Maths NCERT Exemplar Solutions Class 11th Chapter One: Overview, Questions, Preparation

Maths NCERT Exemplar Solutions Class 11th Chapter One 2025 ( Maths NCERT Exemplar Solutions Class 11th Chapter One )

Vishal Baghel
Updated on Sep 12, 2025 14:34 IST

By Vishal Baghel, Executive Content Operations

Table of content
  • Sets Short Answer Type Questions
  • Sets Objective Type Questions
  • Sets Fill in the blanks
  • Sets True and False Type Questions
Maths NCERT Exemplar Solutions Class 11th Chapter One Logo

Sets Short Answer Type Questions

Write the following sets in the roaster form

(i) A = {xx ∈ R, 2x + 11 = 15}

(ii) B = {xx2 = x, x ∈ R}

(iii) C = {xx is a positive factor of a prime number p}

Write the following sets in the roaster form 

(i) D = {t | t= t, t ∈ R}

(ii) E = {w | =3, w ∈ R}

(iii) F = {x | x4 – 5x2 + 6 = 0, x ∈ R}

Q&A Icon
Commonly asked questions
Q:  

State which of the following statements a true and which are false. Justify your answer.

(i) 35 ∈ {x | x has exactly four positive factors}.

(ii) 128 ∈ {y | the sum of all the positive factors of y is 2y}

(iii) 3 ∉ {x | x4 – 5x3 + 2x2 – 112x + 6 = 0}

(iv) 496 ∉ {y | the sum of all the positive factors of y is 2y}.

Read more
A: 

( i ) G i v e n t h a t : 3 5 { x | x h a s e x a c t l y f o u r p o s i t i v e f a c t o r } F a c t o r s o f 3 5 a r e 1 , 5 , 7 , 3 5 H e n c e , t h e s t a t e m e n t ( i ) i s ' T r u e ' . ( i i ) G i v e n t h a t : 1 2 8 { y | t h e s u m o f a l l p o s i t i v e f a c t o r s o f y i s 2 y } F a c t o r s o f 1 2 8 a r e 1 , 2 , 4 , 8 , 1 6 , 3 2 , 6 4 a n d 1 2 8 . S u m o f a l l f a c t o r s = 1 + 2 + 4 + 8 + 1 6 + 3 2 + 6 4 + 1 2 8 = 2 5 5 2 × 1 2 8 H e n c e , t h e s t a t e m e n t ( i i ) i s ' F a l s e ' . ( i i i ) G i v e n t h a t : 3 { x | x 4 5 x 3 + 2 x 2 1 1 2 x + 6 = 0 } x 4 5 x 3 + 2 x 2 1 1 2 x + 6 = 0 N o w f o r x = 3 , w e h a v e ( 3 ) 4 5 ( 3 ) 3 + 2 ( 3 ) 2 1 1 2 ( 3 ) + 6 8 1 1 3 5 + 1 8 3 3 6 + 6 3 6 6 0 H e n c e , t h e s t a t e m e n t ( i i i ) i s ' T r u e ' . ( i v ) G i v e n t h a t : 4 9 6 { y | t h e s u m o f a l l p o s i t i v e f a c t o r s o f y i s 2 y } T h e p o s i t i v e f a c t o r s o f 4 9 6 a r e 1 , 2 , 4 , 8 , 1 6 , 3 1 , 6 2 , 1 2 4 , 2 4 8 a n d 4 9 6 . T h e s u m o f a l l p o s i t i v e f a c t o r s = 1 + 2 + 4 + 8 + 1 6 + 3 1 + 6 2 + 1 2 4 + 2 4 8 + 4 9 6 = 9 9 2 = 2 × 4 9 6 H e n c e , t h e s t a t e m e n t ( i v ) i s ' F a l s e ' .

Q:  

Write the following sets in the roaster form

(i) A = {x: x ∈ R, 2x + 11 = 15}

(ii) B = {x | x2 = x, x ∈ R}

(iii) C = {x | x is a positive factor of a prime number p}

Read more
A: 

( i ) W e h a v e , A = { x : x R , 2 x + 1 1 = 1 5 } 2 x + 1 1 = 1 5 2 x = 1 5 1 1 2 x = 4 x = 2 A = { 2 } ( i i ) W e h a v e , B = { x | x 2 = x , x R } x 2 = x x 2 x = 0 x ( x 1 ) = 0 x = 0 , 1 B = { 0 , 1 } ( i i i ) W e h a v e , C = { x | x i s a p o s i t i v e f a c t o r o f p r i m e n u m b e r p . } Since,positivefactorsofaprimenumberare1andthenumberitself. C = { 1 , p }

Q:  

Write the following sets in the roaster form 

(i) D = {t | t3 = t, t ∈ R}

(ii) E = {w | =3, w ∈ R}

(iii) F = {x | x4 – 5x2 + 6 = 0, x ∈ R}

Read more
A: 

(i)Wehave,D={t|t3=t,tR}t3=tt3t=0t(t21)=0t(t1)(t+1)=0t=0,1,1D={1,0,1}(ii)Wehave,E={w|w2w+3=3,wR}w2w+3=3w2=3w+9w3w=9+22w=11w=112E={112}(iii)Wehave,F={x|x45x2+6=0,xR}x45x2+6=0x43x22x2+6=0x2(x23)2(x23)=0(x23)(x22)=0x=±3,±2F={3,2,2,3}

Q:  

If Y = {x | x is a positive factor of the number

2p – 1 (2p – 1), where 2p – 1 is a prime number}. Write Y in the roaster form.

Read more
A: 

G i v e n , Y = { x | x i s a p o s i t i v e f a c t o r o f t h e n u m b e r 2 p 1 ( 2 p 1 ) , w h e r e 2 p 1 i s a p r i m e n u m b e r } . Since,thefactorsof2p1are1,2,22,23,,2p1andfactorsof2p1are1and2p1 Y = { 1 , 2 , 2 2 , 2 3 , , 2 p 1 , 2 p 1 } = 2 ( 2 p 1 ) , 2 2 ( 2 p 1 ) , , 2 p 1 ( 2 p 1 )

Q:  

Given L = {1, 2, 3, 4}, M = {3, 4, 5, 6} and N = {1, 3, 5}

Verify that L – (M ∪ N) = (L – M) ∩ (L – N)

Read more
A: 

G i v e n , L = { 1 , 2 , 3 , 4 } , M = { 3 , 4 , 5 , 6 } a n d N = { 1 , 3 , 5 } M N = { 1 , 3 , 4 , 5 , 6 } L M N = { 2 } N o w , L M = { 1 , 2 } , L N = { 2 , 4 } ( L M ) ( L N ) = { 2 } H e n c e , L M N = ( L M ) ( L N ) .

