Download

More Useful Links

NCERT Notes for Class 11 & 12 NCERT Class 12 Notes Class 12 Maths Notes PDF

 

Maths Ncert Solutions class 12th Logo

Class 12 Continuity and Differentiability : Key Topics, Weightage

Class 12 Continuity and Differentiability is also important for the JEE Main entrance test, as the chapter is a foundational topic for the larger calculus section. Here are the topics covered in this chapter:

Exercise Topics Covered
5.1 Introduction
5.2 Continuity
5.3 Differentiability
5.4 Exponential and Logarithmic Functions
5.5 Logarithmic Differentiation
5.6 Derivatives of Functions in Parametric Forms
5.7 Second Order Derivative

Continuity and Differentiability Class 12 Weightage in JEE Mains

Exam  Number of Questions Weightage
JEE Main 3 questions 10%

 

Maths Ncert Solutions class 12th Logo

Continuity and Differentiability Class 12 Maths Important Formulas

Continuity and Differentiability Important Formulae for CBSE and Competitive Exams

Students can check the basic formulae used in the Continuity and Differentiability class 12  solutions. check below;

 

  • Basic Derivatives

    d d x ( x n ) = n x n 1 , d d x ( e x ) = e x , d d x ( ln x ) = 1 x , d d x ( sin x ) = cos x , d d x ( cos x ) = sin x
  • Inverse Trigonometric Functions

    d d x ( sin 1 x ) = 1 1 x 2 , d d x ( cos 1 x ) = 1 1 x 2 \frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}, \quad \frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}} d d x ( tan 1 x ) = 1 1 + x 2 , d d x ( cot 1 x ) = 1 1 + x 2
  • Product Rule

    d d x ( u v ) = u d v d x + v d u d x
  • Quotient Rule

    d d x ( u v ) = v d u d x u d v d x v 2
  • Chain Rule

    d y d x = d y d u d u d x
  • Logarithmic Differentiation
    For y = f ( x ) g ( x ) y = f(x)^{g(x)}

    ln y = g ( x ) ln f ( x ) , d y d x = y [ g ( x ) ln f ( x ) + g ( x ) f ( x ) f ( x ) ]
  • Mean Value Theorem

    f ( c ) = f ( b ) f ( a ) b a , where  c ( a , b ) f'(c) = \frac{f(b) - f(a)}{b - a}, \quad \text{where } c \in (a, b)

 

 

Maths Ncert Solutions class 12th Logo

Class 12 Math Continuity and Differentiability Exercise-wise Solutions

Chapter 5 Continuity and Differentiability deals with concepts of continuity, differentiability, and their applications. Continuity and Differentiability play a critical part in calculus, as a building block of the foundation for advanced topics like integration and differential equations. The exercise-wise Continuity and Differentiability NCERT solutions will help students understand all concepts with their examples. These solutions will help them develop problem-solving skill related to continuity at a point, derivatives, logarithmic differentiation, and the application of theorems like Rolle’s and Lagrange’s Mean Value Theorem. Students can check the exercise-wise solutions for Continuity and Differentiability below;

Maths Ncert Solutions class 12th Logo

Class 12 Math Continuity and Differentiability Exercise 5.1 Solutions

Class 12 Continuity and Differentiability Exercise 5.1 focuses on fundamental concepts important to building a strong foundation. Exercise 5.1 deals with topics such as continuity at a point, differentiability, and application of differentiability-related formulas. Class 12 Math Exercise 5.1 Solutions includes 34 Questions (Short Answers Type) with conceptual explanation. students can check the complete solutions for exercise 5.1 below;

Exercise – 5.1

Q1.Prove that the function f(x) = 5x 3f is continuous at x = 0, at x = – 3 and at x = 5.

A.1.Given, f(x) = 5x 3

At x = 0,  l i m x 0 f ( x ) = l i m x 0  5x 3 = 5 0 3 = 3.

So f is continuous at x = 1.

At x = 3,  π + h  5x 3 = 5 ( 3) 3 = 15 3

= 18.

So f is continuous at x = 3.

At x = 5,  x  .5x 3 = 5.5 3 = 25 3 = 22.

So, f is continuous at x = 5.

Q2.Examine the continuity of the function f(x) = 2x2 1

A.2. Given, f(x) = 2x2 1

At x = 3

Lim f(x) =  d y d x = ( 3 x 2 + 2 x y + y 2 ) ( x 2 + 2 x y + 3 y 2 ) .  2(3)2 1 = 18 1 = 17.

So, f is continuous at x = 3.

Q3.Examine the following functions for continuity.

( ) f ( x ) = x 5 ( ) f ( x ) = 1 x 5 , x 5 ( ) f ( x ) = x 2 2 5 x + 5 , x 5 ( ) f ( x ) = | x 5 |

Q3. Examine the following functions for continuity.

A.3. (a) Given, f (x) = x 5.

The given f x n is a polynernial f xn and as every pohyouraial f xn is continuous in its domain R we conclude that f (x) is continuous.

(b). Given, f(x) =  1 x 5 , x 5

For any a  = 3 ( 5 x ) 3 c o s 2 x [ c o s 2 x x 2 s i n 2 x l o g 5 x ]  {5},

= x 2 × 1 × x 3 d d x ( x 3 ) + l o g ( x 3 ) 2 x   1 ( x 5 ) = 1 a 5 .

and f(a) =  1 a 5

i e,  f ( x ) = ( x 1 ) + [ ( x 2 ) ] = x + 1 x + 2 = 3 2 x .  f(x) = f(a).

Hence f is continuous in its domain.

(c) Given, f(x) =  x 2 2 5 x + 5 , x 5

For any a   { 5}

l i m x a f ( x ) = l i m x a   x 2 2 5 x + 5 = a 2 2 5 a + 5 = ( a 5 ) ( a + 5 ) a + 5  = a 5

And f(a) =  a 2 2 5 a + 5 = ( a 5 ) ( a + 5 ) a + 5 .

= a 5

l i m x a  f(x) = f(a).

So, f is continuous in its domain.

(d) Given f (a) =  | x 5 | = { x 5 , if  x 5 > 0 x 5 ( x 5 )  if  x 5 < 0 x < 5 .

For x = c < 5.

f (c) = (c 5) = 5 c.

l i m x c  f(x) =  l i m x c  (x 5) = (c 5) = 5 c.

∴ f(c) =  l i m x c  f(x).

So f is continuous.

For x = c > 5.

f (c) = (x 5) = c 5

l i m x c  f(x) =  l i m x c  (x 5) = c 5.

∴ f(c) =  l i m x c  f(x)

So, f is continuous.

For x = c = 5,

f (5) = 5 5 = 0

l i m x 5  f(a) =  l i m x 5  (x 5) = (5 5) = 0

l i m x 5 +  f(x) =  l i m x 5 +  (x 5) = 5 5 = 0

∴  x 5 +  + (x) =  s i n x c +  + (x) = f (c)

Hence f is continuous.

Q4. Prove that the function f ( x ) = x n  continuous at  x = n ,  where n is a positive integer.

A.4.Given, f(x) = x n > n = positive.

At x = 2,

(x) = n n.

l i m x n  f(x) =  l i m x n  x n = n n

∴  l i m x n  f(x) = f(x)

So f is continuous at x = n.

Q&A Icon
Commonly asked questions
Q:  

20. Discuss the continuity of the following functions:

()f(x)=sinx+cosx()f(x)=sinxcosx()f(x)=sinx.cosx

A: 

20. (a) Given f(x) = sin x + cos x

(b). Given, f(x) = sin x cos x

(c). Given, f(x) = sin x .cos x.

Let g(x) = sin x and h(x) = cos x.

If g or h are continuous f x then

g + h

g h

g h are also continuous.

As g(x) = sin x is defined for all real number x.

Let c? , and putting x = c + h. we see that as xc,h0.

Then g(c) = sin c

limxc g(x) = limxc sin x = limh0 sin (c + h).

limh0 (sin c cos h + cos c sin h )

= sin c. cos 0 + cos c. sin 0

= sin c 1 + 0

= sin c

= g (c)

So, g is continuous x R.

And h (c) = cos c

limh0 g(x) = limxc sin x = limxc cos (c + h)

= cos c .cos 0 sin c. sin 0

= cos c .1 0.

= cos c = h(c).

As g and h are continuous x R.

The f x f(x)

Q:  

3. Examine the following functions for continuity.

 

A: 

3. (a) Given, f (x) = x 5.

The given f x n is a polynernial f xn and as every pohyouraial f xn is continuous in its domain R we conclude that f (x) is continuous.

(b). Given, f(x) = 1x5,x5

For any a =3(5x)3cos2x[cos2xx2sin2xlog5x] {5},

=x2×1×x3ddx(x3)+log(x3)2x 1(x5)=1a5.

and f(a) = 1a5

i e, f(x)=(x1)+[(x2)]=x+1x+2=32x. f(x) = f(a).

Hence f is continuous in its domain.

(c) Given, f(x) = x225x+5,x5

For any a ? { 5}

limxaf(x)=limxa x225x+5=a225a+5=(a5)(a+5)a+5 = a 5

And f(a) = a225a+5=(a5)(a+5)a+5.

= a 5

limxa f(x) = f(a).

So, f is continuous in its domain.

(d) Given f (a) = |x5|={x5, if x5>0x5(x5) if x5<0x<5.

For x = c < 5.

f (c) = (c 5) = 5 c.

limxc f(x) = limxc (x 5) = (c 5) = 5 c.

∴ f(c) = limxc f(x).

So f is continuous.

For x = c > 5.

f (c) = (x 5) = c 5

limxc f(x) = limxc (x 5) = c 5.

∴ f(c) = limxc f(x)

So, f is continuous.

For x = c = 5,

f (5) = 5 5 = 0

limx5 f(a) = limx5 (x 5) = (5 5) = 0

limx5+ f(x) = limx5+ (x 5) = 5 5 = 0

∴ x5+ + (x) = sinxc+ + (x) = f (c)

Hence f is continuous.

Q:  

22. Find all points of discontinuity of f , where

f(x)= {sinxx, if x<0x+1, if x0

A: 

22. Given f(x) = {sinxx, if x<0.x+1, if x0.

For x = c < 0,

f(c) = sincc

limxc f(x) = limxc sinxx=sincc=f(c)

So, f is continuous for x < 0

For x = c > 0

f(c) = c + 1

limxc f(x) = limxc x + 1 = c + 1 = f(c)

So, f is continuous for x > 0.

