Class 12 Maths Chapter 2 Inverse Trigonometric Functions NCERT Solutions

NCERT Maths 12th 2023 ( Maths Ncert Solutions class 12th )

Pallavi Pathak
Updated on Jul 31, 2025 12:16 IST

By Pallavi Pathak, Assistant Manager Content

Inverse Trigonometric FunctionsΒ in Class 12 is important for students preparing for the CBSE Board exams and other entrance tests, such asΒ JEE Mains. The concepts covered in the Inverse Trigonometric Functions Class 12 chapter are also used in science and engineering. The inverse trigonometric functions are also important in calculus.Β 
Inverse Trigonometry Class 12 covers the basic concepts and the properties of the inverse trigonometric functions. Students must thoroughly study the NCERT solutions to understand the concepts, improve their problem-solving skills, and be confident to appear in their examinations. The solution will help students in solving even the most complex problems of the chapter.Β 
Explore here the comprehensive NCERT solutions of the Class 11 and Class 12 for all three subjects - Maths, Physics, and Chemistry. The solutions are given in a step-by-step format.

Table of content
  • Key Concepts of Trigonometric Functions – Class 12 at a Glance
  • Class 12 Maths Ch 2 Inverse Trigonometric Functions – NCERT Solutions PDF
  • Inverse Trigonometric Function Exercise-wise NCERT Solutions
  • Class 12 Math Chapter 2 Inverse Trigonometric Function Exercise 2.1 Solutions
  • NCERT Class 12 Math Chapter 2: Key Topics, Weightage
  • Important Formulas of Inverse Trigonometry Class 12
  • NCERT Solutions for Inverse Trigonometric Functions- FAQs
View More
Maths Ncert Solutions class 12th Logo

Key Concepts of Trigonometric Functions – Class 12 at a Glance

Find below an overview of the Inverse Trigonometric Functions Class 12:
Here is a table showing the domains and ranges of inverse trigonometric functions:

Functions Domain Range
y = sin βˆ’ 1 x [–1, 1] [ - Ο€ 2 , Ο€ 2 ]
y = cos - 1 ( x ) [–1, 1] [0, Ο€]
y = csc - 1 ( x ) R – (–1,1) [ - Ο€ 2 , Ο€ 2 ] - { 0 }
y = sec - 1 ( x ) R – (–1, 1) [ 0 , Ο€ ] - { Ο€ 2 }
y = tan - 1 ( x ) R ( - Ο€ 2 , Ο€ 2 )
y = cot - 1 ( x ) R (0, Ο€)

Get the Class 12 Maths NCERT Solutions here. It will provide all the important topics for concept clarity, chapter-wise weightage information and free PDFs.

Maths Ncert Solutions class 12th Logo

Class 12 Maths Ch 2 Inverse Trigonometric Functions – NCERT Solutions PDF

Shiksha provides the free Inverse Trigonometry Class 12 PDF link below. Students must download it and practice from it to score well in the CBSE Board exams and other competitive exams.

Class 12 Math Chapter 2 Inverse Trigonometric Function Solution: Free PDF Download

Related Links

NCERT Notes for Class 11 & 12 NCERT Class 12 Notes Class 12 Maths Notes PDF for CBSE Exams

Try these practice questions

Q1:

let f(x) be a quadratic polynomial such that f(-2) + f(3) = 0. If one of the roots of f(x) = 0 is -1, then the sum of the roots of f(x) = 0 is equal to:

Q2:

If  then the value of 16Ξ± is equal to

View Full Question

Maths Ncert Solutions class 12th Logo

Inverse Trigonometric Function Exercise-wise NCERT Solutions

Inverse Trigonometric Function is an essential topic for building foundational trigonometric concepts. Chapter 2 Class 12 Math Inverse Trigonometric Function deals with the properties, domains, and ranges of inverse trigonometric functions. The ITF concepts also play a vital role in calculus, Matrices, Determinants, and other important physics and Math concepts and real-world applications. Students can check the exercise-wise Chapter 2 ITF math solutions below;