Q:  

If A and B are subsets of the universal set U, then show that

(i) A ⊂ A ∪ B

(ii) A ⊂ B ⇔ A ∪ B = B

(iii) (A ∩ B) ⊂ A

Read more
A: 

( i ) G i v e n t h a t : A U a n d B U L e t x A o r x B x A B H e n c e , A ( A B ) ( i i ) I f A B T h e n l e t x A B x A o r x B A B B ( i ) B u t B A B ( i i ) F r o m e q . ( i ) a n d ( i i ) , w e g e t A B = B L e t y A y ( A B ) y B y B A B = B ( i i i ) L e t x A B x A a n d x B x A S o , A B A

Q:  

Given that N = {1, 2, 3, ..., 100}. Then write

(i) The subset of N whose elements are even numbers.

(ii) The subset of N whose element are perfect square numbers.

Read more
A: 

W e a r e g i v e n t h a t : N = { 1 , 2 , 3 , 4 , 5 , , 1 0 0 } (i)Requiredsubsetwhoseelementsareeven = { 2 , 4 , 6 , 8 , , 1 0 0 } (ii)Requiredsubsetwhoseelementsareperfectsquares = { 1 , 4 , 9 , 1 6 , 2 5 , 3 6 , , 1 0 0 }

Q:  

If X = {1, 2, 3}, if n represents any member of X, write the following sets containing all numbers represented by

(i) 4n

(ii) n + 6

(iii) n2

(iv) n – 1

Read more
A: 

W e a r e g i v e n t h a t : X = { 1 , 2 , 3 } ( i ) { 4 n | n X } = { 4 , 8 , 1 2 } ( i i ) { n + 6 | n X } = { 7 , 8 , 9 } ( i i i ) { n 2 | n X } = { 1 2 , 1 , 3 2 } ( i v ) { ( n 1 ) | n X } = { 0 , 1 , 2 }

Q:  

If Y = {1, 2, 3, ... 10}, and a represents any element of Y, write the following sets, containing all the elements satisfying the given conditions. 

(i) a ∈ Y but a2 ∉ Y

(ii) a + 1 = 6, a ∈ Y

(iii) a is less than 6 and a ∈ Y

Read more
A: 

G i v e n t h a t : Y = { 1 , 2 , 3 , , 1 0 } ( i ) { a Y b u t a 2 Y } = { 4 , 5 , 6 , 7 , 8 , 9 , 1 0 } ( i i ) { a + 1 = 6 , a Y } = { 5 } ( i i i ) { a < 6 a n d a Y } = { 1 , 2 , 3 , 4 , 5 }

Q:  

A, B and C are subsets of Universal Set U. If A = {2, 4, 6, 8, 12, 20}

B = {3, 6, 9, 12, 15}, C = {5, 10, 15, 20} and U is the set of all whole numbers, draw a Venn diagram showing the relation of U, A, B and C.

Read more
A: 

Kindly go through the solution

Q:  

For all sets A, B and C, show that (A – B) ∩ (C – B) = A –(B ∪ C) .

A: 

T o p r o v e ( A B ) ( A C ) = A ( B C ) L . H . S . L e t x ( A B ) ( A C ) x ( A B ) a n d x ( A C ) ( x A a n d x B ) a n d ( x A a n d x C ) x A a n d ( x B a n d x C ) x A ( B C ) S o , ( A B ) ( A C ) A ( B C ) ( i ) R . H . S . L e t y A ( B C ) y A a n d y ( B C ) y A a n d ( y B a n d y C ) ( y A a n d y B ) a n d ( y A a n d y C ) y ( A B ) a n d y ( A C ) S o , A ( B C ) ( A B ) ( A C ) ( i i ) F r o m e q . ( i ) a n d ( i i ) , w e g e t A ( B C ) = ( A B ) ( A C )

Q:  

For all sets A and B, (A – B) ∪ (A ∩ B) = A

A: 

L . H . S . = ( A B ) ( A B ) = [ ( A B ) A ] [ ( A B ) B ] = A ( A B ) = A = R . H . S . H e n c e , t h e g i v e n s t a t e m e n t i s ' T r u e ' .

Q:  

For all sets A, B and C, if A ⊂ B, then A ∩ C ⊂ B ∩ C

A: 

L e t x A C x A a n d x C x B a n d x C x ( B C ) ( A C ) ( B C ) H e n c e , t h e g i v e n s t a t e m e n t i s ' T r u e ' .

Q:  

For all sets A, B and C, if A ⊂ B, then A ∪ C ⊂ B ∪ C

A: 

L e t x A C x A o r x C x B o r x C [ ? A B ] x ( B C ) ( A C ) ( B C ) H e n c e , t h e g i v e n s t a t e m e n t i s ' T r u e ' .

Q:  

For all sets A, B and C, if A ⊂ C and B ⊂ C, then A ∪ B ⊂C.

A: 

L e t x A B x A o r x B x C o r x C [ ? A C a n d B C ] x C A B C H e n c e , t h e g i v e n s t a t e m e n t i s ' T r u e ' .

Q:  

For all sets A and B, A ∪ (B – A) = A ∪ B

A: 

L . H . S . = A ( B A ) = A ( B A ' ) [ ? A B = A B ' ] = ( A B ) ( A A ' ) = A B U [ ? A A ' = U ] = A B = R . H . S . [ ? A U = A ] H e n c e , t h e g i v e n s t a t e m e n t i s p r o v e d .

Q:  

For all sets A and B, A – (A – B) = A ∩ B

A: 

L . H . S . = A ( A B ) = A ( A B ' ) [ ? A B = A B ' ] = A ( A B ' ) = A [ A ' ( B ' ) ' ] [ ? ( A B ) ' = A ' B ' ] = A [ A ' B ] [ ? ( A ' ) ' = A ] = ( A A ' ) ( A B ) = ? ( A B ) = A B = R . H . S . H e n c e , t h e g i v e n s t a t e m e n t i s p r o v e d .