For x = 0.

L.H.L. = limx0f(x)=limx0sinxx=1.

R.H.S. = limx0+f(x)=limx0+x+1=0+1=1

And f(0) = 0 + 1 = 1

L.H.L = R.H.L. = f(0)

So, f is continuous at x = 1.

Hence, discontinuous point of x does not exit.

Q:  

59. Kindly consider the following

exsinx

A: 

59. Let y = exsinx

dydx=sinxdexdxexddxsinxsin2x

=sinxexexcosxsin2x

=ex (sinxcosx)sin2x.

Q:  

77. Kindly consider the following

xsinx+(sinx)cosx

A: 

77. Let y = x sin x + (sin x) cos x

Putting u = x sin x and v = (sin x) cos x we have,

y = u + v

dydx=dydx+dvdx _____ (1)

As u = x sin x

Taking log,

Log u = sin x log x

Differentiating w r t ‘x’,

,

14dydx = sin x ddx log x + log x ddx sin x

sinxx+ cos x log x

dydx=u[sinxx+cosxlogx]

= x sin x [sinxx+cosxlogx].

And v = (sin x) cos x

Taking log,

Log v = cos x log (sin x).

Differentiating w r t ‘x’,

1vdvdx = cos x ddx log (sin x) + log (sin x) ddx cos x

=cosxsinxddx sin x- sin x log (sin x)

= cot x cos x- sin x log (sin x)

dvdx = v [cot x cos x - sin x log (sin x)]

= (sin x) cos x [cot x cos x- sin x log (sin x)]

Hence, eqn (1) becomes

dydx=xsinx[sinxx+cosxlogx] + (sin x) cos x [cot x cos x- sin x log (sin x)]

Q:  

134. Kindly consider the following

A: 

134. Given, x=a(cost+tsint) and y=a(sinttcost).

Differentiating w r t. ‘t’ we get,

dxdt=addt(cost+tsint). 

=a(sint+tddtsint+sintdtdt). 

=a(sint+tcost+sint)=atcost

dydt=addt(csinttcost)

=a(costtddtcostcotdtdt)

=a(cost+tsintcost)=atsint

dydx=dy/dtdx/at=atsintatcost=tant

So,   d2ydx2=ddx(tant)=ddt(tant)dtdx. 

=sec2t×dtdx.

=sec2t×1(dx/dt)

=sec2t×1 at cost

=sec3tat

Q:  

123. Kindly consider the following

A: 

123. Kindly go through the solution

Q:  

85. Kindly consider the following

A: 

85. Let y = (x2- 5x + 8) (x3 + 7x + 9) ____ (1)

(i) by product rule

dydx=(x25x+8)ddx(x3+7x+9)+(x3+7x+9)ddx(x25x+8)

=(x25x+8)(3x2+7)+(x3+7x+9)(2x5).

3x4 + 7x2- 15x3- 35x + 24x2 + 56 + 2x4- 5x3 + 14x2- 35x 18x-45

= 5x4- 20x3 + 45x2- 52x + 11

(ii) y=(x25x+8)(x3+7x+9)

y=x5+7x2+9x5x435x245x+8x3+56x+72

y=x55x4+15x326x2+11x+72.

dydx=5x420x3+45x252x+11.

Taking log in eqn (1)

logy=log(x25x+8)+log(x3+7x+9)

Now, Differe(iii) ntiating w r t ‘x’ we get,

1ydydx=1x25x+8ddx(x25x+8)+1x3+7x+9ddx(x3+7x+9).

1ydydx=2x5x25x+8+3x2+7x3+7x+9

dydx=y[(2x5)(x3+7x+9)+(3x2+7)(x25x+8)(x25x+8)(x3+7x+9).]

=yy 2x4 + 14x4 + 18x- 35x- 45 + 3x1- 15x3 + 24x2 + 7x2- 35x + 56]

{?eqn(1)}.

dydx = 5x4- 20x3 + 45x2- 52x + 11

We observed that all the methods give the same result.

Q:  

5. Is the function f defined by

f(x)={x,x15,xxx

Find all points of discontinuity of f , where f is defined by

Read more
A: 

5. Given, f (a) = {x,  if x15,  if x>1.

At x = 0,

(0) = 0

limx0 f (x) = limx0 x = 0

∴ limx0 f (x) = f (0)

So, f is continuous at x = 0.

At x = 1,

Left hand limit,

L.H.L = limx1 f (x) = limx1 x = 1.

Right hand limit,

R. H. L. = limx1+ f (x) = limx1+ 5 = 5.

L.H.L. = R.H.L.

So, f is not continuous at x = 1.

At x = 2,

f (2) = 5.

limx1 f (x) = limx2 5 = 5

limflim2  (x) = f (2)

So f is continuous at x = 2.

Find all points of discontinuity of f, where f is defined by

Q:  

43. Prove that the greatest integer function defined by

f(x)=[x],0<x<3 is not differentiable at x = 1 and x = 2.

Read more
A: 

43. The given f x n is

f(x) = 0 < |x| < 3

At x = 1

L×H×L× = limh0f(1+h)f(0)h

=limh0[1+h][1]h

limhσ01h {?h<0,1+h<11 So, [1+h]=0}

=limh01h=

Hence lines does not exist

Qf is not differentiable at x = 1

At x = 2

L×H×L = limh0f(2+h)f(2)h {?h<02+h<230,[2+h]=1}

=limh0[2+h][2].h

=limh012h=limh01h

Hence, limit does not exist.

Qf is not differentiable at x = 2

Q:  

23. Determine if f defined by

f(x)= {x2sin1x, if x00, if x=0 is a continuous function?

A: 

23. Given f (x) =  {x2sin1x,  if x0.0 if x=0.

For x = c = 0,

f (c) = c2sin1c

limxcf (x)=limxcx2sin1x=c2sin1c.

So, f is continuous for x0.

For x = 0,

f (0) = 0

limx0f (x)=limx0 (x2sin1x)

As we have sin 1x [1, 1]

limx0 f (x) = 02 a where a [1, 1]

= 0 = f (0).

∴ f is also continuous at x = 0.

Q:  

84. Find the derivative of the function given by  Find the derivative of the function given byf(x)=(1 +x)(1 +x4)(1 +x8) and hence find f' (1). and hence f'(1)

A: 

84. Given, f(x) = (1 + x)(1 + x 4)(1 + x 8)

Taking log,

logf(x) = log (1 + x) + log (1 + x) + log (1 + x 4) + log (1 + x 8)

Now, Differentiating w r t ‘x’ we get,

1f(x)f(x)=11+xddx(1+x)+11+x2ddx(1+x2)+11+x4ddx(1+x4)+11+x8d(1+x8)dx

f(x)=f(x){11+x+2x1+x2+4x31+x4+8x71+x8}.

f(x)=(1+x)(1+x2)(1+x4)(1+x8){11+x+2x1+x2+4x31+x4+8x71+x8}

Putting x = 1

f`(x) = (1 +1)(1 + 14)(1 +18) {11+1+2×11+12+4×131+14+8×171+18}

=2×2×2+2{12+22+42+82}

=16×{152}=8×15=120.

Q:  

52.Kindly consider the following

y=sin1(2x1+x2)

A: 

52. Kindly go through the solution

Q:  

128. Kindly consider the following

A: 

128. Let y=xx23+(x3)x2.

Putting u=xx23  v=(x3)x2 we get,

y=u+v

dydx=dudx+dvdx ________(1)

Now, u=xx23

Taking log,

logu=(x23)logx.

1ududx=(x23)ddxlogx+logxddx(x23)

dudx=u[x23x+logx(2x)]

dudx=xx23[x23x+2xlogx]

And v=(x3)x2

logv=x2log(x3)

1vdvdx=x2ddxlog(x3)+log(x3)ddxx2

=x2×1×x3ddx(x3)+log(x3)2x

dvdx=v[x2x3+2xlog(x3)]

=(x3)x2[x2x3+2xlog(x3)]

Hence eqn (1) becomes

dydx=x(x23)[x23x+2xlogx]+(x3)x2[x2x3+2xlog(x3)]

Q:  

64. Kindly consider the following

ex+ex2++ex5

A: 

64. Let y = ex + ex2 + … + ex5.

dydx=ddx (ex + ex2 + ex3 + ex4 + ex5).

=dexdx+dex2dx+dex3dx+ddxex4+ddxex5.

=ex+ex2dx2dx+ex3dx3dx+ex4dx4dx+ex5dx5dx.

= ex + 2x ex2 + 3x2ex3 + 4x3ex4 + 5eex4

Q:  

92. Kindly consider the following

A: 

92. Kindly go through the solution

Q:  

18. Show that the function defined by g(x)=x[x] is discontinuous at all integral

points. Here [x] denotes the greatest integer less than or equal to x .

Read more
A: 

18. Given, g (x) = x [x].

For nz,

g (n) = n [n] = nn = 0

limxn f (x) = limxn  (x [x]) = n [n 1] = n + 1 = 1

limxn+ g (x) = limxn+ x [x] = n [n] = 0

So,  limxn g (x) = limxn+ g (x).

g (x) is d is continuous at all x z.

Q:  

7. f(x)= {|x|+3 if x32x if 3<x<36x+2 if x3

A: 

7. Given, f(x) = {|x|+3 if x32x if 3<x<36x+2 if x3

For x = ?c<3,

f ( 3) = e + 3 (∴x< 3, |x|=x )

limxc f(x) = limxc |x|+3=a+3.

∴ limxc f(x) = f(c)

So, f is continuous at x = c < 3.

For x = c > 3

f(3) = 6.3 + 2 = 18 + 2 = 20

limxc f(x) = limxc 6x + 2 = 18 + 2 = 20

∴ limxc f(x) = f(c).So f is continuous at x = c > 3.

For. C = 3,

f ( 3) = ( 3) + 3 = 6.

limxc f(x) = limxc .x + 3 = ( 3) + 3 = 6.

limxc+ f(x) = limxc+ ( 2x) = 2 ( 3) = 6.

∴ limxc f(x) = limxc f(x) = f( 3)

So, f is continuous at x = c = 3.