Maths Ncert Solutions class 12th Logo

Class 12 Math Chapter 2 Inverse Trigonometric Function Exercise 2.1 Solutions

Chapter 2 Inverse Trigonometric Function Exercise 2.1 focuses on problems finding principal values, range, domain, and co-domain. Chapter 2 ITF Exercise 2.1 includes 14 Questions (12 Short Answers, 2 MCQs) primarily based on finding the values of inverse trigonometric functions. Students can check the complete the exercise 2.1 solutions below;

Inverse Trigonometric Function Exercise 2.1 Solutions

Find the principal values of the following:

Q1.Β  s i n βˆ’ 1 ( βˆ’ 1 2 )

A.1. Let sinβˆ’1 Β  ( βˆ’ 1 2 ) Β =y. Then, sin y=-Β  βˆ’ 1 2

We know that the range of principal value branch of sinβˆ’1 is βˆ’ Ο€ 2 ,Β  βˆ’ Ο€ 2

and sinβˆ’1 ( βˆ’ 1 2 ) =βˆ’sinβˆ’1 βˆ’ 1 2 (sin (-x) = -sin x)

=Β  ( βˆ’ Ο€ 6 ) Β = sin y (as sin
Ο€ 6

=Β  1 2 Β )

Principal value of sinβˆ’1 ( βˆ’ 1 2 ) Β isΒ  ( βˆ’ Ο€ 6 )

Β 

Β 

Q&A Icon
Commonly asked questions
Q: Β 

33. cosβˆ’1(cos7Ο€6)is equal to(A)7Ο€6     (B)5Ο€6     (C)Ο€3     (D)Ο€6

A: 

Cos-1 cos 7Ο€6

(M) As 7Ο€6  [0, Ο€] ;principal value branch of cos-1

cos-1 (cos7Ο€6) = cos-1 (cos2xβˆ’7Ο€6)  {? cos  (2Ο€βˆ’ΞΈ)=cosΞΈ}

= cos-1 (sis12Ο€βˆ’7Ο€6)

=cosβˆ’1cos5Ο€65Ο€6∈ [0, Ο€]

5Ο€6

So, option B is correct

Q: Β 

15. tanβˆ’1(xy)βˆ’tanβˆ’1xβˆ’yx=y   is equal to

(A)     π2          (B)     π3        (C)     π4      (D)     3Ο€4

A: 

We know that.

sin 3ΞΈ =3 sin ΞΈ 4sin3ΞΈ (identity).

(E) Let x = sinΞΈ. Then, sin βˆ’1x=ΞΈ . We have,

Sin3 (sin βˆ’1x) = 3xβˆ’4x3

3sin βˆ’1x =sin-1 (3xβˆ’4x3)

Hence proved.

Q: Β 

42. tanβˆ’16316=sinβˆ’1513+cosβˆ’135

A: 

Let sinβˆ’1513=x and cosβˆ’135=y.

Then, sinx=513and cos=35

So, tanx=sinxcosxandtany=sinycosy

=5/312/1 =4/53/5.

=512 =43.

Using tan(x+y)=lanx+lany1βˆ’tanxtany.

tan (sinβˆ’1513+cosβˆ’135)=512+431βˆ’512Γ—43= 5Γ—3+4Γ—1212Γ—312Γ—3βˆ’5Γ—412Γ—3

=15+4836βˆ’20=6316

β‡’sinβˆ’1513+cosβˆ’135=tanβˆ’16316.

Hence proved.

Q: Β 

44. Kindly Consider the following

A: 

Kindly go through the solution

 

Q: Β 

31. tanβˆ’1(tan3Ο€4)

A: 

tanβˆ’1(tan3Ο€4).

(M). As 3Ο€4βˆ‰(βˆ’Ο€2,Ο€2); principal value branch of tan -1we can write,

tanβˆ’1(tan3Ο€4)=tanβˆ’1tan4Ο€βˆ’Ο€4 =tanβˆ’1(tan4Ο€4βˆ’Ο€4)

=tanβˆ’1(tanΟ€βˆ’Ο€4)

=tanβˆ’1(βˆ’tanΟ€4){?tanis(βˆ’)weinIβˆ’1 quadent }

=βˆ’tanβˆ’1(tan14) {?tanβˆ’1(βˆ’x)=βˆ’tanβˆ’1x}

βˆ’Ο€4

Q: Β 

38. Kindly Consider the following

A: 

Kindly go through the solution

 

Q: Β 

Solve the following equations:

48. 2tanβˆ’1(cos x)=tanβˆ’1(2 cosec x)

A: 

Given,

(M)  2tanβˆ’1(cosx)=tanβˆ’1(2cosecx)

β‡’tanβˆ’12cosx1βˆ’cos2x=tanβˆ’12sinx {using.tanβˆ’12x=2x1βˆ’x2}

β‡’2cosxsin2x=2sinx {?1βˆ’cos2x=sin2x ⇒1=sin2x+cos2x}

β‡’cosxsinx=1

⇒ cotx=cotx4

β‡’x=Ο€4.