Q:  

For all sets A and B, A – (A ∩ B) = A – B

A: 

L . H . S . = A ( A B ) = A ( A B ) ' = A ( A ' B ' ) = ( A A ' ) ( A B ' ) = ? ( A B ) [ ? A B = A B ' ] = A B = R . H . S . H e n c e , t h e g i v e n s t a t e m e n t i s p r o v e d .

Q:  

For all sets A and B, (A ∪ B) – B = A – B

A: 

L . H . S . = ( A B ) B = ( A B ) B ' [ ? A B = A B ' ] = ( A B ' ) ( B B ' ) [ ? A A ' = ? ] = ( A B ) ? = A B = R . H . S . H e n c e p r o v e d .

Q:  

Let T = xx + 5/x – 7 –5 = 4x – 40/13 – x. Is T an empty set? Justify your answer.

Read more
A: 

G i v e n t h a t : T = { x | x + 5 x 7 5 = 4 x 4 0 1 3 x } x + 5 x 7 5 = 4 x 4 0 1 3 x x + 5 x 7 4 x 4 0 1 3 x = 5 ( x + 5 ) ( 1 3 x ) ( x 7 ) ( 4 x 4 0 ) ( x 7 ) ( 1 3 x ) = 5 1 3 x x 2 + 6 5 5 x 4 x 2 + 4 0 x + 2 8 x 2 8 0 1 3 x x 2 9 1 + 7 x = 5 5 x 2 + 7 6 x 2 1 5 = 5 ( 1 3 x x 2 + 7 x 9 1 ) 5 x 2 + 7 6 x 2 1 5 = 6 5 x 5 x 2 + 3 5 x 4 5 5 7 6 x 1 0 0 x = 4 5 5 + 2 1 5 2 4 x = 2 4 0 x = 2 4 0 2 4 = 1 0 T = 1 0 H e n c e , T i s n o t a n e m p t y s e t .

Q:  

Let A, B and C be sets. Then show that

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

Read more
A: 

L e t x A ( B C ) x A a n d ( x B o r x C ) ( x A a n d x B ) o r ( x A a n d x C ) ( x A B ) o r ( x A C ) ( x A B ) ( x A C ) ( i ) L e t y ( x A B ) ( x A C ) y ( x A B ) o r ( x A C ) ( y A a n d y B ) o r ( y A a n d y C ) y A a n d ( y B o r y C ) y A a n d y ( B C ) y A ( B C ) ( i i ) F r o m e q ( i ) a n d ( i i ) w e g e t A ( B C ) = ( A B ) ( A C ) L . H . S . = R . H . S . H e n c e p r o v e d .

Q:  

Out of 100 students; 15 passed in English, 12 passed in Mathematics, 8 in science, 6 in English and Mathematics, 7 in Mathematics and Science; 4 in English and Science; 4 in all the three. Find how many passed

(a) In English and Mathematics but not in Science

(b) In Mathematics and Science but not in English

(c) In Mathematics only

(d) In more than one subject only

Read more
A: 

L e t t h e n u m b e r o f s t u d e n t s p a s s e d i n M a t h e m a t i c s M , E b e i n E n g l i s h a n d S b e i n S c i e n c e . T h e n n ( U ) = 1 0 0 , n ( M ) = 1 2 , n ( E ) = 1 5 , n ( S ) = 8 n ( E M ) = 6 , n ( M S ) = 7 , n ( E S ) = 4 a n d n ( E M S ) = 4 L e t u s d r a w a v e n n d i a g r a m . A c c o r d i n g t o t h e v e n n d i a g r a m , w e g e t a + b + d + e = 1 5 ( i ) b + c + e + f = 1 2 ( i i ) d + e + f + g = 8 ( i i i ) n ( E M ) = 6 b + e = 6 ( i v ) n ( M S ) = 7 e + f = 7 ( v ) n ( E S ) = 4 d + e = 4 ( v i ) n ( E M S ) = 4 e = 4 ( v i i ) F r o m e q n . ( i v ) a n d ( v i i ) w e g e t b + 4 = 6 b = 2 F r o m e q n . ( v ) a n d ( v i i ) w e g e t 4 + f = 7 f = 3 F r o m e q n . ( v i ) a n d ( v i i ) w e g e t d + 4 = 4 d = 0 F r o m e q n . ( i ) w e g e t a + b + d + e = 1 5 a + 2 + 0 + 4 = 1 5 a = 9 F r o m e q n . ( i i ) w e g e t b + c + e + f = 1 2 2 + c + 4 + 3 = 1 2 c = 3 F r o m e q n . ( i i i ) w e g e t d + e + f + g = 8 0 + 4 + 3 + g = 8 g = 1 ( i ) N u m b e r o f s t u d e n t s w h o p a s s e d i n E n g l i s h a n d M a t h e m a t i c s b u t n o t i n S c i e n c e , b = 2 ( i i ) N u m b e r o f s t u d e n t s w h o p a s s e d i n M a t h e m a t i c s a n d S c i e n c e b u t n o t i n E n g l i s h , f = 3 ( i i i ) N u m b e r o f s t u d e n t s w h o p a s s e d i n M a t h e m a t i c s o n l y , c = 3 .

Q:  

In a class of 60 students, 25 students play cricket and 20 students play tennis, and10 students play both the games. Find the number of students who play neither? 

Read more
A: 

T o t a l n u m b e r o f s t u d e n t s = 6 0 n ( U ) = 6 0 N u m b e r o f s t u d e n t s w h o p l a y C r i c k e t = 2 5 n ( C ) = 2 5 N u m b e r o f s t u d e n t s w h o p l a y T e n n i s = 2 0 n ( T ) = 2 0 N u m b e r o f s t u d e n t s w h o p l a y b o t h t h e g a m e s = 1 0 n ( C T ) = 1 0 n ( C T ) = n ( C ) + n ( T ) n ( C T ) = 2 5 + 2 0 1 0 = 3 5 N u m b e r o f s t u d e n t s w h o p l a y n e i t h e r = n ( U ) n ( C T ) = 6 0 3 5 = 2 5

Q:  

In a survey of 200 students of a school, it was found that 120 study Mathematics, 90 study Physics and 70 study Chemistry, 40 study Mathematics and Physics, 30 study Physics and Chemistry, 50 study Chemistry and Mathematics and 20 none of these subjects. Find the number of students who study all the three subjects.