For c = 3,

f(3) = 6.3 + 2 = 18 + = 20.

limx3 f(x) = limx3 2x = 2 (3) = 6

limx3+ f(x) = limx3+ (6x + 2) = 6.3 + 2 = 20

∴ limx3 f(x) = limx3 f(x).

f is not continuous at x = 3 point of discontinuity

Q:  

107. Kindly consider the following

A: 

107. Given y=3cos(logx)+4sin(logx)

So, y1=dydx=3ddxcos(logx)+4ddxsin(logx)

y1=3[sin(logx)]ddxlogx+4cos(logx)ddx(logx)

y1=3sin(logx)x+4cos(logx)x

xy1=3sin(logx)+4cos(logx) ______________(1)

Differentiating eqn (1) w r t ‘x’ we get,

ddx(xy1)=3ddxsin(logx)+4ddxcos(logx)

xdy1dx+y1dxdx=3cos(log(x))ddxlogx+4[sin(logx)]ddxlogx

xy2+y1=3cos(logx)x4sin(logx)x

x2y2+y1=[3cos(logx)+4sin(logx)]

x2y2+y1=y

x2y2+y1+y=0

Q:  

9. f(x)= {x|x| ,if x<01, if x0

A: 

9. Given, f (x) =  {x+1, π x1x2+1,  π x<1.

For x = c < 1,

limxc f (x) = limxc x2 + 1 = c2 + 1

∴ limxc f (x) = f (c)

So f is continuous at x = c < 1.

For x = c > 1,

F (c) = c + 1

limxc f (x) = limxc x + 1 = c + 1

∴ limxc f (x) = f (c)

So, f is continuous at x = c > 1.

For x = c = 1, + (1) = 1 + 1 = 2

L.H.L. = limx1 f (x) = limx1 x2 + 1 = 12 + 1 = 2.

R.H.L. = limx1+ f (x) = limx1+ x + 1 = .1 + 1 = 2

∴ L.H.L = R.H.L. = f (1)

So, f is continuous at x = 1.Hence f has no point of discontinuity.

Q:  

40. Kindly consider the following

A: 

40. Kindly go through the solution

Q:  

48. Kindly consider the following

x2+xy+y2=100

A: 

48. Given,  x2 + xy + y2 = 100.

Differentiating w r t ‘x’ we get,

ddx (x2+xy+y2)=ddx (100)

2x+xdydx+ydxdx+2ydydx=0.

xdydx+2ydydx=2xy

dydx= (2x+y) (x+2y)

Q:  

47. Kindly consider the following

xy+y2=tanx+y

A: 

47. Given, xy + y2 = tan x + Differentiating w r t x we get,

ddx (xy+y2)=ddx (tanx+y)

xdydx+ydxdx+dy2dx=dx2x+dydx

xdydx+2ydydxdydx=sen2xy

(x+2y1)dydx=sec2xy

dydx=sin2xyx+2y1.

Q:  

6. f(x)= {2x+3 if x22x3 if x>2.

A: 

6. Given f(x) = {2x+3 if x22x3 if x>2.

For x = c < 2,

F (c) = 2c + 3

limxc f(x) = limxc 2x + 3 = 2c + 3

∴ limxc f (x) = f(c)

So f is continuous at x |<| 2.

For x = c > 2.

F (c) = 2c 3

limxc f(x) = limxc 2x 3 = 2c 3

∴ limxc f(x) = f(c)

So f is continuous at x |>| 2.

For x = c = 2,

L.H.L. = limx2 f(x) = limx2 .2x + 3 = 2. 2 + 3 = 4 + 3 = 7.

R.H.L. = limx2+ f(x) = limx2+ 2x 3 = 2. 2 3 = 4 3 = 1.

∴ LHL = RHL

∴ f is not continuous at x = 2.i e, point of discontinuity

Q:  

81. Kindly consider the following

yx=xy

A: 

81. Given, yx = xy

Taking log,

x log y .log x

Differentiating w r t ‘x’ we get,

xddxlogy+logydxdx=yddxlogx+logxdydx

xy·dydx+logy=yx+logxdydx

logxdydxxydydx=logyyx

dydx [ylogxxy]=xlogyyx

dydx=y (xlogyy)x (ylogxx).

Q:  

119. Kindly consider the following

sin3x+cos6x

A: 

119. Let y=sin3x+cos6x

So,  dydx=ddx (sin3x+cos6x)

=3sin2xddxsinx+6cos5xddxcosx

=3sin2xcosx6cos5xsinx

=3sinxcosx (sinx2cos4)

Q:  

131. Kindly consider the following

A: 

131. Kindly go through the solution

Q:  

136. Kindly consider the following

A: 

136. Given, sin(A+B)=sinAcosB+cosAsinB

Differentiating w r t. ‘x’ we get,

ddxsin(A+B)=ddx(sinAcosB+cosAsinB)

cos(A+B)ddx(A+B)=sinAddxcosB+cosBddxsinA+cosAddxsinB+sinBddxcosA

cos(A+B)(dAdx+dBdx)=sinAsinBdBdx+cosBcosAdAdx+cosAcosBdBdxsinAsinBdAdx

cos(A+B)(dAdx+dBdt)=cosAcosB(dAdx+dBdx)sinAsinB(dAdx+dBdx)

=(cosAcosBsinAsinB)(dAdx+dBdx).

cos(A+B)=cosAcosBsinAsinB.

Q:  

50. Kindly consider the following

sin2y+cosxy=k

A: 

50. Given, sin2y + cos xy = p

Differentiating w r t ‘x’ we get,

ddx(sin2y+cosxy)=ddx

= ddxsin2y+ddxcosxy=0

2sinyddx(siny)+(sinxy)ddx(xy)=0.

2sinycosydydxsinxy[xdydx+y]=0

2sin2ydydxxsinxydydxysinxy=0

{Qsin 2x = 2sin x cos x}

dydx[sin2yxsinxy]=ysinxy.

dxydx=ysinxysin2yxsinxy.

Q:  

17. Find the relationship between a and b so that the function f defined by

f(x)= {λ(x22x), if x04x+1, if x>0 continuous at x = 0? What about continuity at x = 1?

Read more
A: 

17. Given, f (x) = {λ (x22x) if x|? |04x+1 if x>0.

For continuity at x = 0,

limx0 f (x) = limx0+ f (x) = f (0).

limx0 λ (x22x) = limx0+ 4x + 1 = λ (022.0)

0 = 1 = 0 which is not true

Hence, f is not continuous for any value of λ.

For x = 1,

limx1 f (x) = f (1).

limx1 4x + 1 = 4 (1) + 1

 4 + 1 = 4 + 1

 5 = 5.

So, f is continuous at x = 1 value of λ

Q:  

15. f(x)= {2, if x12x, if 1<x12, if x>1

A: 

15. Given, f(x) = {2, if x12x, if 1<x12, if x>1.

For x = c < 1,

f(c) = 2

limxc f(x) = limxc ( 2) = 2 = f(c)

So, f is continuous at x< 1.

For x = c > 1,

f(c) = 2

limxc f(x) = limxc . 2 = 2 = f(c)

So, f is continuous at x |>| 1.

For x = 1,

L.H.L. = limx1 f(x) = limx1 2 = 2

R.H.L. = limx1+ f(x) = limx1+ . 2x = 2 ( 1) = 2

and f( 1) = 2

So, L.H.L. = R.H.L. = f( 1)

∴f is continuous at x = 1.

For x = 1,

L.H.L. = limx1 f(x) = limx1 . 2x = 2.1 = 2

R.H.L. = limx1+ f(x) = limx1+ . 2 = 2.

f(1) = 2

f(1) = L.H.L = R.H.L.

So, f is continuous at x = 1.

Q:  

86. Kindly consider the following

A: 

86. To prove ddx(uv·w)=dudxv·w+u·dvdx·w+u·v·dwdx.

By repeating application of produced rule

=ddx(uv:u)

=uddx(u·w)+v·wdydx

u{vdwdx+wdvdx}+dydxv:w.

=u·v·dwdx+u·dvdxw+dydx·v·w

=dydxu·w+u·dvdx·w+u·v·dwdx = R×H×S×

By togarith differentiating,

Let y = u v w

Taking log, log y = log u + log v + log w

Differentiating w r t ‘x’

1ydydx=1ududx+1vdvdx+1wdwdx.

dydx=y[14dydx+1vdvdx+1wdwdx]

ddx(uvw)=uvw·[1udydx+1vdudx+1wdurdx]

=dydxv·w+udvdx·w+uv·dwdx

Q:  

132. Kindly consider the following

A: 

132. Given, (xa)2+(yb)2=c2.

Differentiating w r t ‘x’ we get

ddx(xa)2+ddx(yb)2=ddxc2

2(xa)+2(yb)dydx=0

dydx=2(xa)2(yb)=(xa)(yb)

Again, d2ydx2={(yb)ddx(xa)(xa)ddx(yb)(yb)2}

={(yb)(xa)dydx(yb)2}

={(yb)+(xa)(xa)(yb)(yb)2}

={(yb)2+(xa)2(yb)3}

=c2(yb)3{?(xa)2+(yb)2=c2}

Then, L.H.S = {1+(dydx)2}3/2d2ydx2={1+(xa)2(yb)2}3/2c2(yb)2

={(yb)2+(xa)2}3/2(yb)3×(yb)3c2

=c2×3/2c2=c3c2=c Where c is a constant and is independent of a and b.

Q:  

51. Kindly consider the following

sin2x+cos2y=1

A: 

51. Given, sin2x + cos2y = 1. 

Differentiating w r t ‘x’ we get,

ddx (sin2x + cos2y) ddx1.

ddxsin2x+ddxcos2y=0

2sinxdsinxdx+2cosydcosydx=0

= 2sin x cos x + 2 cos y   (- sin y) dydx=0

= sin 2x- sin 2y dydx = 0

 
Q:  

24. Examine the continuity of f , where f is defined by

f(x)= {sinxcosx, if x01, if x=0

A: 

24. Given, f(x) = {sinxcosx, if x01, if x=0.

For x = c = 0,

f(c) = sin c cos c.

limxc f (x) = limxc (sin x cos x) = sin c cos c = f(c)

So, f is continuous at x0

For x = 0,

f(0) = 1

limx0 f (x) = limx0 (sin x cos x) = sin 0 cos 0 = 0 1 = 1

limx0+f(x)=limx0+(sinxcorx)=sin0cos0=1.

∴ limx0 f(x) = limx0+ f (x) = f (0)

So, f is continuous at x = 0.

Find the values of k so that the function f is continuous at the indicated point in Exercises 26 to 29.

Q:  

25. f(x)= {kcosxπ2x, if xπ23, if x=π2π2

A: 

 25. Given, f(x) = {πcosxπ2x if xπ23 if x=π2

For continuity at x=π2

limxπ2f(x)=limxπ2f(x)=f(π2).

limxπ2xcosxπ2x=limxπ2+xcosxπ2x=3.

