Class 11 Maths Ch 7 Binomial Theorem NCERT Solutions | Step-by-Step Guide

NCERT Maths 11th 2023 ( Maths Ncert Solutions class 11th )

Pallavi Pathak
Updated on Sep 18, 2025 17:12 IST

By Pallavi Pathak, Assistant Manager Content

Class 11 Maths Chapter 7 Binomial Theorem covers the calculation techniques of higher powers of binomials. The binomial theorem helps in such calculations. Ch 7 Class 11 Maths provides an easy way to expand ( a + b ) n , where n is an integer or a rational number. This chapter only covers the binomial theorem for positive integral indices.
Chapter 7 Class 11 Maths NCERT solutions are prepared by the subject matter experts at Shiksha. It is a reliable source where the solutions are given in a step-by-step format. It helps students develop problem-solving skills and gain confidence in solving NCERT questions. The solutions are ideal to score high in the CBSE Board exam and competitive exam like the JEE Main exam.
For all chapter notes of Class 11 Maths, including important topics and solved examples, Class 11 students can Explore Here. The notes are aligned with the latest CBSE updates.

Table of content
  • Overview of Binomial Theorem – Class 11 Maths Chapter 7
  • Chapter 7 Binomial Theorem : Key Topics, Weightage
  • Important Formulas of Ch 7 Maths Class 11 Binomial Theorem
  • Chapter 7 Binomial Theorem NCERT Solution PDF: Download PDF for Free
  • Chapter 7 Binomial Theorem Exercise-wise Solution
  • Chapter 7 Binomial Theorem Exercise 7.1 Solutions
  • Chapter 7 Binomial Theorem Exercise 7.2 Solutions
  • Chapter 7 Binomial Theorem Miscellaneous Exercise Solutions
  • Binomial Theorem - FAQs
View More
Maths Ncert Solutions class 11th Logo

Overview of Binomial Theorem – Class 11 Maths Chapter 7

Ch 7 Maths Class 11 is a short chapter. Here is a quick summary of Binomial Theorem - Chapter 7 Class 11 Maths:

  • The chapter covers the Binomial Theorem, which allows the expansion of a binomial for any positive integral n. Mathematically, it is shown as - ( a + b ) n = C 0 n a n + C 1 n a n 1 b + C 2 n a n 2 b 2 + + C r n a n r b r + C n n b n
  • It also introduces Pascal’s triangle, which is an array in which the coefficients of the expansions are arranged. 

In case you are looking for NCERT notes of Physics, Chemistry & Maths of class 11 for quick revision. You must check here.

Maths Ncert Solutions class 11th Logo

Chapter 7 Binomial Theorem : Key Topics, Weightage

In the Ch 7 Class 11 Maths Binomial Theorem, the students should thoroughly understand the binomial expansion, the middle terms, finding general terms, and applications of the theorem. This is not a very high-weightage chapter for JEE Mains, but Class 11 students need to understand this chapter well to score good marks in the entrance exams later. Here are the topics covered in this chapter:

Exercise Topics Covered
7.1 Introduction
7.2 Binomial Theorem for Positive Integral Indices

Chapter 7 Class 11 Maths Binomial Theorem Weightage in JEE Mains exam

Exam Number of Questions Weightage
JEE Mains 1 question 3.3%

Try these practice questions

Q1:

The term independent of x in the expansion of   ( 1 x 2 + 3 x 3 ) ( 5 2 x 3 1 5 x 2 ) 1 1 , x 0 i s :

View Full Question

Q2:

Let A1, A2, A3,…. be an increasing geometric progression of positive real numbers. If A1A3A5A7 = 1 1 2 9 6  and A2 + A4 = 7 3 6 ,  then, the value of A6 + A8 + A10 is equal to

View Full Question

Maths Ncert Solutions class 11th Logo

Important Formulas of Ch 7 Maths Class 11 Binomial Theorem

Important Terms and Formulae for Binomial Theorem

  • Binomial Expansion

( a + b ) n = r = 0 n ( n r ) a n r b r

where ( n r ) = n ! r ! ( n r ) ! \binom{n}{r} = \frac{n!}{r!(n-r)!}

  • General Term

T r + 1 = ( n r ) a n r b r

  • Middle Term(s)
    • If n n is even: T n 2 + 1 T_{\frac{n}{2}+1}
    • If n n is odd: Two middle terms: T n + 1 2 T_{\frac{n+1}{2}} and T n + 3 2 T_{\frac{n+3}{2}}