Read more
A: 

T o t a l n u m b e r o f s t u d e n t s = 2 0 0 n ( U ) = 2 0 0 N u m b e r o f s t u d e n t s w h o s t u d y M a t h e m a t i c s = 1 2 0 n ( M ) = 1 2 0 N u m b e r o f s t u d e n t s w h o s t u d y P h y s i c s = 9 0 n ( P ) = 9 0 N u m b e r o f s t u d e n t s w h o s t u d y C h e m i s t r y = 7 0 n ( C ) = 7 0 N u m b e r o f s t u d e n t s w h o s t u d y M a t h e m a t i c s a n d P h y s i c s = 4 0 n ( M P ) = 4 0 N u m b e r o f s t u d e n t s w h o s t u d y P h y s i c s a n d C h e m i s t r y = 3 0 n ( P C ) = 3 0 N u m b e r o f s t u d e n t s w h o s t u d y C h e m i s t r y a n d M a t h e m a t i c s = 5 0 n ( C M ) = 5 0 N u m b e r o f s t u d e n t s w h o s t u d y n o n e o f t h e s u b j e c t s = 2 0 n ( M ' P ' C ' ) = 2 0 n ( U ) n ( M ' P ' C ' ) = n ( M P C ) = 2 0 0 2 0 = 1 8 0 N o w , n ( M P C ) = n ( M ) + n ( P ) + n ( C ) n ( M P ) n ( P C ) n ( C M ) + n ( M P C ) 1 8 0 = 1 2 0 + 9 0 + 7 0 4 0 3 0 5 0 + n ( M P C ) 1 8 0 1 6 0 = n ( M P C ) n ( M P C ) = 2 0 H e n c e , t h e n u m b e r o f s t u d e n t s w h o s t u d y a l l t h e t h r e e s u b j e c t s = 2 0 .

Q:  

In a town of 10,000 families it was found that 40% families buy newspaper A, 20% families buy newspaper B, 10% families buy newspaper C, 5% families buy A and B, 3% buy B and C and 4% buy A and C. If 2% families buy all the three newspapers. Find

(i) The number of families which buy newspaper A only.

(ii) The number of families which buy none of A, B and C

Read more
A: 

T o t a l n u m b e r o f f a m i l i e s = 1 0 0 0 0 n ( U ) = 1 0 0 0 0 N u m b e r o f f a m i l i e s w h o b u y N e w s p a p e r A = 4 0 % n ( A ) = 4 0 % N u m b e r o f f a m i l i e s w h o b u y N e w s p a p e r B = 2 0 % n ( B ) = 2 0 % N u m b e r o f f a m i l i e s w h o b u y N e w s p a p e r C = 1 0 % n ( C ) = 1 0 % N u m b e r o f f a m i l i e s w h o b u y N e w s p a p e r A a n d B = 5 % n ( A B ) = 5 % N u m b e r o f f a m i l i e s w h o b u y N e w s p a p e r B a n d C = 3 % n ( B C ) = 3 % N u m b e r o f f a m i l i e s w h o b u y N e w s p a p e r A a n d C = 4 % n ( A C ) = 4 % N u m b e r o f f a m i l i e s w h o b u y a l l t h e t h r e e N e w s p a p e r s = 2 % n ( A B C ) = 2 % ( i ) N u m b e r o f f a m i l i e s w h o b u y N e w s p a p e r A o n l y = n ( A ) n ( A B ) n ( A C ) + n ( A B C ) = 4 0 1 0 0 5 1 0 0 4 1 0 0 + 2 1 0 0 = 3 3 1 0 0 = 1 0 0 0 0 × 3 3 1 0 0 = 3 3 0 0 f a m i l i e s ( i i ) N u m b e r o f f a m i l i e s w h o b u y n o n e o f A , B a n d C N e w s p a p e r i n p e r c e n t ( % ) = n ( U ) n ( A B C ) n ( U ) [ n ( A ) + n ( B ) + n ( C ) n ( A B ) n ( B C ) n ( A C ) + n ( A B C ) ] [ 1 0 0 ( 4 0 + 2 0 + 1 0 5 3 4 + 2 ) % ] ( 1 0 0 6 0 ) % = 4 0 % N u m b e r o f f a m i l i e s w h o b u y n o n e o f A , B a n d C n e w s p a p e r o u t o f 1 0 0 0 0 f a m i l i e s a r e = 1 0 0 0 0 × 4 0 1 0 0 = 4 0 0 0 f a m i l i e s .

Q:  

In a group of 50 students, the number of students studying French, English, Sanskrit were found to be as follows: 

French = 17, English = 13, Sanskrit = 15

French and English = 09, English and Sanskrit = 4

French and Sanskrit = 5, English, French and Sanskrit = 3. Find the number of students who study

(i) French only

(ii) English only 

(iii) Sanskrit only

(iv) French and English but not Sanskrit

(v) At least one of the three languages

(vi) English and Sanskrit

(vii) None of the three languages but not French

Read more
A: 