Take limxπ2xcosxx2x=3 .

Putting x = π2+h such that as xπ2,h0.

So limh0xcos(π2+h)x2(π2+n)=limh0x(sinx)2h

=limh0xsinh2h

=k2limh0sinhh=k2.

i e, k2=3

 k = 6

Similarly from limxπ+2xcosxπ2x=3

limh0hcos(π2+h)π2(π2+h)=limh0hsinh2h

=2limh0sinhh

=x2

So, x2=3

 k = 6

Q:  

49. Kindly consider the following

x3+x2y+xy2+y3=81

A: 

49. Given,  x3 + x2y + xy2 + y3 = 81.

Differentiating w r t ‘x’ we get,

ddx(x3+x2y+xy2+y3) = d(81)dx

dx3dx+ddxx2y+ddxxy2+ddxy3=0

3x2+x2dydx+ydx2dx+xdy2dx+y2dxdx+3y2dydx=0

3x2+x2dydx+2xy+2xydydx+y2+3y2dydx=0.

(x2+2xy+3y2)dydx= - (3x2 + 2xy + y2)

dydx=(3x2+2xy+y2)(x2+2xy+3y2).

Q:  

69. Kindly consider the following

cosx.cos2x.cos3x

A: 

69. Let y = cos x cos 2x cos 3x _____ (i)

Taking loge on bolk sides.

logy = log (cos x) + log (cos 2x + log (cos 3x)

= log (cos x) + log (cos 2x) + log (cos 3x)

Differentiating w r t ‘x

1ydydx=1cosxddxcosx+1cos2xddxcos2x+1cos3xddxcos3x.

= (sinx)cosx+ (sin2x)cos2xddx (2x)+ (sin3x)cos3xd (3x)dx

= - tan x-2 tan 2x- 3 tan 3x.

dydx = y [- tan x- 2 tan 2x- 3 tan 3x]

Putting value of y from (i) we get,

=dydx= - cos x cos 2x cos 3x [tan x + 2 tan 2x + 3 tan 3x]

Q:  

70. Kindly consider the following

A: 

70. Kindly go through the solution

Putting value of y from the above we get,

Q:  

78. Kindly consider the following

xxcosx+x2+1x21

A: 

78. Let y = xx cos x  a2+1x21

Putting  4 = xx cos x and vx2+1x21 we have,

y = u + v

dydx=dydx+dvdx ____ (1)

As u |=| xx cos x.

Taking log,

Log u = x cos x log x

Differentiating w r t ‘x’,

1udydx=xddx [cos x log x] + cos x log x dxdx

= x {cotxddxlogx+logxddxcosx} + cos x log x.

=x{cosx·1xsinx·logx} + cos x log x.

= cos x- sin x. log x + cos x log x.

dydx=u [cosx + cos x log x- sin x log x]

= xx cos x [cos x + cos x log x-x sin x log x]

And v = x2+1x21

So, dvdx=(x21)ddx(x2+1)(x2+1)ddx(x1)(x21)2

=(x21)(2x)(x2+1)(2x)(x21)2

=2x32x2x32x(x21)2

=4x(x21)2.

Hence, eqn (1) becomes,

dydx xxcos x [cos x + cos x log x-x sin x log x4x(x21)2

Q:  

87. Kindly consider the following

x=2at2,y=at4

A: 

87. Given, x = 2at2 and y = at4. Differentiation w r t we get,

dxdt=4at. and dydt=4at3.

dydx=dydtdxdt=4at34at=t2.

Q:  

88. Kindly consider the following

x=acosθ,y=bcosθ

A: 

88. Kindly go through the solution

Q:  

89. Kindly consider the following

x=sint,y=cos2t

A: 

89. Given, x = sin t and y = cos2t. differentiation w r t. ‘t’ we get,

dxdt=costdydt= (sin2t)d2tdtt2 (2sintcost)tt

dydx=dydtdxdt

=4sintcostcost

= -4 sin t

Q:  

90. Kindly consider the following

x=4t,y=4t

A: 

90. Given, x = 4t and y = 4t Differentiating w r t. ‘t’ we get,

dxdt=4dydt=4d (t1)dt

=4t2

4t2

dydx=dydtdxdt=4t24=1t2.

Q:  

93. Kindly consider the following

A: 

93. Kindly go through the solution

Q:  

94. Kindly consider the following

A: 

94. Kindly go through the solution

Q:  

104. Kindly consider the following

sin(logx)

A: 

104. Let y=sin(logx)

so, dydx=ddxsin(logx)=cos(logx)ddxlogx=cos(logx)x

d2ydx2=xddxcos(logx)cos(logx)dxdxx2

=x[sin(logx)]ddxlogxcos(logx)x2

=[xsin(logx)×1x+cos(logx)]x2

=[sin(logx)+cos(logx)]x2

Q:  

110. Kindly consider the following

A: 

110. Kindly go through the solution

 

Q:  

111. Kindly consider the following

A: 

111. Given, y=(tan1x)2

So, y1=dydx=2(tan1x)ddxtan1x

y1=2tan1x×11+x2

(x2+1)y1=2tan1x

Differentiating again w r t ‘x’ we get,

(x2+1)dy1dx+y1ddx(x2+1)=2ddxtan1x

(x2+1)y2+y1(2x)=21+x2

(x2+1)2y2+2x(1+x2)y1=2

Hence proved.

Q:  

114. If f:[-5,5] →R is a differentiable function and if f'(x) does not vanish anywhere, then prove that f(-5) ≠ f(5).

 

Read more
A: 

114. Solution :
It is given that f: [-5,5]? R is a differentiable function.

Since every differentiable function is a continuous function, we obtain

(a) f is continuous on [?5, 5].

(b) f is differentiable on (?5, 5).

Therefore, by the Mean Value Theorem, there exists c? (?5, 5) such that

f' (c)f (5)? f (? 5)5? (? 5)? 10f' (c)=f (5)? f (? 5)

It is also given that f' (x) does not vanish anywhere.

? f' (c)? 0? 10f' (c)? 0? f (5)? f (? 5)? 0? f (5)? f (? 5)

Hence, proved.

Q:  

133. Kindly consider the following 

A: 

133.  Given, cosy=xcos(a+y).

x=cosycos(a+y)

Differentiating w r t ‘y’ we get,

dxdy=ddy(cosycos(a+y)).

=cos(a+y)ddycosycosyddycos(a+y)cos2(a+y).

=cos(a+y)(siny)cosy(sin(a+y))cos2(a+y).

=cos(a+y)siny+sin(a+y)cosycos2(a+y)

=sin(a+y)cosycos(a+y)siny.cos2(a+y)

dxdy=sin(a+yy)cos2(a+y){?sin(AB)=sinAcosBcosAsinB}

So, dydx=cos2(a+y)sina

Q:  

137. Kindly consider the following

A: 

137. Yes, Let us take f(x)=|x1|+|x2|.

So, x = 1, x= 2 divides the real line into three disjoint intervals (,1],[1,2] and [2,).

For x(,1].

f(x)=(x1)+[(x2)]=x+1x+2=32x.

For x[1,2]. 

f(x)=(x1)(x2)=1.

For x[2,)

f(x)=x1+x2=2x3.

Hence, these polynomial fun are all continous and desirable. for all real values of x or, except x = 1 and x = 2.

ie, xR{1,2}.

For differentiavity at x = 1,

LHD = =limx1f(x)f(1)x1=limx132x1x1=limx122xx1.

=limx12(x1)x1

=limx12

= -2

RHD = =limx1+f(x)f(1)x1=limx1+11x1=limx1+0x1=0.

as L.HD ≠ R.HD

f is not differentiable at x =1.

For continuity at x = 1.

L.HL= =limx1f(x)=limx1=1.

RHL = limx1+f(x)=limx1+1=1 \ LHL = RHS

f is continuous at x = 1

For continuity & differentiability at x = 2

=limx2f(x)=limx21=1.

  =limx2+f(x)=limx2+(2x3)=43=1.

? LHL = RHL

f is continuous at x = 2

=limx2f(x)f(2)x2=limx211x2=limx2=0x2

  =limx2+f(x)f(2)x2=limx2+2x31x2

=limx2+2(x2)x2

=limx2+2

= 2

? LHD ≠ RHD

f is not differentiable at x = 2.

Q:  

139. Kindly consider the following

A: 

139. Kindly go through the solution

Q:  

12. Is the function defined by

f(x)= {x+5, if x1x5, if x>1 a continuous function?

Discuss the continuity of the function f , where f is defined by

Read more
A: 

12. Given, f(x) = {x+5 if x|?|1x5 if x>1.

For x = c < 1.

F (c) = c + 5

limxc f(x) = limxc f x + 5 = c + 5

∴ limxc f(x) = f(c)

So, f is continuous at x |<| 1.

For x = c > 1

F (c) = c 5

limxc f(x) = limxc x 5 = c 5.

limxc f(x) = f(c)

So, f is continuous at x |>| 1.

For x = 1

L.H.L. = limx1 f(x) = limx1 x + 5 = 1 + 5 = 6.

R.H.L. = limx1+ f(x) = limx1 x 5 = 1 5 = 4.

L.H.L. = R.H.L.

f is not continuous at x = 1

So, point of discontinuity of f is at x = 1.

Discuss the continuity of the function f , where f is defined by

Q:  

58. Kindly consider the following

A: 

58. Kindly go through the solution

Q:  

16. Find the relationship between a and b so that the function f defined by

f(x)= {ax+1, if x3bx+3, if x>3 is continuous at x = 3.

Read more
A: 

16. Given, f (x) = {ax+1,  if x3bx+3,  if x>3 is continuous at x = 3

So, f (3) = 3a + 1

L.H.L = limx3 f (x) = limx3 ax + 1 = 3a + 1

R.H.L = limx3+ f (x) = limx3+ b x + 3 = 3b + 3

for continuity at x = 3,

L.H.L = R.H.L. = f (3)

 3a + 1 = 3 + 3 = 3a + 1

So, 3a + 1 = 3b + 3

3a = 3b + 3 1

3a = 3b + 2.

a = b + 23.

Q:  

31. Show that the function defined by f(x)=|cosx| is a continuous function.

A: 

31. Given, f (x) = |cosx|.

Let g (x) = cos x and h (x) = x

Hence, as cosine function and modulus f x are continuous x? , g h are continuous.