Q: Β 

11. tanβˆ’1(1)+cosβˆ’1β€‰β€‰β€‰βˆ’12 +sinβˆ’1β€‰β€‰β€‰βˆ’12

A: 

tanβˆ’1 (1) + cosβˆ’1 (12) +  sin βˆ’1 (βˆ’12)

Q: Β 

39. 2sinβˆ’1817+sinβˆ’135=tanβˆ’17736

A: 

Let sinβˆ’1817=x sinβˆ’135=y.

(N. then, sinx=817siny=35.

So, tanx=sinxcosx and tany=sinycosy

=8/1715/17=3/44/5

=815=34

Using. β€‰tan(x+y)=tanx+tany1βˆ’tanxtany

tan(sinβˆ’1817+sinβˆ’135)=815+341βˆ’815Γ—34

tan (sinβˆ’1817+sinβˆ’135=8Γ—4+3Γ—1515Γ—415Γ—4βˆ’8Γ—315Γ—4=32+4560βˆ’24β‡’sin

sin-1 817+sinβˆ’135= tan-1 7736

Hence proved.

Q: Β 

46. Kindly Consider the following

A: 

Kindly go through the solution

 

Q: Β 

17. tanβˆ’1211 + tanβˆ’1724=tanβˆ’112

A: 

L.H.S = tan -1211 + tan -1 724

Using tan -1x+ tan -1y= tan -1 x+y1βˆ’xy , xy<1

L.H.S =tan -1 211+7241βˆ’211Γ—724 = tan -1 2Γ—24+7Γ—211Γ—2411Γ—24βˆ’7Γ—211Γ—24

tan -1 48+14264βˆ’14 = tan -1 125250 = tan -1 12 = R.H.S

Q: Β 

20. Kindly Consider the following

 

A: 

Kindly go through the solution

 

Q: Β 

52. tanβˆ’1(xy)βˆ’tanβˆ’1xβˆ’yx=y   is equal to(A)     π2          (B)     π3        (C)     π4      (D)     3Ο€4

A: 

tanβˆ’1xyβˆ’tanβˆ’1xβˆ’yx+y {βˆ’tanβˆ’1xβˆ’tanβˆ’1y=xβˆ’y1+xy}

=tanβˆ’1{(xy)βˆ’(xβˆ’yx+y)1+xyΒ·(xβˆ’yx+y)}

=tanβˆ’1{x(x+y)βˆ’(xβˆ’y)Β·yy(x+y)y(x+y)+x(xβˆ’y)y(x+y)}

=tanβˆ’1(x2+xyβˆ’xy+y2xy+y2βˆ’x2βˆ’xy)

=tanβˆ’1x2+y2x2+y2

=tanβˆ’11

=tanβˆ’1(tanΟ€4)

=Ο€4.

Option C is correct.

Q: Β 

28. Ifsin (sin115+cos1x)=1,then find the value of x

A: 

sin(sinβˆ’115+cosβˆ’1x)=1.

(E) β‡’sin(sinβˆ’115+cosβˆ’1x)=sinΟ€2 {?sinΟ€2=1}

β‡’sinβˆ’115+cosβˆ’1x=sinβˆ’1(sinΟ€2)=Ο€2

β‡’cosβˆ’1x=Ο€2βˆ’sinβˆ’115

β‡’cosβˆ’1x=cosβˆ’115 {?Ο€2=sinβˆ’1x+cosβˆ’1x}

=Ο€2βˆ’sinβˆ’115=cosβˆ’115 {β‡’Ο€2βˆ’sinβˆ’1x=cosβˆ’1xx=15β‡’Ο€2βˆ’sinβˆ’115=cosβˆ’115.

= x = 15.