4. Sum of Binomial Coefficients

r = 0 n ( n r ) = 2 n \sum_{r=0}^{n} \binom{n}{r} = 2^n

5. Approximation Formula (for small x x )

( 1 + x ) n 1 + n x + n ( n 1 ) 2 x 2 (1 + x)^n \approx 1 + nx + \frac{n(n-1)}{2}x^2

Maths Ncert Solutions class 11th Logo

Chapter 7 Binomial Theorem NCERT Solution PDF: Download PDF for Free

Students must download the free PDF of the Class 11 Maths Chapter 7 from the link given below. The solutions are well-structured and help students to improve their school exam, CBSE Board exam, and JEE Mains exam preparation. 
Class 12 Math Chapter 7 Binomial Theorem Solution PDF: Free PDF Download

Related Links

NCERT Notes for Class 11 & 12 NCERT Solutions for Class 11 Maths NCERT Solutions Class 11 and 12 for Maths, Physics, Chemistry
Maths Ncert Solutions class 11th Logo

Chapter 7 Binomial Theorem Exercise-wise Solution

Class 11 Binomial Theorem is a very important mathematical concept that provides a systematic method for expanding expressions of the form ( a + b ) n (a + b)^n , where n n is a positive integer. Class 11 Chapter 7 Binomial theorem consists of several exercises and problem based on taught concepts. Earlier this chapter was numbered as chapter 8 in old NCERT Textbooks. Exercise 8.1 includes expansion of ( a + b ) n (a+b)^n

Maths Ncert Solutions class 11th Logo

Chapter 7 Binomial Theorem Exercise 7.1 Solutions

Binomial Theorem Exercise 7.1 focuses on the basic principles and applications of understanding the General Expansion, Binomial Coefficients, General Term Formula, and other related concepts. Candidates can check the Binomial Therom class 11 Exercise7.1 solution below;

Binomial Theorem Exercise 7.1 NCERT Solutions 

Expand each of the expressions in Exercises 1 to 2.

Q1. (1–2x)5

A.1. (1 – 2x)5

By using binomial theorem we have,

= 5C0 (1)5+5C1 (1)4 (-2x) + 5C2 (1)3 (-2x)2+5C3 (1)2 (-2x)3+5C4 (1)1 (-2x)4+5C5 (-2x)5

( 5 ! 0 ! ( 5 0 ) !
′ 1
)
+ [ 5 ! 1 ! ( 5 1 ) ! 1 ( 2 x ) ] +[x1× (4x2)] +  [ 5 ! 3 ! ( 5 3 ) ! 1 ( 8 x 3 ) ]  +  [ 5 ! 4 ! ( 5 4 ) ! 1 ( 1 6 x 4 ) ]  +  [ 5 ! 5 ! ( 5 5 ) ! ( 3 2 x 5 ) ]

= 1 +  [ 5′
4 !
1′  
4 !
( 2 x )
]
 +  [ 5′
4′
3 !
2′
1′
3 !
× 4 x 2
]
 +  [ 5′
4′
3 !
3 !′
2 !
× ( 8 x 3 )
]
 +  [ 5′
4 !
4 !′  
1
× 1 6 x 4
]
+ [1 × (-32x5)]

= 1 + [5 × (–2x)] + [10 × 4x2] + [10 × (–8x3)] + [5 × 16x4] + [–32x5]

= 1 – 10x + 40x2 – 80x3 + 80x4 – 32x5

Q2. ( 2 x x 2 ) 5

A.2. ( 2 x x 2 ) 5

Using (xy)n

=  5C0 ( 2 x ) 5 5C1 ( 2 x ) 4   ( x 2 ) + 5C2 ( 2 x ) 3   ( x 2 ) 2 5C3 ( 2 x ) 2   ( x 2 ) 3 + 5C4 ( 2 x )   ( x 2 ) 4 5C5 ( x 2 ) 5

[ 5 ! 0 ! ( 5 0 ) !
′3 2 x 5
]
 –  [ 5 ! 1 ! ( 5 1 ) ! 1 6 x 4 × x 2 ]  +  [ 5 ! 2 ! ( 5 2 ) ! 8 x 3 x 2 4 ]  –  [ 5 ! 3 ! ( 5 3 ) ! 4 x 2 x 3 8 ]  +  [ 5 ! 4 ! ( 5 4 ) ! x 2 x 4 1 6 ]  –  [ 5 ! 5 ! ( 5 5 ) ! x 5 3 2 ]

[ 1 3 2 x 5 ]  –  [ 5 4 ! 1 4 ! 8 x 3 ]  +  [ 5 4′
3 !
2
1′
3 !
2 x
]
 –  [ 5′
4′
3 !
3 !′  
2 !
× x 2
]
 +  [ 5′  
4 !
4 !′  
1 !
x 3 8
]
 –  [ 1′
x 5 3 2
]