L e t u s u s e v e n n d i a g r a m m e t h o d . T o t a l n u m b e r o f s t u d e n t s = 5 0 n ( U ) = 5 0 N u m b e r o f s t u d e n t s w h o s t u d y F r e n c h = 1 7 n ( F ) = 1 7 N u m b e r o f s t u d e n t s w h o s t u d y E n g l i s h = 1 7 n ( E ) = 1 3 N u m b e r o f s t u d e n t s w h o s t u d y S a n s k r i t = 1 5 n ( S ) = 1 5 N u m b e r o f s t u d e n t s w h o s t u d y F r e n c h a n d E n g l i s h = 9 n ( F E ) = 9 N u m b e r o f s t u d e n t s w h o s t u d y E n g l i s h a n d S a n s k r i t = 4 n ( E S ) = 4 N u m b e r o f s t u d e n t s w h o s t u d y F r e n c h a n d S a n s k r i t = 5 n ( F S ) = 5 N u m b e r o f s t u d e n t s w h o s t u d y F r e n c h , E n g l i s h a n d S a n s k r i t = 3 n ( F E S ) = 3 n ( F ) = 1 7 a + b + d + e = 1 7 ( i ) n ( E ) = 1 3 b + c + e + f = 1 3 ( i i ) n ( S ) = 1 5 d + e + f + g = 1 5 ( i i i ) n ( F E ) = 9 b + e = 9 ( i v ) n ( E S ) = 4 e + f = 4 ( v ) n ( F S ) = 5 d + e = 5 ( v i ) n ( E F S ) = 3 e = 3 ( v i i ) F r o m e q n . ( i v ) b + 3 = 9 b = 6 F r o m e q n . ( v ) 3 + f = 4 f = 1 F r o m e q n . ( v i ) d + 3 = 5 d = 2 F r o m e q n . ( i ) w e g e t a + 6 + 2 + 3 = 1 7 a = 6 F r o m e q n . ( i i ) w e g e t 6 + c + 3 + 1 = 1 3 c = 3 F r o m e q n . ( i i i ) w e g e t 2 + 3 + 1 + g = 1 5 g = 9 ( i ) N u m b e r o f s t u d e n t s w h o s t u d y F r e n c h o n l y , a = 6 ( i i ) N u m b e r o f s t u d e n t s w h o s t u d y E n g l i s h o n l y , c = 3 . ( i i i ) N u m b e r o f s t u d e n t s w h o s t u d y S a n s k r i t o n l y , g = 9 ( i v ) N u m b e r o f s t u d e n t s w h o s t u d y E n g l i s h a n d S a n s k r i t b u t n o t F r e n c h , f = 1 . ( v ) N u m b e r o f s t u d e n t s w h o s t u d y F r e n c h a n d S a n s k r i t b u t n o t E n g l i s h , d = 2 . ( v i ) N u m b e r o f s t u d e n t s w h o s t u d y F r e n c h a n d E n g l i s h b u t n o t S a n s k r i t , b = 6 .

Maths NCERT Exemplar Solutions Class 11th Chapter One Logo

Sets Objective Type Questions

Suppose A1, A2, ..., A30  are thirty sets each having 5 elements and B1, B2, ..., Bare n sets each with 3 elements, let =and each element of belongs to exactly 10 of the Ai’s and exactly 9 of the B,’S. Then n is equal to

(a) 15

(b) 3

(c) 45 

(d) 35

Two finite sets have m and n elements. The number of subsets of the first set is112 more than that of the second set. The values of m and n are, respectively, 

(a) 4, 7 

(b) 7, 4 

(c) 4, 4

(d) 7, 7

Q&A Icon
Commonly asked questions
Q:  

Suppose A1, A2, ..., A30  are thirty sets each having 5 elements and B1, B2, ..., Bare n sets each with 3 elements, let =and each element of belongs to exactly 10 of the Ai’s and exactly 9 of the B,’S. Then n is equal to

(a) 15

(b) 3

(c) 45 

(d) 35

Read more
A: 

N u m b e r o f e l e m e n t s i s A 1 A 2 A 3 A 3 0 = 3 0 × 5 = 1 5 0 ( Repetitionisnotdone ) B u t e a c h e l e m e n t i s u s e d 1 0 t i m e s S = 3 0 × 5 1 0 = 1 5 I f t h e e l e m e n t s B 1 , B 2 , , B n a r e n o t r e p e a t e d . T h e n t h e t o t a l n u m b e r o f e l e m e n t s = 3 . B u t e a c h e l e m e n t i s r e p e a t e d 9 t i m e s S = 3 n 9 1 5 = n 3 n = 1 5 × 3 = 4 5 H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Q:  

Two finite sets have m and n elements. The number of subsets of the first set is112 more than that of the second set. The values of m and n are, respectively, 

(a) 4, 7 

(b) 7, 4 

(c) 4, 4

(d) 7, 7

Read more
A: 

N u m b e r o f s u b s e t s o f a g i v e n s e t h a v i n g m e l e m e n t = 2 m a n d t h e n u m b e r o f s u b s e t s o f s e t c o n t a i n i n g n e l e m e n t s = 2 n A s p e r t h e g i v e n c o n d i t i o n , w e h a v e 2 m 2 n = 1 1 2 2 n ( 2 m n 1 ) = 1 1 2 2 n . ( 2 m n 1 ) = 2 4 . 7 2 n = 2 4 a n d 2 m n 1 = 7 n = 4 a n d 2 m n = 1 + 7 = 8 = 2 3 n = 4 a n d m n = 3 m 4 = 3 m = 3 + 4 = 7 H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

The set (A ∩ B′) ′  (B ∩ C) is equal to

 (a) A′ ∪ B ∪ C                         (b) A′ ∪ B 

 (c) A′ ∪ C′                               (d) A′ ∩ B

 

Read more
A: 

W e k n o w t h a t : ( A B ) ' = A ' B ' ( A B ' ) ' ( B C ) = [ A ' ( B ' ) ' ] ( B C ) = ( A ' B ) ( B C ) [ ? ( B ' ) ' = B ] = A ' B H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

Let F1 be the set of parallelograms, F2 the set of rectangles, F3 the set of rhombuses, Fthe set of squares and F5 the set of trapeziums in a plane. Then Fmay be equal to

(a) F2 ∩ F3

(b) F3 ∩ F4

(c) F2 ∪ F5

(d) F2∪ F3 ∪ F4 ∪ F1

Read more
A: 

Weknowthatrectangles, rhombusandsquareinaplaneisaparallelogrambuttrapeziumis notparallelogram. F 1 = F 2 F 3 F 4 F 1 H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q:  

Let S = set of points inside the square, T = the set of points inside the triangle and C = the set of points inside the circle. If the triangle and circle intersect each other and are contained in a square. Then

(a) S ∩ T ∩ C = φ 

(b) S ∪ T ∪ C = C

(c) S ∪ T ∪ C = S

(d) S ∪ T = S ∩ C

Read more
A: 

T h e g i v e n c o n d i t i o n s o f t h e q u e s t i o n m a y b e r e p r e s e n t e d b y t h e f o l l o w i n g V e n n d i a g r a m . F r o m t h e g i v e n V e n n d i a g r a m , W e c l e a r l y c o n c l u d e t h a t S T C = s H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

 

Q:  