Q: Β 

Find the values of each of the following:

25. tanβˆ’1[2cos(2sin112)]

A: 

tanβˆ’1 [2cos (2sinβˆ’112)]=tanβˆ’1 [2cos (2sinβˆ’1sinΟ€6)]

(E) =tanβˆ’1 [2cos (2Γ—Ο€6)]

=tanβˆ’1 [2cosΟ€3]

=tanβˆ’12Γ—12

=tanβˆ’11

=tanβˆ’1 (tanΟ€4)

=Ο€4

Q: Β 

36. cosβˆ’1(cos13Ο€6)

A: 

Cos-1 (cos13Ο€6.) = cosβˆ’1  (cos12Ο€+Ο€6)

cosβˆ’1  (cos12Ο€6+Ο€6)

cosβˆ’1  [cosβˆ’1 (2Ο€+Ο€6)]  {Øcor2Ο€+=ØcosØ}

=cosβˆ’1 (cosΟ€6)

=Ο€6 ∈ [0, x]

Q: Β 

24. Kindly Consider the following

A: 

Kindly go through the solution

 

Q: Β 

45. Kindly Consider the following

A: 

Kindly go through the solution

 

Q: Β 

27. tan12[sinβˆ’12x1+x2+cosβˆ’11βˆ’y21+y2],|x|<1,y>0 and  xy<1

A: 

 tan12[sinβˆ’12x1+x2+cosβˆ’11βˆ’y21+y2],|x|<1,y>

(M) Let x = tanØ . then tan-1x= 0 and y = tan Ο‰ then tan-1y = Ο‰. we have,

tan 12 {sinβˆ’12tanΞΈ1+tan2ΞΈ+ 1βˆ’tan2Ο‰1+tan2Ο‰}

=tan12{sinβˆ’1(sin2ΞΈ)+cosβˆ’1(cos2Ο‰)} {∴sin2 θ2tanΞΈ1+tan2ΞΈcos2ΞΈ=1βˆ’tan2ΞΈ1+tan2θ tan x+y=tanx+tany1βˆ’tanxtany}

=tan12{2ΞΈ+2Ο‰}=tan(ΞΈ+Ο‰)

=tanΞΈ+tanΟ‰1βˆ’tanΞΈtanΟ‰

x=y1βˆ’xy

Q: Β 

49. tanβˆ’11βˆ’x1+x=12tanβˆ’1x,(x>0)

A: 

Given, (M)

tanβˆ’1(1βˆ’x1+x)=12tanβˆ’1x

x=tanΞΈ.Then ΞΈ=tanβˆ’1x Bo we have,

tanβˆ’1(1βˆ’tanΞΈ1+tanΞΈ)=12tanβˆ’1(tanΞΈ)

β‡’tanβˆ’1(tanΟ€4βˆ’tanΞΈ1+tanx4tanΞΈ)=12θ {?tanΟ€4=1}.

β‡’tanβˆ’1{tan(x4βˆ’ΞΈ)}=ΞΈ2{?tanxβˆ’tany1+tanxtan=tan(xβˆ’y)

β‡’Ο€4βˆ’ΞΈ=ΞΈ2

β‡’ΞΈ2+ΞΈ=x4

β‡’3ΞΈ2=Ο€4

β‡’ΞΈ=Ο€4Γ—23=Ο€6

Q: Β 

23. Kindly Consider the following

A: 

Kindly go through the solution

 

Q: Β 

50. Kindly Consider the following

A: 

Kindly go through the solution

 

Q: Β 

1. sinβˆ’1(βˆ’12)

A: 

Let sinβˆ’1   (βˆ’12) =y. Then, sin y=- βˆ’12

We know that the range of principal value branch of sinβˆ’1 is βˆ’Ο€2,  βˆ’Ο€2

and sinβˆ’1 (βˆ’12) =βˆ’sinβˆ’1βˆ’12 (sin (-x) = -sin x)

(βˆ’Ο€6) = sin y (as sin
Ο€6
12 )

Principal value of sinβˆ’1 (βˆ’12) is  (βˆ’Ο€6)

Q: Β 

12. cosβˆ’112   + 2  sinβˆ’1   12

A: 

cosβˆ’112 + 2Sinβˆ’1 12 = cosβˆ’1 (cosΟ€3) + 2Γ—Sinβˆ’1 (sinΟ€6)

Ο€3+2Γ—Ο€6

Ο€3+Ο€3

2Ο€3

Q: Β 

13. If sinβˆ’1  x=y,  then

(A)   0 ≀y≀π                       (B)β€‰β€‰β€‰β€‰βˆ’Ο€2 ≀y≀π2(C)   0 <y<π                       (D)β€‰β€‰β€‰β€‰βˆ’Ο€2 <y<Ο€2

A: 

Given, Sinβˆ’1x=y.