3 2 x 5  –  4 0 x 3  +  2 0 x  – 5x +  5 8 x 3  –  x 5 3 2

Using binomial theorem, evaluate each of the following:

Q3. (102)5

A.3. (102)5 = (100 + 2)5

By using binomial theorem,

= 5C0(100)5 + 5C1(100)4(2) + 5C2(100)3(2)2 + 5C3(100)2(2)3 + 5C4(100)(2)4 + 5C5(2)5

[ 5 ! 0 ! ( 5 0 ) ! 1 0 0 0 0 0 0 0 0 0 0 ]  +  [ 5 ! 1 ! ( 5 1 ) ! 0 0 0 0 0 0 0 0 2 ]  +  [ 5 ! 2 ! ( 5 2 ) ! 1 0 0 0 0 0 0 4 ]  +  [ 5 ! 3 ! ( 5 3 ) ! 1 0 0 0 0 8 ]  +  [ 5 ! 4 ! ( 5 4 ) ! 1 0 0 1 6 ]  +  [ 5 ! 5 ! ( 5 5 ) ! 3 2 ]

= [1 × 10000000000] +  [ 5′
4 !
1′
4 !
0 0 0 0 0 0 0 0
]
 +  [ 5′
4′
3 !
2′
1′
3 !
4 0 0 0 0 0 0
]
 +  [ 5′
4′
3 !
3 !′  
2 !
8 0 0 0 0
]
 +  [ 5′
4 !
4 !′  
1 !
1 6 0 0
]
 + [1 × 32]

= 10000000000 + 1000000000 + 40000000 + 800000 + 8000 + 32

= 11040808032

Q4. (101)4

A.4. (101)4 = (100 + 1)4

By binomial theorem we get,

= 4C0(100)4 + 4C1(100)3(1) + 4C2(100)2(1)2 + 4C3(100)(1)3 + 4C4(1)4

[ 4 ! 0 ! ( 4 0 ) ! 0 0 0 0 0 0 0 0 ]  +  [ 4 ! 1 ! ( 4 1 ) ! 0 0 0 0 0 0 1 ]  +  [ 4 ! 2 ! ( 4 2 ) ! 1 0 0 0 0 1 ]  +  [ 4 ! 3 ! ( 4 3 ) ! 1 0 0 1 ]  +  [ 4 ! 4 ! ( 4 4 ) ! 1 ]

= [1 × 100000000] +  [ 4′
3 !
1′
3 !
1 0 0 0 0 0 0
]
 +  [ 4′
3′
2 !
2′
1′
2 !
1 0 0 0 0
]
 +  [ 4′
3 !
3 !′  
1 !
1 0 0
]
 +[1 × 1]

= 100000000 + 4000000 + 60000 + 400 + 1

= 104060401

Q5. (99)5

A.5. (99)5 = (100 – 1)5

By binomial theorem we get,

= 5C0(100)55C1(100)4(1) + 5C2(100)3(1)25C3(100)2(1)3 + 5C4(100)(1)45C5(1)5

[ 5 ! 0 ! ( 5 0 ) ! 1 0 0 0 0 0 0 0 0 0 0 ]  –  [ 5 ! 1 ! ( 5 1 ) ! 0 0 0 0 0 0 0 0 1 ]  +  [ 5 ! 2 ! ( 5 2 ) ! 0 0 0 0 0 0 1 ]  –  [ 5 ! 3 ! ( 5 3 ) ! 1 0 0 0 0 1 ]  +  [ 5 ! 4 ! ( 5 4 ) ! 1 0 0 1 ]  –  [ 5 ! 5 ! ( 5 5 ) ! 1 ]

= [1 × 10000000000] –  5′
4 !
1′
4 !
0 0 0 0 0 0 0 0
 +  [ 5′
4′
3 !
2′
1′
3 !
1 0 0 0 0 0
]
 –  [ 5′
4′
3 !
3 !′  
2 !
1 0 0 0 0
]
 +  [ 5′
4 !
4 !′  
1 !
1 0 0
]
 – [1 × 1]

= 10000000000 – 500000000 + 10000000 – 100000 + 500 – 1

= 10010000500 – 500100001

= 9509900499

Q6. Using Binomial Theorem, indicate which number is larger (1.1)10000or 1000.

