Class 12 Maths Chapter 2 Inverse Trigonometric Functions NCERT Solutions

NCERT Maths 12th 2023 ( Maths Ncert Solutions class 12th )

Pallavi Pathak
Updated on Jul 31, 2025 12:16 IST

By Pallavi Pathak, Assistant Manager Content

Inverse Trigonometric Functions in Class 12 is important for students preparing for the CBSE Board exams and other entrance tests, such as JEE Mains. The concepts covered in the Inverse Trigonometric Functions Class 12 chapter are also used in science and engineering. The inverse trigonometric functions are also important in calculus. 
Inverse Trigonometry Class 12 covers the basic concepts and the properties of the inverse trigonometric functions. Students must thoroughly study the NCERT solutions to understand the concepts, improve their problem-solving skills, and be confident to appear in their examinations. The solution will help students in solving even the most complex problems of the chapter. 
Explore here the comprehensive NCERT solutions of the Class 11 and Class 12 for all three subjects - Maths, Physics, and Chemistry. The solutions are given in a step-by-step format.

Table of contents
  • Key Concepts of Trigonometric Functions – Class 12 at a Glance
  • Class 12 Maths Ch 2 Inverse Trigonometric Functions – NCERT Solutions PDF
  • Inverse Trigonometric Function Exercise-wise NCERT Solutions
  • Class 12 Math Chapter 2 Inverse Trigonometric Function Exercise 2.1 Solutions
  • NCERT Class 12 Math Chapter 2: Key Topics, Weightage
  • Important Formulas of Inverse Trigonometry Class 12
  • NCERT Solutions for Inverse Trigonometric Functions- FAQs
View More
Maths Ncert Solutions class 12th Logo

Key Concepts of Trigonometric Functions – Class 12 at a Glance

Find below an overview of the Inverse Trigonometric Functions Class 12:
Here is a table showing the domains and ranges of inverse trigonometric functions:

Functions Domain Range
y = sin 1 x [–1, 1] [ - π 2 , π 2 ]
y = cos - 1 ( x ) [–1, 1] [0, π]
y = csc - 1 ( x ) R – (–1,1) [ - π 2 , π 2 ] - { 0 }
y = sec - 1 ( x ) R – (–1, 1) [ 0 , π ] - { π 2 }
y = tan - 1 ( x ) R ( - π 2 , π 2 )
y = cot - 1 ( x ) R (0, π)

Get the Class 12 Maths NCERT Solutions here. It will provide all the important topics for concept clarity, chapter-wise weightage information and free PDFs.

Maths Ncert Solutions class 12th Logo

Class 12 Maths Ch 2 Inverse Trigonometric Functions – NCERT Solutions PDF

Shiksha provides the free Inverse Trigonometry Class 12 PDF link below. Students must download it and practice from it to score well in the CBSE Board exams and other competitive exams.

Class 12 Math Chapter 2 Inverse Trigonometric Function Solution: Free PDF Download

Related Links

NCERT Notes for Class 11 & 12 NCERT Class 12 Notes Class 12 Maths Notes PDF for CBSE Exams

Try these practice questions

Q1:

let f(x) be a quadratic polynomial such that f(-2) + f(3) = 0. If one of the roots of f(x) = 0 is -1, then the sum of the roots of f(x) = 0 is equal to:

Q2:

If  then the value of 16α is equal to

View Full Question

Maths Ncert Solutions class 12th Logo

Inverse Trigonometric Function Exercise-wise NCERT Solutions

Inverse Trigonometric Function is an essential topic for building foundational trigonometric concepts. Chapter 2 Class 12 Math Inverse Trigonometric Function deals with the properties, domains, and ranges of inverse trigonometric functions. The ITF concepts also play a vital role in calculus, Matrices, Determinants, and other important physics and Math concepts and real-world applications. Students can check the exercise-wise Chapter 2 ITF math solutions below;

Maths Ncert Solutions class 12th Logo

Class 12 Math Chapter 2 Inverse Trigonometric Function Exercise 2.1 Solutions

Chapter 2 Inverse Trigonometric Function Exercise 2.1 focuses on problems finding principal values, range, domain, and co-domain. Chapter 2 ITF Exercise 2.1 includes 14 Questions (12 Short Answers, 2 MCQs) primarily based on finding the values of inverse trigonometric functions. Students can check the complete the exercise 2.1 solutions below;

Inverse Trigonometric Function Exercise 2.1 Solutions

Find the principal values of the following:

Q1.  s i n 1 ( 1 2 )