(E) We know that the principal value branch of Sinβˆ’1 is

[βˆ’Ο€2, Ο€2] Hence,  βˆ’Ο€2 β‰€ y ≀ Ο€2

Option B is correct.

Q: Β 

5. cosβˆ’1(βˆ’12)

A: 

Let cos -1 (βˆ’12) =y Then cos y = βˆ’12 = βˆ’ cos
Ο€3
 cos  (Ο€βˆ’x3)

= cos 3Ο€βˆ’Ο€3

= cos 2Ο€3

  (E) We know that the range of principal value

branch of cosβˆ’1 is [0, Ο€] and cos 2x3 = βˆ’12

Principal value of cosβˆ’1  (βˆ’12) is 2x3

Q: Β 

26. cot(tanβˆ’1a+cotβˆ’1a)

A: 

cot (tanβˆ’1a+cotβˆ’1a)=cotΟ€ 2 {? tanβˆ’1x+cotβˆ’1x=Ο€2}

(E) =0

Q: Β 

29. If tanβˆ’1xβˆ’1xβˆ’2+tanβˆ’1x+1x+2=Ο€4,then find the value of x

A: 

tanβˆ’1xβˆ’1xβˆ’2+tanβˆ’1x+1x+2=Ο€4

(E)Using tanβˆ’1x+tanβˆ’1y=tanβˆ’1x+y1βˆ’xy.

β‡’tanβˆ’1(xβˆ’1)(xβˆ’2)+(x+1x+2)1βˆ’(xβˆ’1)(xβˆ’2)Γ—(x+1x+2)=Ο€4.

β‡’(xβˆ’1)(x+2)βˆ’1(x+1)(xβˆ’2)(xβˆ’2)(x+2)(xβˆ’2)(x+2)βˆ’(xβˆ’1)(x+1)(xβˆ’2)(x+2)=tanΟ€4

β‡’(xβˆ’1)(x+2)+(x+1)(xβˆ’2)(xβˆ’2)(x+2)βˆ’(xβˆ’1)(x+1)=1.

β‡’x2+2xβˆ’xβˆ’2+x2βˆ’2x+xβˆ’2(x2βˆ’4)βˆ’(x2βˆ’12)=1. {?(aβˆ’b)(a+b)=a2βˆ’b2}

β‡’2x2βˆ’4x2βˆ’4βˆ’x2+ 1=1β‡’2x2βˆ’4βˆ’3=1β‡’2x2βˆ’4=βˆ’3

Q: Β 

Find the values of each of the expressions in Exercises 16 to 18.

30. sinβˆ’1(sin2Ο€3)

A: 

sinβˆ’1 (sin2Ο€3).

(M) As 2Ο€3βˆ‰ [βˆ’Ο€2, Ο€2] principal value branch of sin-1 we can write,

sinβˆ’1 (sin3Ο€βˆ’Ο€3)=sinβˆ’1 (sin3Ο€3βˆ’Ο€3)=sinβˆ’1 (sinΟ€βˆ’Ο€3)

=sinβˆ’1 (sinΟ€3) {? sinis (+)ve in ind quadrat
}

=Ο€3.

Q: Β 

16. 3cosβˆ’1  x =cosβˆ’1  (4x3βˆ’3x),  x∈[12,1]

A: 

We know that,

cos3ΞΈ= 4cos3ΞΈ - 3cosΞΈ

Letx = cosΞΈ Then ΞΈ = cos-1x. We have,

Cos3 (cos-1x) = 4x3-3x

3cos-1x = cos-1 (4x3- 3x)

Hence Proved

Q: Β 

18. 2tanβˆ’112 + tanβˆ’117=tanβˆ’13117

A: 

L.H.S= 2 tan -1 12 + tan -1 17

(E) Using2 tan -1x= tan -1 2a1βˆ’x2 we can write.