A.6. We know that,

(1.1)10000 = (1 + 0.1)10000

By using binomial theorem,

= 10000C0(1)10000 + 10000C1 (1)(10000 – 1) (0.1) + other positive terms

[ 1 0 0 0 0 ! 0 ! ( 1 0 0 0 0 0 ) ! 1 ]  +  [ 1 0 0 0 0 ! 1 ! ( 1 0 0 0 0 1 ) ! 1 0 . 1 ]  + other positive terms

= [1 × 1] +  [ 1 0 0 0 0′  
9 9 9 9 !
1′
9 9 9 9 !
0 . 1
]
 + other positive terms

= 1 + 1000 + other positive terms

= 1001 + other positive terms

Hence, (1.1)10000> 1000

Q7. Find (a + b)4– (a – b)4. Hence, evaluate (√3 +√2 ) 4 (√3 −√2 ) 4 .

A.7. Using binomial theorem we have,

(a + b)4 – (ab)4

= [4C0a4 + 4C1a3b + 4C2a2b2 + 4C3ab3 + 4C4b4] – [4C0a44C1a3b + 4C2a2b24C3ab3 + 4C4b4]

= 4C0a4 + 4C1a3b + 4C2a2b2 + 4C3ab3 + 4C4b44C0a4 + 4C1a3b4C2a2b2 + 4C3ab34C4b4

= [2 ×4C1a3b] + [2 ×4C3ab3]

[ 2′
4 ! 1 ! ( 4 1 ) ! a 3 b
]
 +  [ 2′
4 ! 3 ! ( 4 3 ) ! a b 3
]

[ 2′
4′
3 !
1′
3 !
a 3 b
]
 +  [ 2′
4′
3 !
3 !
1 !
a b 3
]

= 8a3b + 8ab3

Hence putting a = √3 and b = √2 we have,

(√3 +√2 ) 4  –  (√3 −√2 ) 4

= 8  (√3 ) 3 (√2 )  + 8  (√3 )   (√2 ) 3

= (8 × 3 √3 ×√2  )+ (8 × √3 × 2 √2 )

= 24 √6 + 16 √6

= 40 √6

Q8. Find (x + 1)6+ (x – 1)6. Hence or otherwise evaluate (√2 + 1 ) 6 + (√2 1 ) 6 .

A.8. By binomial expansion we have,

( x + 1 ) 6  +  ( x 1 ) 6

= [6C0(x6) + 6C1(x5)(1) + 6C2(x4)(1) 2 + 6C3(x3)(1)3 + 6C4(x2)(1)4 + 6C5(x)(1)5 + 6C6(1)6] + [6C0(x6) – 6C1(x5)(1) + 6C2(x4)(1) 26C3(x3)(1)3 + 6C4(x2)(1)46C5(x)(1)5 + 6C6(1)6]

= 6C0(x6) + 6C1(x5)(1) + 6C2(x4)(1) 2 + 6C3(x3)(1)3 + 6C4(x2)(1)4 + 6C5(x)(1)5 + 6C6(1)6 + 6C0(x6) – 6C1(x5)(1) + 6C2(x4)(1) 26C3(x3)(1)3 + 6C4(x2)(1)46C5(x)(1)5 + 6C6(1)6

= 2 × [6C0(x6) + 6C2(x4)(1) 2 + 6C4(x2)(1)4 + 6C6(1)6]

= 2 ×  [ ( 6 ! 0 ! ( 6 0 ) ! x 6 ) + ( 6 ! 2 ! ( 6 2 ) ! 6 ! 2 ! ( 6 2 ) ! + x 4 1 )  +  ( 6 ! 4 ! ( 6 4 ) ! x 2 1 ) + ( 6 ! 6 ! ( 6 6 ) ! 1 ) ]

= 2 × [(1 ×  x 6  ) +  ( 6′
5′
4 !
2′  
1′
4 !
x 4
)
+ ( 6′
5′
4 !
4 !′  
2 !
x 2
)
 + (1 × 1)]

= 2[  x 6  + 15  x 4  + 15  x 2  + 1]

Hence putting x = √2 we have,

( √2 + 1)6 + ( √2 – 1)6

= 2 × [  (√2 ) 6  + 15  (√2 ) 4  + 15  (√2 ) 2  + 1]

= 2 × [23 + (15 x 22) + (15 x 2) + 1]

= 2 × [8 + 60 + 30 + 1]

= 2 × 99

= 198

Q9. Show that 9n+1– 8n – 9 is divisible by 64, whenever n is a positive integer.

A.9. For a number x to be divisible by y, we can write x as a factor of y i.e., x = ky where k is some natural number. Thus in order for 9n+1 – 8n – 9 to be divisible by 64 we need to show that 9n+1 – 8n – 9 = 64k where k is some natural number.