A.1. Let sin−1   ( 1 2 )  =y. Then, sin y=-  1 2

We know that the range of principal value branch of sin−1 is π 2 π 2

and sin−1 ( 1 2 ) =−sin−1 1 2 (sin (-x) = -sin x)

( π 6 )  = sin y (as sin
π 6

1 2  )

Principal value of sin−1 ( 1 2 )  is  ( π 6 )

 

 

Q&A Icon
Commonly asked questions
Q:  

33. cos1(cos7π6)isequalto(A)7π6(B)5π6(C)π3(D)π6

A: 

Cos-1 cos 7π6

(M) As 7π6  [0, π] ;principal value branch of cos-1

cos-1 (cos7π6) = cos-1 (cos2x7π6)  {? cos (2πθ)=cosθ}

= cos-1 (sis12π7π6)

=cos1cos5π65π6 [0, π]

5π6

So, option B is correct

Q:  

15. tan1(xy)tan1xyx=yisequalto

(A)π2(B)π3(C)π4(D)3π4

A: 

We know that.

sin 3θ =3 sin θ 4sin3θ (identity).

(E) Let x = sinθ. Then, sin −1x=θ . We have,

Sin3 (sin −1x) = 3x−4x3

3sin −1x =sin-1 (3x−4x3)

Hence proved.

Q:  

42. tan16316=sin1513+cos135

A: 

Let sin1513=x and cos135=y.

Then, sinx=513andcos=35

So, tanx=sinxcosxandtany=sinycosy

=5/312/1=4/53/5.

=512=43.

Using tan(x+y)=lanx+lany1tanxtany.

tan (sin1513+cos135)=512+431512×43= 5×3+4×1212×312×35×412×3

=15+483620=6316

sin1513+cos135=tan16316.

Hence proved.

Q:  

44. Kindly Consider the following

A: 

Kindly go through the solution

 

Q:  

31. tan1(tan3π4)

A: 

tan1(tan3π4).

(M). As 3π4(π2,π2); principal value branch of tan -1we can write,

tan1(tan3π4)=tan1tan4ππ4 =tan1(tan4π4π4)

=tan1(tanππ4)

=tan1(tanπ4){?tanis()weinI1 quadent }

=tan1(tan14){?tan1(x)=tan1x}

π4

Q:  

38. Kindly Consider the following

A: 

Kindly go through the solution

 

Q:  

Solve the following equations:

48. 2tan1(cosx)=tan1(2cosecx)

A: 

Given,

(M)2tan1(cosx)=tan1(2cosecx)

tan12cosx1cos2x=tan12sinx {using.tan12x=2x1x2}

2cosxsin2x=2sinx {?1cos2x=sin2x1=sin2x+cos2x}

cosxsinx=1

cotx=cotx4

x=π4.

Q:  

11. tan1(1)+cos112+sin112

A: 

tan−1 (1) + cos−1 (12) +  sin −1 (12)

Q:  

39. 2sin1817+sin135=tan17736

A: 

Let sin1817=xsin135=y.

(N. then, sinx=817siny=35.

So, tanx=sinxcosx and tany=sinycosy

=8/1715/17=3/44/5

=815=34

Using.  tan(x+y)=tanx+tany1tanxtany

tan(sin1817+sin135)=815+341815×34

tan (sin1817+sin135=8×4+3×1515×415×48×315×4=32+456024sin

sin-1 817+sin135= tan-1 7736

Hence proved.

Q:  

46. Kindly Consider the following

A: 

Kindly go through the solution

 

Q:  

17. tan1211+tan1724=tan112

A: 

L.H.S = tan -1211 + tan -1 724

Using tan -1x+ tan -1y= tan -1 x+y1xy , xy<1

L.H.S =tan -1 211+7241211×724 = tan -1 2×24+7×211×2411×247×211×24

tan -1 48+1426414 = tan -1 125250 = tan -1 12 = R.H.S

Q:  

20. Kindly Consider the following

 

A: 

Kindly go through the solution

 

Q:  

52. tan1(xy)tan1xyx=yisequalto(A)π2(B)π3(C)π4(D)3π4

A: 

tan1xytan1xyx+y{tan1xtan1y=xy1+xy}

=tan1{(xy)(xyx+y)1+xy·(xyx+y)}

=tan1{x(x+y)(xy)·yy(x+y)y(x+y)+x(xy)y(x+y)}

=tan1(x2+xyxy+y2xy+y2x2xy)

=tan1x2+y2x2+y2

=tan11

=tan1(tanπ4)

=π4.

Option C is correct.

Q:  

28. Ifsin(sin115+cos1x)=1,thenfindthevalueofx

A: 

sin(sin115+cos1x)=1.