L.H.S = tan -1 2Γ—121βˆ’(12)2 + tan -1 17

= tan -1 11βˆ’14 + tan -117

= tan -1 14βˆ’14 + tan -117 = tan -1 43 + tan -1 17

= tan -143+171βˆ’43Γ—17 { Ø tan -1 x + tan -1 y = tan - 1 x+y1βˆ’xy }

= tan -1 7Γ—4+1Γ—33Γ—73Γ—7βˆ’4Γ—13Γ—7

= tan -1 28+321βˆ’4 = tan -1 3117 = R H S

Q: Β 

34. sinβˆ’1(Ο€3βˆ’sinβˆ’1(βˆ’12))is equal to(A)12     (B)13     (C)14     (D) 1

A: 

= sin  [Ο€3+sinβˆ’1 (sinΟ€6)]

= sin  [Ο€3+Ο€6] = sin  [2Ο€+Ο€6] = sin  (3Ο€6)

= sin Ο€2=1 

Q: Β 

14. tanβˆ’1 √3βˆ’secβˆ’1(βˆ’2)  is  equal  to

(A)  π       (B)βˆ’Ο€3         (C)  π3     (D)      2Ο€3

A: 

=tanβˆ’1 (tanΟ€3) βˆ’ Ο€ + secβˆ’1 (secΟ€3)

Ο€3βˆ’Ο€+Ο€3

Ο€βˆ’3Ο€+Ο€3

βˆ’Ο€3.

Option B is correct.

Q: Β 

22. tanβˆ’1(cos  xβˆ’sin  xcos  x+sin  x),0βˆ’Ο€4<x<3Ο€4

A: 

Given tan -1 cosxβˆ’sinxcosx+sinx , βˆ’Ο€4, x< 3x4

(M) Dividing numerator & denominator cos x we get,

tan -1 cosxβˆ’sinxcosxcosx+sinxcosx=tanβˆ’1cosxcosxβˆ’sinxcosxcosxcosx+sinxcosx=tanβˆ’11βˆ’tanx1+tanx.

We know that tanΟ€4=1 = 1 so,

=tanβˆ’1tanΟ€4βˆ’tanx1+tanΟ€4tanx=tanβˆ’1[tan(Ο€4βˆ’x)] {?tan(xβˆ’y)=tanxβˆ’tany1+tanxΒ·tany}

=Ο€4βˆ’x .

Q: Β 

32. tan(sinβˆ’135+cotβˆ’132)

A: 

tan(sinβˆ’135+cotβˆ’132)

(M) Let sinβˆ’135=x and cot-1 32, = y .

Then sinx=35coty=32

Hence, tan x = sinxcosx = 3545 = 34

tan(sinβˆ’135+cotβˆ’132)=tan (x+y)

=tanx+tany1βˆ’tanxtany .

3Γ—3+2Γ—44Γ—34Γ—3βˆ’3Γ—24Γ—3

4Γ—3βˆ’3Γ—24Γ—3

9+812βˆ’6=176

Q: Β 

37. tanβˆ’1(tan7Ο€6)

A: 

tanβˆ’1 (tan7Ο€6)=tan1 (tan6Ο€+Ο€6)

=tanβˆ’1 (tan6Ο€6+Ο€6)

=tanβˆ’1 (tanΟ€+Ο€6)

=tanβˆ’1 (tanΟ€6) { Ø tan (Ο€+ Ø ) = tan Ø as tan b (+) we in 3rd quadrant)}

=Ο€6 ∈ (βˆ’Ο€2, Ο€2)

Q: Β 

40. cosβˆ’145+cosβˆ’11213=cosβˆ’13365

A: 

cosβˆ’145+cosβˆ’11213=cosβˆ’13365Β°.

Let cos-1 45 and cos-1 1213 = y.

Then, cosx=45   and cosy=1213.

Using cos (x+y)=cosxcosyβˆ’sinxsiny.

β‡’cos[cosβˆ’145+cosβˆ’11213]=45  1213βˆ’35Γ—513

β‡’cos[cosβˆ’145+cotβˆ’11213]=48βˆ’1565=3365

β‡’cosβˆ’145+cosβˆ’11213=cosβˆ’13365.?