We have, by binomial theorem

(1 + a)m = mC0 + mC1(a) + mC2(a)2 + mC3(a)3 + ………… + mCm(a)m

Putting, a = 8 and m = n + 1

(1 + 8)n+1 = n+1C0 + n+1C1.8 + n+1C2.82 + n+1C3.83 + …….. + n+1Cn+1.(8)n+1

=> 9n+1=  1 + (n + 1)8 + 82×[n+1C2 + n+1C3.8 + ……….. + n+1Cn+1.(8)n+1–2]  [since, n+1C0 = 1, n+1C1= n + 1]

=> 9n+1 = 1 + 8n + 8 + 64 × [n+1C2 + n+1C3.8 + ……….. + n+1Cn+1.(8)n+1-2]

=> 9n+1 – 8n – 9 = 64 × [n+1C2 + n+1C3.8 + ……….. + 8n–1][since, n+1Cn+1 = 1]

=> 9n+1 – 8n – 9 = 64k,

where k = n+1C2 + n+1C3.8 + ……….. + 8n–1 is a natural number.

This shows that 9n+1 – 8n – 9 is divisible by 64

Q10. Prove that r = 0 n 3 r n C r = 4 n .

A.10.

By binomial theorem,

(a + b)n = nC0(a)n(b)0 + nC1(a)n–1(b)1 + ………….. + nCr(a)nr(b)r + …………… + nCn(a)nn(b)n

Where, b0 = 1 = ann

So, (a + b)n = nCr(a)nr(b)r

Putting a = 1 and b = 3 such that a + b = 4 , we can rewrite the above equation as

(1 + 3)n = nCr(1)nr.3r

=>4n = r = 0 . 3 r .nCr

Hence proved.

Q&A Icon
Commonly asked questions
Q:  

12.  Find a, b and n in the expansion of (a + b)n if the first three terms of the expansion are 729, 7290 and 30375, respectively.

Read more
A: 

1.The general term of the expansion (a + b)n is given by

Tr +1 = nCran–rbr

So, T1 = nC0an = an

T2 = nC1an-1b = n!1!(n1)! an-1 b = n×(n1)!(n1)! an-1b = nan-1b

T3 = nC2an-2b2 = n!2!(n2)[! an-2b2 = n ×(n1)×(n2)!2×1×(n2)! an-2b2 = n(n1)2 an-2b2

Given,

T1 = 729

=>an = 729 ------------------ (1)

T2 = 7290

=>nan–1b = 7290 ------------- (2)

T3 = 30375

=> n(n1)2 an–2b2 = 30375 ------------------- (3)

Dividing equation (2) by (1) we get,

nan1ban = 7290729

=> nba = 10

Similarly dividing equation (3) by (2) we get,

n(n1)2 an–2b2 ÷ nan–1b = 303757290

=> n(n1)2 an–2b2× 1nan1b = 303757290

=> n(n1)an2b2 × 1nan1b = 303757290 × 2

=> (n1)ba = 25′ ×26

=> nba ba = 253

=> 10 – ba = 253 [since, nba = 10]

=> ba = 10 – 253

30253

53 --------------- (5)

Putting equation (5) in (4) we get,

n× 53 = 10

=>n = 10 × 35

=>n = 6

So putting the value of n in equation (1) we get,

a6 = 729

=>a6= 36

=>a = 3

And putting a = 3 in equation (5) we get,

ba = 53

=>b = 53 ×a

53 × 3

= 5

Q:  

1. Show that 9n+1– 8n – 9 is divisible by 64, whenever n is a positive integer.

A: 

1. For a number x to be divisible by y, we can write x as a factor of y i.e., x = ky where k is some natural number. Thus in order for 9n+1 – 8n – 9 to be divisible by 64 we need to show that 9n+1 – 8n – 9 = 64k where k is some natural number.

We have, by binomial theorem

(1 + a)m = mC0 + mC1 (a) + mC2 (a)2 + mC3 (a)3 + ………… + mCm (a)m

Putting, a = 8 and m = n + 1

(1 + 8)n+1 = n+1C0 + n+1C1.8 + n+1C2.82 + n+1C3.83 + ……. + n+1Cn+1. (8)n+1

=> 9n+1=  1 + (n + 1)8 + 82× [n+1C2 + n+1C3.8 + ………. + n+1Cn+1. (8)n+1–2]  [since, n+1C0 = 1, n+1C1= n + 1]

=> 9n+1 = 1 + 8n + 8 + 64 × [n+1C2 + n+1C3.8 + ………. + n+1Cn+1. (8)n+1-2]

=> 9n+1 – 8n – 9 = 64 × [n+1C2 + n+1C3.8 + ………. + 8n–1] [since, n+1Cn+1 = 1]

=> 9n+1 – 8n – 9 = 64k,

where k = n+1C2 + n+1C3.8 + ………. + 8n–1 is a natural number.