(E) sin(sin115+cos1x)=sinπ2{?sinπ2=1}

sin115+cos1x=sin1(sinπ2)=π2

cos1x=π2sin115

cos1x=cos115 {?π2=sin1x+cos1x}

=π2sin115=cos115 {π2sin1x=cos1xx=15π2sin115=cos115.

= x = 15.

Q:  

Find the values of each of the following:

25. tan1[2cos(2sin112)]

A: 

tan1 [2cos (2sin112)]=tan1 [2cos (2sin1sinπ6)]

(E) =tan1 [2cos (2×π6)]

=tan1 [2cosπ3]

=tan12×12

=tan11

=tan1 (tanπ4)

=π4

Q:  

36. cos1(cos13π6)

A: 

Cos-1 (cos13π6.) = cos1  (cos12π+π6)

cos1  (cos12π6+π6)

cos1  [cos1 (2π+π6)]  {Øcor2π+=ØcosØ}

=cos1 (cosπ6)

=π6 ∈ [0, x]

Q:  

24. Kindly Consider the following

A: 

Kindly go through the solution

 

Q:  

45. Kindly Consider the following

A: 

Kindly go through the solution

 

Q:  

27. tan12[sin12x1+x2+cos11y21+y2],|x|<1,y>0andxy<1

A: 

 tan12[sin12x1+x2+cos11y21+y2],|x|<1,y>

(M) Let x = tanØ . then tan-1x= 0 and y = tan ω then tan-1y = ω. we have,

tan 12 {sin−12tanθ1+tan2θ+1tan2ω1+tan2ω}

=tan12{sin1(sin2θ)+cos1(cos2ω)} {sin2θ2tanθ1+tan2θcos2θ=1tan2θ1+tan2θtanx+y=tanx+tany1tanxtany}

=tan12{2θ+2ω}=tan(θ+ω)

=tanθ+tanω1tanθtanω

x=y1xy

Q:  

49. tan11x1+x=12tan1x,(x>0)

A: 

Given, (M)

tan1(1x1+x)=12tan1x

x=tanθ.Then θ=tan1x Bo we have,

tan1(1tanθ1+tanθ)=12tan1(tanθ)

tan1(tanπ4tanθ1+tanx4tanθ)=12θ{?tanπ4=1}.

tan1{tan(x4θ)}=θ2{?tanxtany1+tanxtan=tan(xy)

π4θ=θ2

θ2+θ=x4

3θ2=π4

θ=π4×23=π6

Q:  

23. Kindly Consider the following

A: 

Kindly go through the solution

 

Q:  

50. Kindly Consider the following

A: 

Kindly go through the solution

 

Q:  

1. sin1(12)

A: 

Let sin−1   (12) =y. Then, sin y=- 12

We know that the range of principal value branch of sin−1 is π2,  π2

and sin−1 (12) =−sin−112 (sin (-x) = -sin x)

(π6) = sin y (as sin
π6
12 )

Principal value of sin−1 (12) is  (π6)

Q:  

12. cos112+2sin112

A: 

cos−112 + 2Sin−1 12 = cos−1 (cosπ3) + 2×Sin−1 (sinπ6)

π3+2×π6

π3+π3

2π3

Q:  

13. Ifsin1x=y,then

(A)0yπ(B)π2yπ2(C)0<y<π(D)π2<y<π2

A: 

Given, Sin−1x=y.

(E) We know that the principal value branch of Sin−1 is

[π2, π2] Hence,  π2 ≤ y ≤ π2

Option B is correct.

Q:  

5. cos1(12)

A: 

Let cos -1 (12) =y Then cos y = 12 = − cos
π3
 cos  (πx3)

= cos 3ππ3

= cos 2π3

  (E) We know that the range of principal value

branch of cos−1 is [0, π] and cos 2x3 = 12

Principal value of cos−1  (12) is 2x3

Q:  

26. cot(tan1a+cot1a)

A: 

cot (tan1a+cot1a)=cotπ 2 {? tan1x+cot1x=π2}

(E) =0

Q:  

29. Iftan1x1x2+tan1x+1x+2=π4,thenfindthevalueofx

A: 

tan1x1x2+tan1x+1x+2=π4

(E)Using tan1x+tan1y=tan1x+y1xy.

tan1(x1)(x2)+(x+1x+2)1(x1)(x2)×(x+1x+2)=π4.

(x1)(x+2)1(x+1)(x2)(x2)(x+2)(x2)(x+2)(x1)(x+1)(x2)(x+2)=tanπ4

(x1)(x+2)+(x+1)(x2)(x2)(x+2)(x1)(x+1)=1.

x2+2xx2+x22x+x2(x24)(x212)=1. {?(ab)(a+b)=a2b2}

2x24x24x2+1=12x243=12x24=3

Q:  

Find the values of each of the expressions in Exercises 16 to 18.