Q: Β 

41. cosβˆ’11213+sinβˆ’135=sinβˆ’15665

A: 

cosβˆ’11213+sinβˆ’135=sinβˆ’15665

Let cosβˆ’11213=xandsinβ€‰β€‰βˆ’135=y.

Thin, cosx=1213  and sin y=35

Using sin(x+y)=sinxcosy+cosxsiny.

sin[cosβˆ’11213+sinβˆ’135]=513Γ—45+1213Γ—35=20+3665=5665.

cosβˆ’11213+sinβˆ’135=sinβˆ’15665.

Q: Β 

43. tanβˆ’115+tanβˆ’117+tanβˆ’113+tanβˆ’118=Ο€4

A: 

LH.S =(tanβˆ’115+tanβˆ’117)+(tanβˆ’113+tanβˆ’118)

=tanβˆ’1[15+171βˆ’15Β·17]+tanβˆ’1[13+181βˆ’13,18]{?usingtanβˆ’1x+tanβˆ’1yx+y1βˆ’xy,xy<1}

tanβˆ’1[7+57Γ—57Γ—5βˆ’17Γ—5]+tanβˆ’1[8+35Γ—38Γ—3βˆ’18Γ—3]

=tanβˆ’1(1235βˆ’1)+tanβˆ’1(1124βˆ’1)=tanβˆ’11234+tanβˆ’11123

=tanβˆ’1617+tanβˆ’11123

=tanβˆ’1(617+1231βˆ’617Γ—323)=tanβˆ’1(6Γ—23+11Γ—1117Γ—23?7Γ—23βˆ’6Γ—1117Γ—23)

=tanβˆ’1138+187391βˆ’66=tanβˆ’1325325=tanβˆ’11

=tanβˆ’1(tan14)

=x4=R.H.S

Q: Β 

51. sinβˆ’1(1βˆ’x)βˆ’2sinβˆ’1x=Ο€2,then x is equal to(A)  0,12          (B)  1,12        (C)  0       (D)  12

A: 

sinβˆ’1(1βˆ’x)βˆ’2sinβˆ’1x=Ο€2  →(1)         

(M) Let x=sinΞΈ.Then,ΞΈ=sinβˆ’1x.

Putting this in qn(1) we get

sinβˆ’1(1βˆ’x)βˆ’2Β·ΞΈ=Ο€2

β‡’sinβˆ’1(1βˆ’x)=Ο€2+2ΞΈ

⇒ 1βˆ’x=sin(Ο€2+2ΞΈ){sin(Ο€2+x)=cosx}

⇒ 1βˆ’x=cos2ΞΈ

⇒ 1βˆ’x=1βˆ’2sin2ΞΈΒ·{cos2x=1βˆ’2sin2x}

β‡’1βˆ’x=1βˆ’2x2Β·{sinΞΈ=x}

⇒ 2x2βˆ’x=0 ⇒x(2xβˆ’1)=0

β‡’so, x=0 x 2xβˆ’1=0 x 2x=1β†’x=12.

Putting x=0 in qn (1) .

L.H.S =sinβˆ’1(1βˆ’0)βˆ’2sinβˆ’10=sinβˆ’1sinx2βˆ’0=Ο€2=R.H.S.

x=12q(1)

L.H.S=sinβˆ’1(1βˆ’12)βˆ’2sinβˆ’112=sinβˆ’1(12)βˆ’2sinβˆ’112

=sinβˆ’112βˆ’2sinβˆ’112

=βˆ’sinβˆ’112=βˆ’sinβˆ’1(sinΟ€6)=βˆ’Ο€6 β‰ 

So, =0.

Option (c) is correct.