Let R be set of points inside a rectangle of sides a and b (a, b > 1) with two sides along the positive direction of x-axis and y-axis. Then

(a) R = {(x, y): 0 ≤ x ≤ a, 0 ≤ y ≤ b}

(b) R = {(x, y): 0 ≤ x < a, 0 ≤ y ≤ b}

(c) R = {(x, y): 0 ≤ x ≤ a, 0 < y < b}

(d) R = {(x, y): 0 < x < a, 0 < y < b}

Read more
A: 

Kindly go through the solution

 

Q:  

In a class of 60 students, 25 students play cricket and 20 students play tennis, and 10 students play both the games. Then, the number of students who play neither is

(a) 

(b) 25 

(c) 35 

(d) 45

Read more
A: 

T o t a l n u m b e r o f s t u d e n t s = 6 0 n ( U ) = 6 0 N u m b e r o f s t u d e n t s w h o p l a y C r i c k e t = 2 5 n ( C ) = 2 5 N u m b e r o f s t u d e n t s w h o p l a y T e n n i s = 2 0 n ( T ) = 2 0 N u m b e r o f s t u d e n t s w h o p l a y C r i c k e t a n d T e n n i s b o t h = 1 0 n ( C T ) = 1 0 n ( C T ) = n ( C ) + n ( T ) n ( C T ) = 2 5 + 2 0 1 0 = 4 5 1 0 = 3 5 n ( C ' T ' ) = n ( U ) n ( C T ) = 6 0 3 5 = 2 5 H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

In a town of 840 persons, 450 persons read Hindi, 300 read English and 200 read both. Then the number of persons who read neither is

(a) 210

(b) 290 

(c) 180 

(d) 260

Read more
A: 

T o t a l n u m b e r o f p e r s o n s i n a t o w n = 8 4 0 n ( U ) = 8 4 0 N u m b e r o f p e r s o n s w h o r e a d H i n d i = 4 5 0 n ( H ) = 4 5 0 N u m b e r o f p e r s o n s w h o r e a d E n g l i s h = 3 0 0 n ( E ) = 3 0 0 N u m b e r o f p e r s o n s w h o r e a d b o t h = 2 0 0 n ( H E ) = 2 0 0 n ( H E ) = n ( H ) + n ( E ) n ( H E ) = 4 5 0 + 3 0 0 2 0 0 = 5 5 0 n ( H ' E ' ) = n ( U ) n ( H E ) = 8 4 0 5 5 0 = 2 9 0 H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

If X = {8n – 7n – 1 | n ∈ N} and Y = {49n – 49 | n ∈ N}. Then

(a) X ⊂ Y

(b) Y ⊂ X

(c) X = Y 

(d) X ∩ Y = φ

Read more
A: 

G i v e n t h a t : X = { 8 n 7 n 1 | n N } = { 0 , 4 9 , 4 9 0 , } Y = { 4 9 n 4 9 | n N } = { 0 , 4 9 , 9 8 , } H e r e , i t i s c l e a r t h a t e v e r y e l e m e n t b e l o n g i n g s t o X i s a l s o p r e s e n t i n Y . X Y . H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q:  

A survey shows that 63% of the people watch a News Channel whereas 76%watch another channel. If x% of the people watch both channels, then

(a) x = 35 

(b) x = 63

(c) 39 ≤ x ≤ 63

(d) x = 39

Read more
A: 

L e t p % o f t h e p e o p l e w a t c h a c h a n n e l a n d q % o f t h e p e o p l e w a t c h a n o t h e r c h a n n e l n ( p q ) = x % a n d n ( p q ) 1 0 0 n ( p q ) n ( p ) + n ( q ) n ( p q ) 1 0 0 6 3 + 7 6 x 1 0 0 1 3 9 x x 1 3 9 1 0 0 x 3 9 N o w n ( p ) = 6 3 n ( p q ) n ( p ) x 6 3 S o , 3 9 x 6 3 H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Q:  

If sets A and B are defined as

A = {(x, y) | y = 1/x, 0 ≠ x ∈ R} B = {(x, y) | y = – x, x ∈ R}, then

(a) A ∩ B = A 

(b) A ∩ B = B 

(c) A ∩ B = φ 

(d) A ∪ B = A

Read more
A: 

G i v e n t h a t : A = { ( x , y ) | y = 1 x , 0 x R } B = { ( x , y ) | y = x , x R } H e r e , i t i s c l e a r t h a t y = 1 x a n d y = x ? 1 x x A B = ? H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Q:  

If A and B are two sets, then A ∩ (A ∪ B) equals

(a) 

(b) B

(c) φ 

(d) A ∩ B

Read more
A: 

G i v e n t h a t : A ( A B ) L e t x A ( A B ) x A a n d x ( A B ) x A a n d ( x A o r x B ) ( x A a n d x A ) o r ( x A a n d x B ) x A o r x ( A B ) x A H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q:  

If A = {1, 3, 5, 7, 9, 11, 13, 15, 17} B = {2, 4, ..., 18} and N the set of natural numbers is the universal set, then A′ ∪(A ∪ B) ∩ B′) is

(a) φ 

(b) 

(c) 

(d) B

Read more
A: 

G i v e n t h a t : A = { 1 , 3 , 5 , 7 , 9 , 1 1 , 1 3 , 1 5 , 1 7 } B = { 2 , 4 , , 1 8 } U = N = { 1 , 2 , 3 , 4 , 5 , } A ' ( A B ) B ' = A ' [ ( A B ' ) ( B B ' ) ] = A ' ( A B ' ) ? [ ? B B ' = ? ] = A ' ( A B ' ) = ( A ' A ) ( A ' B ' ) = N ( A ' B ' ) [ ? A ' A = N ] = A ' B ' = ( A B ) ' = ( ? ) ' = N [ ? A B = ? ] H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

Let S = {x | x is a positive multiple of 3 less than 100}

P = {x | x is a prime number less than 20}. Then n(S) + n(P) is

(a) 34 

(b) 31 

(c) 33 

(d) 30

Read more
A: 

G i v e n t h a t : S = { x | x i s a p o s i t i v e m u l t i p l e o f 3 < 1 0 0 } S = { 3 , 6 , 9 , 1 2 , 1 5 , 1 8 , , 9 9 } n ( S ) = 3 3 T = { x | x i s a p r i m e n u m b e r < 2 0 } T = { 2 , 3 , 5 , 7 , 1 1 , 1 3 , 1 7 , 1 9 } n ( T ) = 8 S o , n ( S ) + n ( T ) = 3 3 + 8 = 4 1 H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