Then, (hog) x = h (g (x)

= h (cos x)

=|cosx|.

= f (x) is also continuous being

A composites fxn of two continuous f x x?

Q:  

33. Find all the points of discontinuity of f defined by fxxx

A: 

33. Let g (x) = x is continuous being a modules f x and h (x) = x is also continuous being a modules x?

Then, f (x) = g (x) h (x).is also continuous for all x. E. R.

Hence, there is no point of discontinuous for f (x).

Q:  

41. Kindly consider the following

A: 

41. Kindly consider the following

 

Q:  

42. Prove that the function f given by

f(x)=|x1|,x is not differentiable at x = 1.

A: 

42. The given f x v is

f(x) = |x- 1|, x ε R

For a differentiable f x v f at x = c,

limh0f(c+h)f(c)h and limh0+f(c+h)f(c)h are finite & equal.

So, at x = 1. f(1) = |1 - 1| = 0.

Now,

L×H×L× = limh0f(1+hf(1)h

limh0|1+h1|0.h=limh0hh {h<0|h|=h}

=limhσ(1)

R×H×L = limh0+f(1+h)f(1)h = - 1.

=limh0+(1+h1)0h=limh0+hh=limh0+1 {?fnh>0|h|=h}

= 1

Hence, L×H×S ¹ R×H×L×

So, f is not differentiable at x = 2.

Q:  

45. Kindly consider the following

2x+3y=siny

A: 

45. Given, 2x + 3y = sin y.

Differentiating w r t x. we get,

ddx (2x+3y)=ddxsiny

2+3dydx=cosydydx

=cos y dydx3dydx=2

dydx (cosy3)=2

= dydx=2cosy3

Q:  

72. Kindly consider the following

xx2sinx

A: 

72. Let y = xx - 2 sin x

Putting u = xx and v = 2 sin x.

So, y = u - v

= dydx=dydxdvdx ____ (i)

As u = xx

Log u = x log x.

So,ddx log u = ddx x log x.

= 14dydx=xdlogxdx+logxdxdx

x´ 1x + log x.

= 1 + log x

= dydx= 4 [1 + log x] = xx [1 + log x].

And v = 2sin x Log v = sin x log 2.

ddx(logv)=ddx (sin x log 2)

1vdvdx=sinxddx sin x ddx log 2 + log 2 dsinxdx = log 2. cos x.

dvdx = v log2 cos x.

dvdx = v log 2 cos x

= 2 sin x log2. cos x.

Q Eqn (i) becomes,    = xx (1 + log x) - 2 sin x cos x log 2.

Q:  

73. Kindly consider the following

(x+3)2.(x+4)3.(x+5)4

A: 

73. Let y = (x + 3)2 (x + 4)3 (x + 5)4.

Taking loge on both sides,

log y = log (x + 3)2 + log (x + 4)3 + log (x + 5)4

= 2 log (x + 3) + 3 (log (x + 4) + 4 log (x + 5).

So,

ddx log y = ddx  [2 log (x + 3) + 3 log (x + 4) + 4 log (x +5)]

1ydydx=2x+3+3x+4+4x+5.

dydx=y [2x+3+3x+4+4x+5]

dydx = (x + 3)2 (x + 4)3 (x + 5)4 [2x+3+3x+4+4x+5].

Q:  

75. Kindly consider the following

(logx)x+xlogx

A: 

75. Let y = (log x)x + x log x.

Putting u = log xx and v = x log x we get,

y = u + v

dydx=dydx+dvdx .____ (1)

As u = log xx

Taking log,

Þlog u = x [log(log x)]

Differentiating w r t x we get,

1ydydx=xddx log (log x) + log (log x)  dxdx

= x×1logxdlogxdx + log (log x)

xlogx×1x+log1(logx)

dydx=μ[1logx+log(logx)]

dydx=(logx)x[1logx+log(logx)].

= (log x)x[1+logx.log(logx)logx]

= (log x)x- 1 [1 + log ´. log (log x)]

And v = log x

Taking log,

Log v = log x log x. = (log x)2.

Differentiating w r t ‘x’ we get,

1vdvdx=2logxddxlogx

dvdx = 2v log x1x

= 2. x log x. logxx

= 2 x log x- 1 log x.

Hence eqn becomes

dydx= (log x) x- 1[1 + log x log (log x)] + 2x log x- 1 log x

Q:  

76. Kindly consider the following

(sinx)x+sin1

A: 

76. Kindly go through the solution

Q:  

80. Kindly consider the following

xy+yx=1

A: 

80. Given, xy + yx = 1

Let 4 = xy and v =., we have,

u + v = 1.

dydx+dvdy=0 ___ (1)

So, u = xy

= log u = y log x(taking log)

Now, differentiating w r t ‘x’,

14dydx=yddxlogx+logxdydx.

dydx=4[yx+logxdydx]

xy·yx+xylogx·dydx

= xy- 1y + xy log x dydx.

And v = yx.

log v = x log y.

Differentiating w r t ‘x’,

1vdvdx=xddxlogy+logydxdx

=xydydx+logy

dvdx=v[xydydx+logy]

=yx·xy·dydx+yxlog·y

= yx- 1. xdydx + yx log y.

So, eqn (1) becomes

xy- 1y + xy log x dydx + yx - 1 dydx + yx log y = 0

dydx(xylogx+yx+1·x) = - (xy- 1y + yx log y)

dydx=(xy1·y+yxlogy)(xylogx+yx1·x).

Q:  

108. Kindly consider the following

A: 

108. Given, y=Aemx+Benx _______(1)

So, dydx=Amemx+Bnenx _______(2)

d2ydx2=Am2emx+Bn2enx _________(3)

So, L.H.S = d2ydx2(m+n)dydx+mny

=Am2emx+Bn2enx(m+n)[Amemx+Bnenx]+mn[Aemx+Benx]

=Am2emx+Bn2enxAm2emxBmnenxAmnemxBn2enx+Amnemx+Bmnenx

= 0 = R.H.S.

Q:  

1. Prove that the function f(x) = 5x 3f is continuous at x = 0, at x = – 3 and at x = 5.

A: 

1. Given, f (x) = 5x 3

At x = 0,  limx0f (x)=limx0 5x 3 = 5 0 3 = 3.

So f is continuous at x = 1.

At x = 3,  π+h 5x 3 = 5 ( 3) 3 = 15 3

= 18.

So f is continuous at x = 3.

At x = 5,  x?  .5x 3 = 5.5 3 = 25 3 = 22.

So, f is continuous at x = 5.

Q:  

2. Examine the continuity of the function f(x) = 2x2 1

A: 

2. Given, f (x) = 2x2 1

At x = 3

Lim f (x) = dydx= (3x2+2xy+y2) (x2+2xy+3y2). 2 (3)2 1 = 18 1 = 17.

So, f is continuous at x = 3.

Q:  

5. Prove that the function f(x)=xn continuous at x=n, where n is a positive integer.

A: 

4. Given, f (x) = x n > n = positive.

At x = 2,

(x) = n.

limxn f (x) = limxn x n = n

∴ limxn f (x) = f (x)

So f is continuous at x = n.

Q:  

8. f(x)= {|x|x, if x00, if x=0.

A: 

8. Given, f(x) = fxxx

For x = c < 0,

f(c) = 1

limx0 f(x) = limx0 1 = 1

∴f(c) = limx0 f (x)

f is continuous at x |<| 0.

For x = c > 0,

F (c) = 1

limxc f(x) = limxc = = 1.

∴f(c) = limxc f(x)

f is continuous at x > 0.

For x = c 0.

L.H.L. = limx0 f(x) = limx0 ( 1) = 1

R.H.L. limx0+ f(x) = limx0+ 1 = 1

∴ L.H.L. = R.H.L.

is now continuous at x = 0, point of discontinuity of f is at x = 0.

Q:  

10. f(x)= {x33,if x2x2+1 ,if x>2

A: 

10. Given f (x) = {x33if x|? |2x2+1 if x>2

For x = c < 2,

f (c) = c3 3

limxc f (x) = limxc x3 3 = c3 3.

So f is continuous at x |<| 2.

For x = c > 2

f (c) = x2 + 1 = c2 + 1

limx2 f (x) = limx2 x2 + 1 = c2 + 1 = f (c)

So, f is continuous at x |>| 2.

For x = c = 2, f (2) = 23 3 = 8 3 = 5.

L.H.L. limx2 f (x) = limx2 x3 3 = 23 3 = 5.

R.H.L. limx2+ f (x) = limx2+ x2 + 1 = 22 + 1 = 5

∴ R.H.L. = L.H.L. = f (2).

So, f is continuous at x = 2

Hence f has no point of discontinuity.

Q:  

11. f(x)= {x101, if x1x2,        if x>1

A: 

11. Given, f (x) = {x101,  if x1x2,  if x>1.

For x = c < 1.

f (c) = limxc f (x) = c10 1.

So, f is continuous for x |>| 1.

For x = c > 1.

f (c) = limxc f (x) = c2

So, f is continuous for x |>| 1.

For x = c = 1,

L.H.L = limx1 f (x) = limx1 x10 1 110 1 = 0.

R.H.L. = limx1+ f (x) = limx1+ x2 = 12 = 1.

∴ L.H.L = R.H.L.

So, f is not continuous at x = 1.

Hence, f has point of discontinuity at x = 1.

Q:  

13. f(x)= {3,if π 0x14,if π 1<x<35,if π3x10

A: 

13. Given, f(x) = {3 π 0x14 π 1<x<35 π3x10.

For x = c such that 0c<1

f(c) = 3

limxc f(x) = limxc 3 = 3 = f(c)

So, f is continuous in [0, 1].

For x = c = 1,

L.H.L. = limx1 f(x) = limx1 3 = 3.

R.H.L. limx1+ f(x) = limx1+ 4 = 4

∴ L.H.L = R.H.L.

f is discontinuity at x = 1

for x = c such that 1<c<3.

f(c) = 4

limxc f(x) = limxc 4 = 4 = f(c)

So, f is continuous in x(1,3)

For x = c = 3

L.H.L. limx3 f(x) = limx3 4 = 4

R.H.L. limx3+ f(x) = limx3+ 5 = 5.

So, f is discontinuous at x = 3.