This shows that 9n+1 – 8n – 9 is divisible by 64

Q:  

2. Prove that r=0n3rnCr=4n.

A: 

2.

By binomial theorem,

(a + b)n = nC0 (a)n (b)0 + nC1 (a)n–1 (b)1 + …………. + nCr (a)nr (b)r + …………… + nCn (a)nn (b)n

Where, b0 = 1 = ann

So, (a + b)n = nCr (a)nr (b)r

Putting a = 1 and b = 3 such that a + b = 4, we can rewrite the above equation as

(1 + 3)n = nCr (1)nr.3r

=>4n = ? r=0.3r .nCr

Hence proved.

Q:  

4. a5b7in (a – 2b)12.

A: 

4. Let a5b7 occurs in (r + 1)th term of [removed]a – 2b)12.

Now, Tr+1 = 12Cra12-r (–2b)r

= (–1)r12Cra12–r . 2r. br

Comparing indices of a and b in Tr-1 with a5 and b7 we get,  r = 7

So, co-efficient of a5b7 is (–1)712C7 27

Q:  

Write the general term in the expansion of

5. (x2–y)6

A: 

5. Let (r + 1)th term be the general term of (x2–y)6.

So, Tr-1 = 6Cr (x2)6-r (-y)r

= (–1)r .6Cr . x12r . yr

Q:  

6. ( x2 yx)12 , x≠ 0.

A: 

6. Let (r + 1)th be the general term of ( x2 yx)12

So, Tr-1 = 12Cr (x2)12–r (–yx)r

= (–1)r12Crx24–2ryrxr

= (–1)r12Cr x242r+ryr

= (-1)r12C­r x24ryr

Q:  

7. Find the 4thterm in the expansion of (x – 2y)12.

A: 

7. General term of the expansion (x2y)12 is given by

Tr+1 = 12Cr (x)12r (2y)r

For 4th term, r + 1 = 4 i.e., r = 3

Therefore, T4 = T3+1 = 12C3 (x)123 (2y)3

Q:  

8. In the expansion of (1 + a)m+n,prove that coefficients of an and an are equal.

A: 

8. The general term of the expansion (1 + a)m+n is

Tr+1 = m+nCrar   [since, 1m+n-r = 1]

At r = m we have,

Tm+1 = m+nCmam

(m+n)!m! (m+nm)! (a)m

(m+n)!m! n! am - (1)

Similarly at r = n we have,

Tn+1 = m+nCnan

(m+n)!n! (m+nn)! (a)n

(m+n)!n! m! an - (2)

Hence from (1) & (2),

Co-efficient of am = Co-efficient of an = (m+n)!m!n!

Q:  

9. The coefficients of the (r – 1)th, rthand (r + 1)thterms in the expansion of (x + 1)n are in the ratio 1 : 3 : 5. Find n and r.

Read more
A: 

9. The general term of the expansion (x +1)n is

Tr+1 = nCrxnr1r

i.e. co-efficient of (r+1)th term = nCr

So, co-efficient of (r1)th term =nC(r–1) – 1 = nCr – 2

Similarly, co-efficient of rth term = nCr – 1

Given that, nCr – 2 :nCr – 1 : nCr = 1 : 3 : 5

We have,

 

 = 13

=> n!(r2)!(nr+2)! × (r1)!(nr+1)!n! = 13

=> (r1)(r2)!(nr+1)!(r2)!(nr+2)(nr+1)! = 13

=> (r1)(nr+2) = 13

=> 3r – 3 = n – r + 2

=> 3r + r = n + 2 + 3

=> 4r = n + 5 -------------- (1)

And,

 

 = 35

=> n!(r1)!(nr+1)! × r!(nr)!n! = 35

=> r(r1)!(nr)!(r1)!(nr+1)(nr)! = 35

=> rnr+1 = 35

=> 5r = 3n – 3r + 3

=> 5r + 3r = 3n + 3

=> 8r = 3n + 3 ----------------------- (2)

Multiplying equation (1) by 2 and subtracting from equation (2) we get,

8r – 8r = 3n + 3 – (2n + 10)

=> 0 = 3n + 3 – 2n – 10

=> 0 = n – 7

=>n = 7

Putting n = 7 in equation (1) we get,

=> 4r = 7 + 5

=>r = 124

=>r = 3

Q:  

10. Prove that the coefficient of xn in the expansion of (1 + x)2n is twice the coefficientof xn in the expansion of (1 + x)2n-1.