If X and Y are two sets and X′ denotes the complement of X, then X ∩ (X ∪ Y) ′is equal to

(a) 

(b) 

(c) φ 

(d) X ∩ Y

Read more
A: 

L e t x X ( X Y ) ' x X ( X ' Y ' ) x ( X X ' ) ( X Y ' ) x ? ( X Y ' ) [ ? A A ' = ? ] x ? H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Maths NCERT Exemplar Solutions Class 11th Chapter One Logo

Sets Fill in the blanks

The set {x ∈ R: 1 ≤ x < 2} can be written as ______________.
When A = φ, then number of elements in P(A) is ______________.
Q&A Icon
Commonly asked questions
Q:  

The set {x ∈ R: 1 ≤ x < 2} can be written as ______________.

A: 

T h e s e t { x R : 1 x < 2 } c a n b e w r i t t e n a s [ 1 , 2 ) H e n c e , t h e f i l l e r i s [ 1 , 2 ) .

Q:  

When A = φ, then number of elements in P(A) is ______________.

A: 

H e r e , A = ? n ( A ) = 0 ? n [ P ( A ) ] = 2 n ( A ) = 2 0 = 1 H e n c e , t h e f i l l e r i s 1 .

Q:  

If A and B are finite sets such that A ⊂ B, then n (A ∪ B) = ______________.

Read more
A: 

SinceABn (AB)=n (B) H e n c e , t h e f i l l e r i s n ( B ) .

Q:  

If A and B are any two sets, then A – B is equal to ______________.

A: 

F r o m t h e v e n n d i a g r a m i t i s c l e a r t h a t A B = A B ' H e n c e , t h e f i l l e r i s A B ' .

Q:  

Power set of the set A = {1, 2} is ______________.

A: 

P o w e r s e t o f A = P ( A ) = { { 1 } , { 2 } , { 1 , 2 } , ? } H e n c e , t h e f i l l e r i s { { 1 } , { 2 } , { 1 , 2 } , ? } .

Q:  

Given the sets A = {1, 3, 5}. B = {2, 4, 6} and C = {0, 2, 4, 6, 8}. Then the universal set of all the three sets A, B and C can be ______________.

Read more
A: 

G i v e n t h a t : A = { 1 , 3 , 5 } , B = { 2 , 4 , 6 } a n d C = { 0 , 2 , 4 , 6 , 8 } U n i v e r s a l s e t o f a l l t h e g i v e n s e t s i s U = { 0 , 1 , 2 , 3 , 4 , 5 , 6 , 8 } H e n c e , t h e f i l l e r i s { 0 , 1 , 2 , 3 , 4 , 5 , 6 , 8 } .

Q:  

If U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, A = {1, 2, 3, 5}, B = {2, 4, 6, 7} and C = {2, 3, 4, 8}. Then

a) (B ∪ C) ′ is ______________. 

b) (C – A) ′ is ______________.

Read more
A: 

G i v e n t h a t : U = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 } A = { 1 , 2 , 3 , 5 } , B = { 2 , 4 , 6 , 7 } a n d C = { 2 , 3 , 4 , 8 } ( i ) ( B C ) ' = { 2 , 3 , 4 , 6 , 7 , 8 } ' = { 1 , 5 , 9 , 1 0 } H e n c e , t h e f i l l e r i s { 1 , 5 , 9 , 1 0 } . ( i ) ( C A ) ' = { 4 , 8 } ' = { 1 , 2 , 3 , 5 , 6 , 7 , 9 , 1 0 } H e n c e , t h e f i l l e r i s { 1 , 2 , 3 , 5 , 6 , 7 , 9 , 1 0 } .

Q:  

For all sets A and B, A – (A ∩ B) is equal to ______________.

A: 

SinceAB=AB' A ( A B ) = A B ' H e n c e , t h e f i l l e r i s A B ' .

Q:  

Match the following sets for all sets A, B and C

i. ((A′ ∪ B′) – A) ′                     (a) A – B

ii. [B′ ∪ (B′ – A)] ′                    (b) A

iii. (A – B) – (B – C)                 (c) B

iv. (A – B) ∩ (C – B)                 (d) (A × B) ∩ (A × C)

v. A × (B ∩ C)                          (e) (A × B) ∪ (A × C)

vi. A × (B ∪ C)                         (f) (A ∩ C) – B

Read more
A: 

( i ) ( ( A ' B ' ) A ) ' = [ ( A ' B ' ) A ' ] ' [ ? A B = A B ' ] = [ ( A B ) ' A ' ] ' [ ? A ' B ' = ( A B ) ' ] = [ ( A B ) ' ] ' ( A ' ) ' [ ? ( A ' ) ' = A ] = ( A B ) A = A . S o , ( i ) i s m a t c h e d w i t h ( b ) . ( i i ) [ B ' ( B ' A ) ] ' = [ B ' ( B ' A ' ) ] ' [ ? A B = A B ' ] = ( B ' ) ' ( B ' A ' ) ' [ ? A ' B ' = ( A B ) ' ] = B ( B A ) = B . S o , ( i i ) i s m a t c h e d w i t h ( c ) . ( i i i ) ( A B ) ( B C ) = ( A B ' ) ( B C ' ) [ ? A B = A B ' ] = ( A B ' ) ( B C ' ) ' = ( A B ' ) ( B ' ( C ' ) ' ) [ ? A ' B ' = ( A B ) ' ] = ( A B ' ) ( B ' C ) = [ A ( B ' C ) ] [ B ' ( B ' C ) ] = [ A ( B ' C ) ] B ' = ( A B ' ) ( B ' C ) B ' = ( A B ' ) B ' = ( A B ' ) = A B S o , ( i i i ) i s m a t c h e d w i t h ( a ) . ( i v ) ( A B ) ( C B ) = ( A B ' ) ( C B ' ) [ ? A B = A B ' ] = ( A C ) B ' = ( A C ) B [ ? A B ' = A B ] S o , ( i v ) i s m a t c h e d w i t h ( f ) . ( v ) A × ( B C ) = ( A × B ) ( A × C ) S o , ( v ) i s m a t c h e d w i t h ( d ) . ( v i ) A × ( B C ) = ( A × B ) ( A × C ) S o , ( v i ) i s m a t c h e d w i t h ( e ) .