For x = c such that 3<c10

f (c) = 5.

limxc f(x) = limxc 5 = 5 = f(c)

So, f is continuous in x(3,10]

Q:  

14. f(x)= {2x, if x<00, if   0x14x, if x>1

A: 

14. Given f(x) = {2x, if x<00, if 0x14x, if x>1.

For (c) = c < 0,

f(c) = 2c.

limxc f(x) = limxc 2x = 2c = f(c)

So, f is continuous at x |<| 0

For x = c > 1,

f(c) = 4c

limxc f(x) = limxc 4x = 4c = f(c)

So, f is continuous at x> 1.

For x = 0

L.H.L. = limx0 f(x) = limx0 . 2x = 2 (0) = 0

R.H.L. = limx0+ f(x) = limx0+ . 0 = 0.

f(0) = 0.

∴ L.H.L. = R.H.L. = f(0).

So, f is continuous at x = 0.

For x = 1.

L.H.L. = limx1 f(x) = limx1 . 0 = 0

R.H.L. = limx1+ f(x) = limx1+ . 4x = 4 (1) = 4.

∴ L.H.L. = R.H.L.

So, f is discontinuous at x = 1.

Q:  

19. Is the function defined by f(x)=x2sinx+5 continuous at x=π?

A: 

19. Given f (x) = x2 sin x + 5.

At x = .

f (π)=π2sinπ+5=π20+5=π2+5

limxπ f (x) = limxπ  [x2 sin x + 5]

If x = π+h then as x, h 0, so,

limxπ f (x) = limx0  [ ( + h)2 sin ( + h) + 5]

= ( + 0)2 limh0  [sinπcosh+cosπsina]+5.

= 2 limh0 sin cos h limh0 cos sin h + 5

= x2 0 × (1) ( 1) 0 + 5.

= 2 + 5 = f (x)

So, f is continuous at x = .

Q:  

21. Discuss the continuity of the cosine, cosecant, secant and cotangent functions.

 

A: 

21. For two continuous fxn f(x) and g(x), f(x)g(x),g(x)f(x),

1f(x)1g(x) are also continuous

Let f(x) = sin x is defined x R.

Let C E R such that x = c + h. so, as x c, h 0

now, f(c) = sin c.

limxc f(i) = limxc sin x = limh0 sin (c + h).

limh0 (sin c cos h + cos c sin h)

= sin c cos 0 + cos c sin 0

= sin c 1 + 0

= sin c

= f(c)

So, f is continuous.

Then, 1f(x) is also continuous

1sin(x) is also continuous

 cosec x is also continuous

Let g(x) = cos x is defined x R.

Then, g(c) = cos c

limxc g(x) = limxc . cos x

limh0 cos (c + h).

limh0 (cos c cos h sin c sin h.)

= cos c cos h sin c sin h

= cos c.

= g(c)

So, g is continuous

Then, 1g(x) is also continuous

1cosx is also continuous

 cos x is also continuous.

Hence, g(x)f(x) is also continuous

  cosxsinx is also continuous

 cot x is also continuous .

Q:  

26. f(x)= {kx2, if x23, if x>2x

A: 

26. Given f (x) =  {kx2 if x2.3 if x>2.

For continuous at x = 2,

f (2) = k (2)2 = 4x.

L.H.L. = limx2f (x)=limx2x2=4x

R.H.L. = limx2+f (x)=limx2+3=3

Then, L.H.L = R.H.L. = f (2)

i e, 4x = 3

x=34.

Q:  

28. f(x)= {kx+1, if x53x5, if x>5x=5

A: 

 28. Given, f (x) {kx+1,  if x53x5,  if x>5.

For continuity at x = 5,

limx5f (x)=limx5, kx+1=5x+1.

limx5+f (x)=limx5+3x5=155=10

f (5) = 5k + 1

So,  limx5f (x)=limx5+f (x)=f (5).

i e, 5k + 1 = 10

 5k = 10 1

 k = 95.

Q:  

29. Find the values of a and b such that the function defined by

A: 

29. Given, f(x) = {5 if x2ax+b if 2<x<1021 if x10

For continuity at x = 2,

limx2f(x)=limx2+f(x)=f(2)

limx25=limx2+ax+b=5.

 5 = 2a + b (i)

For continuous at x = 10,

limx10f(x)=limx10+f(x)=f(10)

limx10ax+b=limx10+21=21.

 10a + b = 21 (2).

So, e q (2) 5 e q (1) we get,

10a + b 5 (2a + b) = 21 5 5.

 10a + b 10a 5b = 21 25.

 4b = 4

 b = 1.

And putting b = 1 in e q (1),

 2a = 5 b = 5 1 = 4

a=42=2.

Hence, a = 2 and b = 1.

Q:  

30. Show that the function defined by f(x)=cos(x2) is a continuous function

A: 

30. Given f (x) = cos (x2)

Let g (x) = cos x is a lregononuie fa (cosine) which is continuous function

and let h (x) = x2 is a polynomial f xn which is also continuous

Hence (goh) x = g (h (x)

= g (x)2

= cos (x2)

= f (x)

is also a continuous f x being a composite fxn of how continuous f x x?

Q:  

32. Examine that sin |x| is a continuous function.

A: 

32. Given, f (x) = sin x

Let g (x) = sin x and h (x) = x then as sine f x and modulus f x are continuous in x e R

g and h are continuous.

So, (goh) (x) = g (h (x) = g (|x|) = sin |x| = f (x)

Is a continuous f x being a competitive f x of two continuous f x.

Q:  

34. Kindly Consider the following

  sin (x2+ 5)

A: 

34. Let f (x) = sin (x2 + 5)

Differentiating w. r t. x we get,

f'¢ (x) = ddxsin (x2 + 5)

= cos (x2 + 5)  ddx = cos (x2 + 5) 

= cos (x2 + 5) [2x].

= 2x cos (x2 + 5).

Q:  

35. Kindly consider the following

  cos (sinx)

A: 

35. Let f (x) = cos (sin x).

f' (x) ddx cos (sin x)

= - sin (sin x) ddx sin x

= - sin (sin x) cos x.

Q:  

36. Kindly consider the following

sin(ax+b)

A: 

36. Let f (x) = sin (ax + b)

f' (x) = ddx sin (ax + b)

= cos (ax + b) ddx  (ax + b)

= a cos (ax + b).

Q:  

37. Kindly consider the following

A: 

37. Kindly go through the solution

Q:  

38. Kindly consider the following

sin(ax+b)cos(cx+d)

A: 

38. Let f(x) = sin(ax+b)cos(cx+d).

f'(x) = cos(cx+d)ddxsin(ax+b)sin(ax+b)ddxcos(cx+d)cos2(cx+d).

cos(cx+d)cos(ax+b)ddx(ax+b)+sin(ax+b)sin(cx+d)d(x+d)dxcos2(cx+d)

=cos(cx+d)cos(ax+b)·a+sin(ax+b)sin(cx+d)·ccos2(cx+d)

Q:  

39. Kindly consider the following

cosx3sin2(x5)

A: 

39. Let f (x) = cos (x3) sin2 (x5).

f' (x) = cos (x3) d d x  sin2 (x5) + sin2 (x5) d d x cos (x3)

= cos (x3) 2sin (x5) d d x  sin (x5) + sin2 (x5) [sin (x3)] d d x x3.

= 2 cos (x3) sin (x5). cos (x5) d d x   (x5) - sin2 (x5) sin (x3). 3x2

= 2. cos (x3) sin (x5) cos (x5). 5 - 3x2sin2 (x5) sin (x3)

= x2 sin (x5). [2x2 cos (x3) cos (x5) - 3 sin (x5) sin x3].

Q:  

44. Find dydx in the following:

2x+3y=sinx

A: 

44. Kindly go through the solution

Q:  

46. Kindly consider the following

ax+by2=cosy

A: 

46. Given, ax + by2 = cos y.

Differentiating w r t ‘x’ we get,

ddx (ax+by2)=dxdxcosy

= a + b 2y = - sin y dydx + sin y dydx = -a

= dydx=92by+siny.

= 2by dydx

Q:  

53. Kindly consider the following

A: 

53. Kindly go through the solution

Q:  

54. Kindly consider the following

y=cos1(1x21+x2),0<x<1

A: 

54. Kindly go through the solution

Q:  

55. Kindly consider the following

y=sin1(1x21+x2),0<x<1

A: 

55. Kindly go through the solution

Q:  

56. Kindly consider the following

y=cos1(2x1+x2),1<x<1

A: 

56. Kindly go through the solution

Q:  

57. Kindly consider the following

A: 

57. Kindly go through the solution

Q:  

60. Kindly consider the following

esin1x

A: 

60. Kindly go through the solution

Q:  

61. Kindly consider the following

 ex3

A: 

61.  Kindly go through the solution

Let y = ex3

Q:  

62. Kindly consider the following

sin(tan1ex)

A: 

62. Kindly go through the solution

Q:  

63. Kindly consider the following

log(cosex)

A: 

63. Let y = log (cos ex).

dydx=ddlog (cos ex)

=1cosexddx (cos ex)

= - sinexcosexdex.dx

= -ex [tan ex]

Q:  

65. Kindly consider the following

A: 

65. Kindly go through the solution

Q:  

66. Kindly consider the following

log(logx),x>1

A: 

 66. Let y = log (log x)

dydx=1logxddx (logx)

=1logx×1x

dydx=1xlogx

Q:  

67. Kindly consider the following

cotxlogx,x>0

A: 

67. y=cotxlogx

dydx=logxddacoxcosxddxlogx [logx]2

=sinx·logxcosx×1x [logx]2.

= [xsinxlogxcosx]x (logx)2.

Q:  

68. Kindly consider the following

cos(logx+ex),x>0

A: 

68. Let y = cos (log x + ex)

dydx=ddxcos (log x + ex)

= - sin (log x + exddx (log x + ex)

= - sin (log x + ex)   [1x+ex]

= [1x+ex] sin (log x + ex).

Q:  

71. Kindly consider the following

(logx)cosx

A: 

71. Let y = (log x) cos x

Taking loge on both sides,

Log y = cos x [log (log x)]

Differentiating w r t ‘x’ we get,

1ydydx=cosxddx log (log x) +log (log x) dcosxdx

=cosx×1logx×d (logx)dx + log (log x) (- sin x)

=cogxxlogx - sin x log (log x)

= dydx=y [cosxxlog2sinx·log (logx)].

dydx= (logx)cosx [cosxxlogxsinx·log (logx)]

Q:  

74. Kindly consider the following

(1+1x)x+x(1+1x)

A: 

74 . Let y = (x+1x)x + (1+1x)x

Putting u = (x+1x)x and v = (1+1x)x we get,

y = u + v

dydx=dudx+dvdx _____ (1)

As u = (x+1x)x

Taking log,

= log u = x log (x+1x)

Differentiating w r t ‘x’ we get,

14dydx=xddxlog (x+1x)+log(x+1x)dxdx

=x1(x+1x)ddx(x+1x) + log (x+1x) 1.