Read more
A: 

10. General term of the expansion (1 + x)2n is

Tr+1 = 2nCr (1)2n-r(x)r

So, co-efficient of xn (i.e. r = n) is 2nCn

Similarly general term of the expansion (1 + x)2n–1 is

Tr+1 = 2n-1Cr (1)2n–1–rxr

And co-efficient of xn i.e. when r = n is 2n-1Cn

Therefore,

coefficient of xn in (1+x)2ncoefficient of xn in (1+x)2n1

=

2n!n!(2nn)! ÷ (2n1)!n!(2n1n)!

2n!n!n! × n!(n1)!(2n1)!


2nn

= 2

Thus, co-efficient of xn in (1+x)2n = 2x co-efficient of xn in (1+x)2n1

Q:  

11. Find a positive value of m for which the coefficient of x2in the expansion (1 + x)m is 6.

A: 

11. The general term of the expansion  (1+x)m is given by,

Tr+1 = mCr 1mr xr

= mCrxr

At r = 2,

T2+1 = mC2x2

Given that, co-efficient of x2 = 6

=>mC2 = 6

=> m!2! (m2)! = 6

=>m2 – m = 12

=>m2 – m – 12 = 0

=>m2 + 3m – 4m – 12 = 0

=>m (m + 3) – 4 (m+ 3) = 0

=> (m – 4) (m + 3) = 0

=>m = 4 and m = –3

Since, we need a positive value of m we have,  m = 4

Q:  

13. Find a if the coefficients of x2and x3in the expansion of (3 + ax)9are equal.

A: 

13. The general term of the expansion (3+ax)9 is

Tr+1 = 9Cr 3(9r) (ax)r

= 9Cr 3(9r)arxr

At r = 2,

T2+1 = 9C2 3(92)a2x2

9!2!(92)! 37a2x2

9′8′7! /2′1′7! 37a2x2

= 36 ×37a2x2

At r = 3,

T3+1 = 9C3 3(93)a3x3

9!3!(93)! 36a3x3

= 9'8'7'6!/3'2'1'6! 36a3x3

= 84 ×36a3x3

Given that,

Co-efficient of x2 = co-efficient of x3

=> 36 × 37a2 = 84 × 36a3

=> a3a2 = 36' 3/84'36

=> a = 3′3/7

97

Q:  

14. If a and b are distinct integers, prove that a – b is a factor of an– bn, whenever n is a positive integer.

[Hint: write an= (a – b + b)n and expand]

Read more
A: 

14. For (a – b) to be a factor of anb nwe need to show (anbn) = (ab)k as k is a natural number.

We have, for positive n

an = (ab+b)n = [(ab)+b]n

=>an = nC0(ab)n + nC1(ab)n -1b + nC2(ab)n – 2b2 + ………… +nCn-1 (ab) bn1 + nCnbn

=>an= (ab)n + nC1 (ab)n1 b + nC2 (ab)n2 b2 + …………….…+ nCn-1 (ab) bn1 + bn [Since, nC0 = 1 and nCn = 1]

=> anbn = (ab)n +nC1 (ab)n1 b + nC2 (ab)n2 b2 + ……………… + nCn-1 (ab) bn1

=> anbn = (ab) [ (ab)n1 + nC1(ab)n2 b + nC2 (ab)n3 b2 +………..…… + nCn-1  bn1 ]

=> anbn = (ab) k where k = [ (ab)n1 + nC1 (ab)n2 b + nC2 (ab)n3 b2 +………..…… + nCn-1  bn1 ] is a natural number.

Therefore (a – b) is a factor of anbnwhere n is positive integer.

Q:  

15. Find the expansion of (3x2– 2ax + 3a2)3 using binomial theorem.

A: 

15. [3x22ax+3a2]3

[3x2+a(2x+3a)]3

We know that by binomial theorem,

(a+b)3 = a3+b3+3ab(a+b)

a3+b3+3a2b+3ab2

Then,

[3x2+a(2x+3a)]3

= (3x2)3 + [a(2x+3a)]3 + [3(3x2)2 a(2x+3a)] + [ 3(3x2){a(2x+3a)}2]

= 27x6 + [a3(2x+3a)3] + [3(9x4)(2ax+3a2)] + [3(3x2){a2(3a2x)2}]