Maths NCERT Exemplar Solutions Class 11th Chapter One Logo

Sets True and False Type Questions

If A is any set, then A ⊂ A

Since every set is a subset of itself. So, it is 'True'.

Given that M = {1, 2, 3, 4, 5, 6, 7, 8, 9} and if B = {1, 2, 3, 4, 5, 6, 7, 8, 9}, then B ⊄ M
Q&A Icon
Commonly asked questions
Q:  

If A is any set, then A ⊂ A

A: 

Sinceeverysetisasubsetofitself.So, itis'True'.

Q:  

Given that M = {1, 2, 3, 4, 5, 6, 7, 8, 9} and if B = {1, 2, 3, 4, 5, 6, 7, 8, 9}, then B ⊄ M

Read more
A: 

M = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 } a n d B = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 } SinceMandBhassameelements M = B , S o B M ? ? i s ' F a l s e '

Q:  

The sets {1, 2, 3, 4} and {3, 4, 5, 6} are equal.

A: 

False, Sincethetwosetsdonotcontainthesameelements.

Q:  

Q ∪ Z = Q, where Q is the set of rational numbers and Z is the set of integers.

Read more
A: 

True, Sinceeveryintegerisarationalnumber Z Q , S o Q Z = Q .

Q:  

Let sets R and T be defined as R = {x ∈ Z | x is divisible by 2} T = {x ∈ Z | x is divisible by 6}. Then T ⊂ R

Read more
A: 

W e c a n w r i t t e n t h e g i v e n s e t s i s R o a s t e r f o r m R = { , 8 , 6 , 4 , 2 , 0 , 2 , 4 , 6 , 8 , } a n d T = { , 1 8 , 1 2 , 6 , 0 , 6 , 1 2 , 1 8 } SinceeveryelementofTispresentinR.So,TR. H e n c e , t h e s t a t e m e n t i s ' T r u e ' .

Q:  

Given A = {0, 1, 2}, B = {x ∈ R | 0 ≤ x ≤ 2}. Then A = B

A: 

H e r e , A = { 0 , 1 , 2 } , B i s a s e t h a v i n g a l l r e a l n u m b e r s f r o m 0 t o 2 . S o A B . H e n c e , t h e s t a t e m e n t i s ' F a l s e ' .

Q:  

Let A = [[1, x],], x ∈ R and A⁴ = [aᵢⱼ]. If a₁₁ = 109, then a₂₂ is equal to

A: 

A = [ x 1 ]
[ 1 0 ]
A² = [ x 1 ] [ x 1 ] = [ x²+1 x ]
[ 1 0 ] [ 1 0 ] [ x 1 ]
A? = [ x²+1 x ] [ x²+1 x ]
[ x 1 ] [ x 1 ]
= [ (x²+1)²+x² x (x²+1)+x ]
[ x (x²+1)+x²+1 ]
a? = (x² + 1)² + x² = 109
⇒ x = ±3
a? = x² + 1 = 10

Q:  

The diameter of the circle, whose centre lies on the lines x + y = 2 in the first quadrant and which touches both the lines x = 3 and y = 2, is

Read more
A: 

∴ center lies on x + y = 2 and in 1st quadrant center = (a, 2-a) where a > 0 and 2-a > 0 ⇒ 0 < a < 2
∴ circle touches x = 3 and y = 2
⇒ |3-a| = |2 - (2-a)| = radius
⇒ |3-a| = |a| ⇒ a = 3/2
∴ radius = a
⇒ Diameter = 2a = 3.

Q:  

If lim(x→0) (1/x⁸){1 − cos(x²/2) − cos(x²/4) + cos(x²/2)cos(x²/4)} = 2⁻ᵏ, then the value of k is

A: 

lim_ (x→0) (1/x? ) {1 - cos (x²/2) - cos (x²/4) + cos (x²/2)cos (x²/4)} = 2?
⇒ lim_ (x→0) ( (1 - cos (x²/2) (1 - cos (x²/4) / x? ) = 2?
⇒ 2? = 2? ⇒ k = 8

Q:  

The value of (0.16)^log₂.₅(1/3 + 1/3² + 1/3³ + ... to ∞) is equal to

A: 

(0.16)^log? (1/3 + 1/3² + . to ∞)
= (4/25)^log? (1/2)
= ( (5/2)? ² )^log? /? (1/2) = (5/2)^ (-2 log? /? (1/2)
= (5/2)^ (log? /? ( (1/2)? ² ) = 4

Q:  

If ((1+i)/(1-i))^(m/2) = ((1+i)/(1-i))^(n/3) = 1, ( m, n ∈ Ν)
Then the greatest common divisor of the least values of m and n is
(Complex Numbers) least values of m and n is

Read more
A: 

( (1+i)/ (1-i) )^ (m/2) = ( (1+i)/ (i-1) )^ (n/3) = 1
⇒ ( (1+i)²/2 )^ (m/2) = ( (1+i)²/ (-2) )^ (n/3) = 1
⇒ (i)^ (m/2) = (-i)^ (n/3) = 1
⇒ m/2 = 4k? and n/3 = 4k?
⇒ m = 8k? and n = 12k?
Least value of m = 8 and n = 12
∴ GCD = 4
∴ GCD = 4

Try these practice questions

Q1:

If α and β are the roots of the equation x² + px + 2 = 0 and 1/α and 1/β are the roots of the equation 2x² + 2qx + 1 = 0, then (α - 1/β)(β - 1/α)(α + 1/β)(β + 1/α) is equal to:

Q2:

A hyperbola having the transverse axis of length √2 has the same foci as that of the ellipse 3x² + 4y² = 12, then this hyperbola does not pass through which of the following points?

View Full Question

Q3:

Consider the two sets:
A = {m ∈ R : both the roots of x² – (m + 1)x + m + 4 = 0 are real } and B = [−3,5). Which of the following is not true?

View Full Question

qna

Maths NCERT Exemplar Solutions Class 11th Chapter One Exam

Student Forum

chatAnything you would want to ask experts?
Write here...