=x·1(x+1x)×(11x2)+log(x+1x)

=x.x21x2(x2+1x)+log(x+1x).

=x21x2+1+log(x+1x).

dudx=u[x21x2+1+log(x+1x)]

=(x+1x)x[x21x2+1+log(x+1x)].

And v = x (1+1x)

Taking log, log v = (1+1x) log x

Differentiating W r t ‘x’,

1vdvdx=(1+1x)ddx log x + log x ddx(1+1x).

(1+1x)×1x + log x (01x2).

dvdx = v [1x(1+1x)logxx2] = x(1+1x)[1x(1+1x)logxx2]

Hence, eqn (1) becomes,

dydx=(x+1x)x[x21x2+1+log(x+1x)]. +x(1+1x)[1x(1+1x)logxx2]

Q:  

79. Kindly consider the following

(xcosx)x+(xsinx)1x

Find dydx of the functions given in Exercises 12 to 15.

A: 

79. Let y = (x cos x) x + (x sin) 1x

Putting u = (x cos x)x and v = (x sin x) 1x we, have,

y = u + v

dydx=dydx+dvdx ____ (1)

As u = (x cos x)x :

Taking log,

Log u = x log (x cos x)

= x [log x + log (cos x)]

Differentiating w r t ‘x’ we get,

14dudx=xddx [log x + log (cos x)] + [log x + dog (cos x)] dxdx

=x[1x+1cosxdcosxdx] + [log x +log (cos x)]

=[1+xcosx(sinx)] + log x + log (cos x)

= 1 -x tan x + log (x cos x)

dydx = 4 [1 -x tan x + log (x cose)]

=(x cos x)x  (x cos x)x [1 -x tan + log + log (x cos x)]

And v = (x sin x) 1x

Taking log, log v = 1x log (x sin x)

=1x (log x + log sin x)

Differentiating w r t ‘x’

1vdvdx=1x·ddx (log x + log sin x) + (log x + log sin x) ddx(1x)

=1x[1x+1sinxddxsinx] + log x + log sin x) (1x2)

[1x2+cosxsinx]log(xsinx)x2

dudx=. v[1x2+cotxxlog(xsinx)x2]

= (x sin x) 1x [1x2+cotxlog(xsinx)x2].

Q Eqn (1) becomes,

dydx = (x cos x)x [1 -x tan + log (x cos x)] + (x sin x) 12

[1x2+cotxxlog(xsinx)x2]

= (x cos x)x [1 -x tan x + log (x cos x)] + (x sin x) 12

[1+xcotxlog(xsinx)x2]

Find dydx of the functions given in Exercises 12 to 15.

Q:  

82. Kindly consider the following

(cosx)y=(cosy)x

A: 

82. Given, (cos x)y = (cos y)x

Taking log, y log (cos x) = x log (cos y)

Differentiating w r t ‘x’ we get,

= yddx log (cos x) + log (cos x) dydx=xddx log (cos y) + dog (cos y) dxdx

= y´ 1cosxddx cos x + log (cos x) dydx = x´ 1cosyddxcosy+log(cosy).

ysinxcosx+log(cosx)dydx=xsinycosydydx+log(cosy)

= log (cos x) dydx + x tan dydx=yctanx+log(cosy)

dydx[log(cosx)+xtany] = y tan x + log (cos y )

dydx=ytanx+log(cosylog(cosx)+xtany.

Q:  

83. Kindly consider the following

xy=e(xy)

A: 

83. Given, xy = ex-y.

Taking log,

log (x + y) = log (ex-y).

=logx + log y = (x-y) log e.

= logx +log y = x -y {Q log e = 1}

Differentiating w r t ‘x’ we get,

1x+1ydydx=1dydx

1ydydx+dydx=112

dydx (1y+1)= (x1x)

dydx (1+yy)= (x1x)

dydx=y (x1)x (1+y)

Q:  

91. Kindly consider the following

x=cosθcos2θ,y=sinθsin2θ

A: 

91. Given, x=a(cost+logtant2)y=asint

Differentiating w r t we get,

dxdt=addt[cost+log(tant2)]

=a[sint+1tant2ddt(tant2)]

=a[sint+1tant2.sec2t2ddt(t2)]

=a[sint+cost2sint2×1cos2t2×12]

=a[sint+12sint2cost2]

=a[sint+1sin2×t2]

=a[sint+1sint]=a[1sin2tsint]

=acos2tsint{?1=cos2x+sin2x}

bdydt=ddt(asint)=acost

dydx=dydtdxdt=acostacos2tsint=sintcost=tant

Q:  

Find the second order derivatives of the functions given in Exercise 1 to 10

95. x2+3x+2

A: 

95. Let y = x2 + 3x + 2

So,  dydx=2x+3+0  (differentiation w r t 'x')

? d2ydx2=2+0  (Again “ “ ) = 2

Q:  

96. Kindly consider the following

x20

A: 

96. Let y=x20

So,  dydx=20x201=20x19

d2ydx2=20×19x191

=380x18

Q:  

97. Kindly consider the following

x.cosx

A: 

97. Let y=xcosx

So,  dydx=xddxcosx+dxdxcosx

=xsinx+cosx

d2ydx2=xddxsinxsinxdxdx+ddxcosx

=xcosxsinx+ (sinx)

= (xcosx+2sinx)

Q:  

98. Kindly consider the following

logx

A: 

98. Let y=logx

So,  dydx=ddxlogx=1x

d2ydx2=ddx1x=ddxx1=1x11=1x2

Q:  

99. Kindly consider the following

x3logx

A: 

99. Let y=x3logx

So,  dydx=x3ddxlogx+log2.dx3dx

=x3.1x+logx3x2

=x2+logx (3x2)

d2ydx2=ddx (x2+logx3x2)

=2x+6xlogx+3x2×1x

=2x+6xlogx+3x

=5x+6xlogx

Q:  

100. Kindly consider the following

exsin5x

A: 

100. Let y=exsin5x

so, dydx=exddxsin5x+sin5xddxex

=excos5xddx(5x)+exsin5x

=5excos5x+exsin5x.

d2ydx2=ddx(5excos5x+exsin5x)

=5exddxcos5x+5cos5xddxex+exddxsin5x+sin5xddxex

=5exsin5xddx(5x)+5excos5x+excos5xddx(5x)+exsin5x

=25exsin5x+5excos5x+5excos5x+exsin5x

=ex(10cos5x24sin5x)

=2ex(5cos5x12sin5x)

Q:  

101. Kindly consider the following

e6xcos3x

A: 

101. Let y=e6xcos3x

So, dydx=e6xddxcos3x+cos3xddxe6x

=e6x(sin3x)ddx(3x)+cos3xe6xddx(6x)

=e6x[3sin3x+6cos3x]

d2ydx2=e6xddx[3sin3x+6cos3x]+[3sin3x+6cos3x]ddxe6x

=e6x[3cos3xddx(3x)+6(sin3x)ddx(3x)]+[3sin3x+6cos3x]e6xddx(6x)

=e6x{9cos3x18sin3x18sin3x+36cos3x}

=e6x(27cos3x36sin3x)

=9e6x(3cos3x4sin3x)

Q:  

102. Kindly consider the following

tan1x

A: 

102. Let y=tan1x

So,  dydx=ddxtan1x=11+x2

d2ydx2= (1+x2)ddx (1) (1)ddx (1+x2) (1+x2)2

=2x (1+x2)2

Q:  

103 Kindly consider the following

log(logx)

A: 

103. Let y=log (logx)

So,  dydx=1logxddxlogx=1xlogx

d2ydx2=xlogxddx (1)1ddx (xlogx) (xlogx)2

= [xddxlogx+logxdxdx] [xlogx]2

= (x×1x+logx) [xlogx]2

= (1+logx) (xlogx)2

Q:  

105. Kindly consider the following

y=5cosx3sinx,d2ydx2+y=0

A: 

105. Given,  y=5cosx3sinx

Differentiating w r t x we get,

dydx=5ddxcosx3ddxsinx

5sinx3cosx.

Differentiating again w r t. ‘x’ we get,

d2ydx2=5ddxsinx3ddxcosx

=5cosx+3sinx

= [5cosx3sinx]

=y

d2ydx2+y=0 . Hence proved.

Q:  

106. Kindly consider the following

A: 

106. Kindly go through the solution

Q:  

109. Kindly consider the following

A: 

109. Given,  y=500e7x+600e7x

So,  dydx=500×7e7x+600 (7)e7x

d2ydx2=500×72e7x+600×72e7x

=49 [500e7x+600e7x]

=49×y

d2ydx2=49y

Q:  

112. Verify Rolle’s Theorem for the function f(x)=x2+2x8,x[4,2]

A: 

112.  Given, f(x)=x2+2x8 , being polynomial function is continuous in [4,2] and also differentiable in (4,2) .

f(4)=(4)2+2(4)8=1688=0f(2)=(2)2+2×28=4+48=0

Therefore, f(4)=f(2)=0

The value of f(x) at -4 and 2 coincides.

Rolle’s Theorem states that there is a point c(4,2) such that f'(c)=0 f(x)=x2+2x8

Therefore, f'(x)=2x+2

Hence,

f'(c)=02c+2=0c=1

Thus, c=1(4,2)

Hence, Rolle’s Theorem is verified.

Q:  

113. Examine if Rolle’s Theorem is applicable to any of the following functions. Can you say something about the converse of Rolle’s Theorem from these examples?

f(x)=[x] for x[5,9]

f(x)=[x] for x[2,2]

f(x)=x21 for x[1,2]

Read more
A: 

113. Solution:

By Rolle’s Theorem, for a function f[a,b]R, if

f is continuous on [a,b]

f is differentiable on (a,b)

f(a)= f(b)

then, there exists some c(a,b) such that f'(c)=0

therefore, Rolle’s Theorem is not applicable to those functions that do not satisfy any of the three conditions of the hypothesis.

f(x)=[x] for x[5,9]

It is evident that the given function f(x) is not continuous at every integral point.