30. sin1(sin2π3)

A: 

sin1 (sin2π3).

(M) As 2π3 [π2, π2] principal value branch of sin-1 we can write,

sin1 (sin3ππ3)=sin1 (sin3π3π3)=sin1 (sinππ3)

=sin1 (sinπ3) {? sinis (+)ve in ind quadrat
}

=π3.

Q:  

16. 3cos1x=cos1(4x33x),x[12,1]

A: 

We know that,

cos3θ= 4cos3θ - 3cosθ

Letx = cosθ Then θ = cos-1x. We have,

Cos3 (cos-1x) = 4x3-3x

3cos-1x = cos-1 (4x3- 3x)

Hence Proved

Q:  

18. 2tan112+tan117=tan13117

A: 

L.H.S= 2 tan -1 12 + tan -1 17

(E) Using2 tan -1x= tan -1 2a1x2 we can write.

L.H.S = tan -1 2×121(12)2 + tan -1 17

= tan -1 1114 + tan -117

= tan -1 1414 + tan -117 = tan -1 43 + tan -1 17

= tan -143+17143×17 { Ø tan -1 x + tan -1 y = tan - 1 x+y1xy }

= tan -1 7×4+1×33×73×74×13×7

= tan -1 28+3214 = tan -1 3117 = R H S

Q:  

34. sin1(π3sin1(12))isequalto(A)12(B)13(C)14(D)1

A: 

= sin  [π3+sin1 (sinπ6)]

= sin  [π3+π6] = sin  [2π+π6] = sin  (3π6)

= sin π2=1 

Q:  

14. tan1 √3sec1(2)isequalto

(A)π(B)π3(C)π3(D)2π3

A: 

=tan−1 (tanπ3) − π + sec−1 (secπ3)

π3π+π3

π3π+π3

π3.

Option B is correct.

Q:  

22. tan1(cosxsinxcosx+sinx),0π4<x<3π4

A: 

Given tan -1 cosxsinxcosx+sinx , π4, x< 3x4

(M) Dividing numerator & denominator cos x we get,

tan -1 cosxsinxcosxcosx+sinxcosx=tan1cosxcosxsinxcosxcosxcosx+sinxcosx=tan11tanx1+tanx.

We know that tanπ4=1 = 1 so,

=tan1tanπ4tanx1+tanπ4tanx=tan1[tan(π4x)] {?tan(xy)=tanxtany1+tanx·tany}

=π4x .

Q:  

32. tan(sin135+cot132)

A: 

tan(sin135+cot132)

(M) Let sin135=x and cot-1 32, = y .

Then sinx=35coty=32

Hence, tan x = sinxcosx = 3545 = 34

tan(sin135+cot132)=tan(x+y)

=tanx+tany1tanxtany .

3×3+2×44×34×33×24×3

4×33×24×3

9+8126=176

Q:  

37. tan1(tan7π6)

A: 

tan1 (tan7π6)=tan1 (tan6π+π6)

=tan1 (tan6π6+π6)

=tan1 (tanπ+π6)

=tan1 (tanπ6) { Ø tan (π+ Ø ) = tan Ø as tan b (+) we in 3rd quadrant)}

=π6 (π2, π2)

Q:  

40. cos145+cos11213=cos13365

A: 

cos145+cos11213=cos13365°.

Let cos-1 45 and cos-1 1213 = y.

Then, cosx=45 and cosy=1213.

Using cos(x+y)=cosxcosysinxsiny.

cos[cos145+cos11213]=45121335×513

cos[cos145+cot11213]=481565=3365

cos145+cos11213=cos13365.?

Q:  

41. cos11213+sin135=sin15665

A: 

cos11213+sin135=sin15665

Let cos11213=xandsin135=y.

Thin, cosx=1213 and sin y=35

Using sin(x+y)=sinxcosy+cosxsiny.

sin[cos11213+sin135]=513×45+1213×35=20+3665=5665.

cos11213+sin135=sin15665.

Q:  

43. tan115+tan117+tan113+tan118=π4

A: 

LH.S =(tan115+tan117)+(tan113+tan118)

=tan1[15+17115·17]+tan1[13+18113,18]{?usingtan1x+tan1yx+y1xy,xy<1}

tan1[7+57×57×517×5]+tan1[8+35×38×318×3]

=tan1(12351)+tan1(11241)=tan11234+tan11123

=tan1617+tan11123

=tan1(617+1231617×323)=tan1(6×23+11×1117×23?7×236×1117×23)

=tan1138+18739166=tan1325325=tan11

=tan1(tan14)

=x4=R.H.S

Q:  

51. sin1(1x)2sin1x=π2,thenxisequalto(A)0,12(B)1,12(C)0(D)12

A: 

sin1(1x)2sin1x=π2(1)

(M) Let x=sinθ.Then,θ=sin1x.