Q: Β 

21. Kindly Consider the following

A: 

Kindly go through the solution

 

Q: Β 

35. Kindly Consider the following 

A: 

Kindly go through the solution

 

Q: Β 

47. Kindly Consider the following

A: 

Kindly go through the solution

 

Maths Ncert Solutions class 12th Logo

NCERT Class 12 Math Chapter 2: Key Topics, Weightage

In the Inverse Trigonometry Class 12, students should practice the graphs, properties, and domain/range of inverse trigonometric functions. See below the topics covered in this chapter:

Exercise Topics Covered
2.1 Introduction
2.2 Basic Concepts
2.3 Properties of Inverse Trigonometric Functions

Inverse Trigonometric Functions Class 12 Weightage in JEE Mains

ExamΒ  Weightage
JEE Main 2% to 3%
Maths Ncert Solutions class 12th Logo

Important Formulas of Inverse Trigonometry Class 12

Inverse Trigonometric Function Important Formulae for CBSE and Competitive Exams

Basic Properties

  • sin ⁑ βˆ’ 1 ( βˆ’ x ) = βˆ’ sin ⁑ βˆ’ 1 ( x ) , x ∈ [ βˆ’ 1 , 1 ] \sin^{-1}(-x) = -\sin^{-1}(x), \quad x \in [-1, 1]
  • cos ⁑ βˆ’ 1 ( βˆ’ x ) = Ο€ βˆ’ cos ⁑ βˆ’ 1 ( x ) , x ∈ [ βˆ’ 1 , 1 ] \cos^{-1}(-x) = \pi - \cos^{-1}(x), \quad x \in [-1, 1]
  • tan ⁑ βˆ’ 1 ( βˆ’ x ) = βˆ’ tan ⁑ βˆ’ 1 ( x ) , x ∈ R \tan^{-1}(-x) = -\tan^{-1}(x), \quad x \in \mathbb{R}
  • cot ⁑ βˆ’ 1 ( βˆ’ x ) = Ο€ βˆ’ cot ⁑ βˆ’ 1 ( x ) , x ∈ R \cot^{-1}(-x) = \pi - \cot^{-1}(x), \quad x \in \mathbb{R}
  • sec ⁑ βˆ’ 1 ( βˆ’ x ) = Ο€ βˆ’ sec ⁑ βˆ’ 1 ( x ) , ∣ x ∣ β‰₯ 1 \sec^{-1}(-x) = \pi - \sec^{-1}(x), \quad |x| \geq 1
  • csc ⁑ βˆ’ 1 ( βˆ’ x ) = βˆ’ csc ⁑ βˆ’ 1 ( x ) , ∣ x ∣ β‰₯ 1 \csc^{-1}(-x) = -\csc^{-1}(x), \quad |x| \geq 1

Domain and Range of ITF

Function Domain Range
sin ⁑ βˆ’ 1 x \sin^{-1}x
[ βˆ’ Ο€ 2 , Ο€ 2 ] \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right]
cos ⁑ βˆ’ 1 x \cos^{-1}x
tan ⁑ βˆ’ 1 x \tan^{-1}x
( βˆ’ Ο€ 2 , Ο€ 2 ) \left( -\frac{\pi}{2}, \frac{\pi}{2} \right)
cot ⁑ βˆ’ 1 x \cot^{-1}x
( 0 , Ο€ )
sec ⁑ βˆ’ 1 x \sec^{-1}x
[ 0 , Ο€ ] βˆ– { Ο€ 2 }
cosec ⁑ βˆ’ 1 x \csc^{-1}x
( βˆ’ ∞ , βˆ’ 1 ] βˆͺ [ 1 , ∞ ) (-\infty, -1] \cup [1, \infty)
[ βˆ’ Ο€ 2 , Ο€ 2 ] βˆ– { 0 } \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] \setminus \{0\}

Sum and Difference Formulas

  • sin ⁑ βˆ’ 1 x + cos ⁑ βˆ’ 1 x = Ο€ 2 , x ∈ [ βˆ’ 1 , 1 ] \sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}, \quad x \in [-1, 1]
  • tan ⁑ βˆ’ 1 x + cot ⁑ βˆ’ 1 x = Ο€ 2 , x ∈ R \tan^{-1}x + \cot^{-1}x = \frac{\pi}{2}, \quad x \in \mathbb{R}
  • sec ⁑ βˆ’ 1 x + csc ⁑ βˆ’ 1 x = Ο€ , ∣ x ∣ β‰₯ 1 \sec^{-1}x + \csc^{-1}x = \pi, \quad |x| \geq 1
Maths Ncert Solutions class 12th Logo

NCERT Solutions for Inverse Trigonometric Functions- FAQs

Students can access few of the frequently asked questions below;

qna

Maths Ncert Solutions class 12th Exam

Student Forum

chatAnything you would want to ask experts?
Write here...