In particular, f(x) is not continuous at x=5 and x=9

 f(x) is not continuous in [5,9]

Also, f(5)=[5]=5,and,f(9)=[9]=9f(5)f(9)

The differentiability of f in (5,9) is checked as follows.

Let n be an integer such that n(5,9) .

The left hand limit of f at x=n is,

limh0f(n+h)f(n)h=limh0[n+h][n]h=limh0n1nh=limh01h=

The right hand limit of f at x=n is,

limh0f(n+h)f(n)h=limh0[n+h][n]h=limh0nnh=limh00=0

Since the left and right hand limits of f at x=n are not equal, f is not differentiable at x=n

 f is not differentiable in (5,9).

It is observed that f does not satisfy all the conditions of the hypothesis of Rolle’s Theorem.

Hence, Rolle’s Theorem is not applicable for f(x)=[x] for x[5,9]

f(x)=[x] for x[2,2]

It is evident that the given function f(x) is not continuous at every integral point.

In particular, f(x) is not continuous at x=-2 and x=2

 f(x) is not continuous in [2,2] .

Also, f(2)=[2]=2,and,f(2)=[2]=2f(2)f(2)

The differentiability of f in (2,2) is checked as follows.

Let n be an integer such that n(2,2) .

The left hand limit of f at x=n is,

limh0f(n+h)f(n)h=limh0[n+h][n]h=limh0n1nh=limh01h=

The right hand limit of f at x=n is,

limh0f(n+h)f(n)h=limh0[n+h][n]h=limh0nnh=limh00=0

Since the left- and right-hand limits of f at x=n are not equal, f is not differentiable at x=n

 f is not differentiable in (-2,2).

It is observed that f does not satisfy all the conditions of the hypothesis of Rolle’s Theorem.

Hence, Rolle’s Theorem is not applicable for f(x)=[x] for x[2,2]

f(x)=x21 for x[1,2]

It is evident that f, being a polynomial function, is continuous in [1,2] and is differentiable on (1,2).

f(1)=12=0f(2)=221=3f(1)f(2)

It is observed that f does not satisfy a condition of the hypothesis of Rolle’s Theorem.

Hence, Rolle’s Theorem is not applicable for f(x)=x21 for x[1,2] .

Q:  

115. Verify Mean Value Theorem, if f(x)=x24x3 in the interval [a,b], where a = 1 and b = 4.

Read more
A: 

115.

Solution :
The given function is f (x)=x24x3 f, being a polynomial function, is continuous in [1, 4] and is differentiable in (1, 4) whose derivative is 2x − 4.

f (1)=124×13, f (4)=424×43f (b)f (a)ba=f (4)f (1)41=3 (6)3=33=1

Mean Value Theorem states that there is a point c ∈ (1, 4) such that f' (c) = 1

f' (c)=12c4=1c=52, where, c=52 (1, 4)

Hence, Mean Value Theorem is verified for the given function.

Q:  

116. Verify Mean Value Theorem, if f(x)=x35x23x in the interval [a, b], where a = 1 and b = 3. Find all c ∈ (1, 3) for which f'(c) = 0

Read more
A: 

116. Solution:
The given function f is f(x)=x35x23x f, being a polynomial function, is continuous in [1, 3] and is differentiable in (1, 3) whose derivative is 3x2 − 10x − 3.

f(1)=135×123×1,f(3)=335×323×3=27f(b)f(a)ba=f(3)f(1)31=27(7)31=10

Mean Value Theorem states that there exists a point c ∈ (1, 3) such that f'(c) = - 10

f'(c)=103c210c3=103c210c+7=03c23c7c+7=03c(c1)7(c1)=0(c1)(3c7)=0c=1,73,where,c=73(1,3)

Hence, Mean Value Theorem is verified for the given function and c = 7/3 ∈ (1,3) is the only point for which f'(c) = 0

Q:  

117. Examine the applicability of Mean Value Theorem for all three functions given in the above exercise 2.

Read more
A: 

117. Solution :
Mean Value Theorem states that for a function f[a,b] →R, if 

(a) f is continuous on [a, b]

(b) f is differentiable on (a, b)

then, there exists some c ∈ (a, b) such that  f'(c)=f(b)f(a)ba

Therefore, Mean Value Theorem is not applicable to those functions that do not satisfy any of the two conditions of the hypothesis.

f(x)=[x] for x[5,9]

It is evident that the given function f (x) is not continuous at every integral point.

In particular, f(x) is not continuous at x = 5 and x = 9

⇒ f (x) is not continuous in [5, 9].

The differentiability of f in (5, 9) is checked as follows.

Let n be an integer such that n ∈ (5, 9).

limh0f(n+h)f(n)h=limh0[n+h][n]h=limh0n1nh=limh01h=

The right hand limit of f at x=n is,

limh0f(n+h)f(n)h=limh0[n+h][n]h=limh0nnh=limh00=0

Since the left and right hand limits of f at x = n are not equal, f is not differentiable at x = n

∴f is not differentiable in (5, 9).

It is observed that f does not satisfy all the conditions of the hypothesis of Mean Value Theorem.

Hence, Mean Value Theorem is not applicable for  f(x)=[x] for x[5,9] .

(ii)  f(x)=[x] inx[2,2]

It is evident that the given function f (x) is not continuous at every integral point.

In particular, f(x) is not continuous at x = −2 and x = 2

⇒ f (x) is not continuous in [−2, 2].

The differentiability of f in (−2, 2) is checked as follows.

Let n be an integer such that n ∈ (−2, 2).

limh0f(n+h)f(n)h=limh0[n+h][n]h=limh0n1nh=limh01h=

The right hand limit of f at x=n is,

limh0f(n+h)f(n)h=limh0[n+h][n]h=limh0nnh=limh00=0

Since the left and right hand limits of f at x = n are not equal, f is not differentiable at x = n

∴f is not differentiable in (−2, 2).

It is observed that f does not satisfy all the conditions of the hypothesis of Mean Value Theorem.

Hence, Mean Value Theorem is not applicable for  f(x)=[x] for x[2,2]

(iii)  f(x)=x21 for x[1,2]

It is evident that f, being a polynomial function, is continuous in [1, 2] and is differentiable in (1, 2).

It is observed that f satisfies all the conditions of the hypothesis of Mean Value Theorem.

Hence, Mean Value Theorem is applicable for  f(x)=x21 for x[1,2]

It can be proved as follows.

f(1)=121=0,f(2)=221=3f(b)f(a)ba=f(2)f(1)21=301=3f'(x)=2xf'(c)=32c=3c=32=1.5,where,1.5(1,2)

Q:  

118. Kindly consider the following

(3x29x+5)9

A: 

118. Let y= (3x29x+5)9

So,  dydx=9 (3x29x+5)8ddx (3x29x+5)

=9 (3x29x+5)8× (6x9)

=27 (3x29x+5)8 (2x3)

Q:  

120. Kindly consider the following

(5x)3cos2x

A: 

120. Let y= (5x)3cos2x

Taking log,

logy=3cos2x [log5x]

Differentiating w r t. x,

1ydydx=3cos2xddxlog5x+3log5xddxcos2x

=3 [cos2x15xddx (5x)log5x×sin2xddx2x]

dydx=3y [cos2x×55xlog5xsin2x2]

=3 (5x)3cos2x [cos2xx2sin2xlog5x]

Q:  

121. Kindly consider the following

A: 

121. Kindly go through the solution

Q:  

122. Kindly consider the following

A: 

122. Kindly go through the solution

Q:  

124. Kindly consider the following

(logx)logx,x>1

A: 

124. Let y=(logx)logx

Taking log,

logy=logxlog(logx)

Differentiating w r t. x, we get,

1ydydx=logxddxlog(logx)+log(logx)ddx(logx)

=logx×1logxddxlogx+log(logx)x

=1x+log(logx)x

dydx=yx[1+log(logx)].

=(logx)logx[1+log(logx)x]

Q:  

125. Kindly consider the following

A: 

125. Let y=cos (acosx+bsinx)

So,  dydx=sin (acosx+bsinx)ddx (acosx+bsinx)

=sin (acosx+bsinx) [asinx+bcosx].

=sin (acosx+bsinx) (asinxbcosx)

Q:  

126. Kindly consider the following

(sinxcosx)(sinxcosx),π4<x<3π4

A: 

126. Let y=(sinxcosx)sinxcosx

Taking log,

logy=(sinxcosx)log(sinxcosx)

Differentiating w r t ‘x’ we get,

1ydydx=(sinxcosx)dlogdx(sinxcosx)+log(sinxcosx)ddx(sinxcosx).

=(sinxcosx)×1(sinxcosx)×(cosx+sinx)+log(sinxcosx)(cosx+sinx)

=(cosx+sinx)[1+log(sinxcosx)]

dydx=y(cosx+sinx)[1+log(sinxcosx)]

dydx=(sinxcosx)sinxcosx×(cosx+sinx)[1+log(sinxcosx)]

Q:  

127. Kindly consider the following

A: 

127. Let y=xx+xa+ax+aa.

So, dydx=dxxdx+dxadx+daxdx+daadx.

dydx=dydx+axa1+axloga+0. _________(1)

Where u=xx

logu=xlogx (Taking log)

1ydydx=xddxlogx+logxdxdx (Differentiation w r t ‘x’)

1ydydx=xx+logx

dydx=u[1+logx]

=xx[1+logx]

Hence eqn (1) becomes,

dydx=xx[1+logx]+axa1+axloga.

Q:  

129. Kindly consider the following

A: 

129. Given, y=12(1cost). x=10(tsint). 

Differentiating w r t ‘t’ we get,

dydt=12ddt(1cost)=12(0(sint))=12sint.

dxdt=10ddt(tsint)=10(1cost).

dydx=dy/dtdx/dt

=12sint10(1cost)=12sint10[1cost]

=12×2sint/tcost/210×2sin2t/2

{?sin2θ=2sinθcosθcos2θ=12sin2θ} =65cost/2sint/2=65cott/2

Q:  

130. Kindly consider the following

A: 

130. Kindly go through the solution

 

Q:  

135. Kindly consider the following

A: 

135. Given, f(x)=|x|3={x3 if x0x3 if x<0

For x0,f(x)=|x|3=x3

and f(x)=3x2f(x)=6x

For x<0,f(x)=|x|3=(x)3=x3.

so, f(x)=3x2f(x)=6x

Hence, f(x)={6x, if x06x, if x<0

qna

Maths Ncert Solutions class 12th Exam

Student Forum

chatAnything you would want to ask experts?
Write here...