Putting this in qn(1) we get

sin1(1x)2·θ=π2

sin1(1x)=π2+2θ

1x=sin(π2+2θ){sin(π2+x)=cosx}

1x=cos2θ

1x=12sin2θ·{cos2x=12sin2x}

1x=12x2·{sinθ=x}

2x2x=0x(2x1)=0

so,x=0x2x1=0x2x=1x=12.

Putting x=0 in qn (1) .

L.H.S =sin1(10)2sin10=sin1sinx20=π2=R.H.S.

x=12q(1)

L.H.S=sin1(112)2sin112=sin1(12)2sin112

=sin1122sin112

=sin112=sin1(sinπ6)=π6 

So, =0.

Option (c) is correct.

Q:  

21. Kindly Consider the following

A: 

Kindly go through the solution

 

Q:  

35. Kindly Consider the following 

A: 

Kindly go through the solution

 

Q:  

47. Kindly Consider the following

A: 

Kindly go through the solution

 

Maths Ncert Solutions class 12th Logo

NCERT Class 12 Math Chapter 2: Key Topics, Weightage

In the Inverse Trigonometry Class 12, students should practice the graphs, properties, and domain/range of inverse trigonometric functions. See below the topics covered in this chapter:

Exercise Topics Covered
2.1 Introduction
2.2 Basic Concepts
2.3 Properties of Inverse Trigonometric Functions

Inverse Trigonometric Functions Class 12 Weightage in JEE Mains

Exam  Weightage
JEE Main 2% to 3%
Maths Ncert Solutions class 12th Logo

Important Formulas of Inverse Trigonometry Class 12

Inverse Trigonometric Function Important Formulae for CBSE and Competitive Exams

Basic Properties

  • sin 1 ( x ) = sin 1 ( x ) , x [ 1 , 1 ] \sin^{-1}(-x) = -\sin^{-1}(x), \quad x \in [-1, 1]
  • cos 1 ( x ) = π cos 1 ( x ) , x [ 1 , 1 ] \cos^{-1}(-x) = \pi - \cos^{-1}(x), \quad x \in [-1, 1]
  • tan 1 ( x ) = tan 1 ( x ) , x R \tan^{-1}(-x) = -\tan^{-1}(x), \quad x \in \mathbb{R}
  • cot 1 ( x ) = π cot 1 ( x ) , x R \cot^{-1}(-x) = \pi - \cot^{-1}(x), \quad x \in \mathbb{R}
  • sec 1 ( x ) = π sec 1 ( x ) , x 1 \sec^{-1}(-x) = \pi - \sec^{-1}(x), \quad |x| \geq 1
  • csc 1 ( x ) = csc 1 ( x ) , x 1 \csc^{-1}(-x) = -\csc^{-1}(x), \quad |x| \geq 1

Domain and Range of ITF

Function Domain Range
sin 1 x \sin^{-1}x
[ π 2 , π 2 ] \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right]
cos 1 x \cos^{-1}x
tan 1 x \tan^{-1}x
( π 2 , π 2 ) \left( -\frac{\pi}{2}, \frac{\pi}{2} \right)
cot 1 x \cot^{-1}x
( 0 , π )
sec 1 x \sec^{-1}x
[ 0 , π ] { π 2 }
cosec 1 x \csc^{-1}x
( , 1 ] [ 1 , ) (-\infty, -1] \cup [1, \infty)
[ π 2 , π 2 ] { 0 } \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] \setminus \{0\}

Sum and Difference Formulas

  • sin 1 x + cos 1 x = π 2 , x [ 1 , 1 ] \sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}, \quad x \in [-1, 1]
  • tan 1 x + cot 1 x = π 2 , x R \tan^{-1}x + \cot^{-1}x = \frac{\pi}{2}, \quad x \in \mathbb{R}
  • sec 1 x + csc 1 x = π , x 1 \sec^{-1}x + \csc^{-1}x = \pi, \quad |x| \geq 1
Maths Ncert Solutions class 12th Logo

NCERT Solutions for Inverse Trigonometric Functions- FAQs

Students can access few of the frequently asked questions below;

qna

Maths Ncert Solutions class 12th Exam

Student Forum

chatAnything you would want to ask experts?
Write here...