= 27x6 + [a3{8x3+27a3+3(4x2)(3a)+3(2x)(9a2)}] + [54ax5+81a2x4] + [ (9a2x2) (9a2+4x212ax) ]

= 27x6 + [ 8a3x3+27a6+36a4x254a5x ] + [ 54ax5+81a2x4 ] + [ (81a4x2+36a2x4108a3x3 ]

= 27x6  8a3x3+27a6+36a4x254a5x  54ax5+81a2x4 + 81a4x2+36a2x4108a3x3

= 27x6– 54ax5 + 117a2x4  116a3x3 + 117a4x2  54a5x + 27a6

Maths Ncert Solutions class 11th Logo

Chapter 7 Binomial Theorem Exercise 7.2 Solutions

Binomial Theorem Exercise 7.2 focuses on the foundational concepts and delves into the application of binomial expansion. Exercise 7.2 of Binomial theorem focuses on the computation of specific terms in a binomial expansion, emphasizing the general term formula and finding a specific formula. Students can check below for binomial theorem ex 7.2 NCERT solutions;

Binomial Theorem Exercise 7.2 NCERT Solutions

Find the coefficient of

Q1. x5in (x + 3)8

A.1. Let x5 occurs in (r + 1)th term of the expansion (x + 3)8.

Now, Tr+1 = 8Cr . x 8 r . 3 r

Comparing indices of x in Tr+1 with x5 we get,

8 – r = 5

=>r = 8 – 5 = 3

So, Co-efficient of x5 is

8C3× 33

8 ! 3 ! ( 8 3 ) !  × 27

8′
7′
6′
5 !
3′
2′
1′
5 !
 × 27

= 56 × 27

= 1512

Q2. a5b7in (a – 2b)12.

A.2. Let a5b7 occurs in (r + 1)th term of [removed]a – 2b)12.

Now, Tr+1 = 12Cra12-r (–2b)r

= (–1)r12Cra12–r . 2r. br

Comparing indices of a and b in Tr-1 with a5 and b7 we get,

r = 7

So, co-efficient of a5b7 is (–1)712C7 27

= –1 ×  1 2 ! 7 !′  
( 1 2 7 ) !
× 27

= –1 ×  1 2′
1 1′
1 0′
9′
8′
7 !
7 !′  
5 !
 × 128

= –1 ×  1 2′
1 1′
1 0′
9′
8
5′
4′
3′
2′
1
 × 128

= –1 × 792 × 128

= – 101376

Write the general term in the expansion of

Q3. (x2y)6

A.3. Let (r + 1)th term be the general term of (x2y)6.

So, Tr-1 = 6Cr (x2)6-r (-y)r

= (–1)r .6Cr . x 1 2 r  .  y r

Q4. ( x 2   y x ) 1 2  , x≠ 0.

A.4. Let (r + 1)th be the general term of ( x 2   y x ) 1 2

So, Tr-1 = 12Cr (x2)12–r (–yx)r

= (–1)r12Crx24–2ryrxr

= (–1)r12Cr x 2 4 2 r + r y r

= (-1)r12C­r x 2 4 r y r

Q5. Find the 4thterm in the expansion of (x – 2y)12.

A.5. General term of the expansion ( x 2 y ) 1 2  is given by

Tr+1 = 12Cr ( x ) 1 2 r ( 2 y ) r

For 4th term, r + 1 = 4 i.e., r = 3

Therefore, T4 = T3+1 = 12C3 ( x ) 1 2 3 ( 2 y ) 3

1 2 ! 3 ! ( 1 2 3 ) !   x 9 ( 1 ) 3 2 3 y 3

1 2′
1 1′
1 0′
9 !
3′
2′
1′
9 !
  ( x ) 9  × (8  y ) 3

= – 220 x9× 8y3

= – 1760x9y3

Find the middle terms in the expansions of

Q6. ( 3 x 3 6 ) 7

A.6. As n = 7 is odd, the middle term are the ( n + 1 2 ) t h  term and  ( n + 1 2 +   1 ) t h  term. i.e.  ( 7 + 1 2 ) t h  and  ( 7 + 1 2 + 1 ) t h term which is 4th term and 5th term. i.e. T4 and T5.

Hence, T4 = T3+1 = 7C3(3)7-3 ( x 3 6 ) 3

7 ! 3 ! ( 7 3 ) ! × 34 (–1)3 ( x 3 2 3 . 3 3 )

7′
6′
5′
4 !
3′
2′
1′
4 !
 ×  3 4 3 3  ×  x 9 2 3

= – 35 ×  3 x 9 8

1 0 5 x 9 8

T5 = T4+1 = 7C4× (3)7-4 ( x 3 6 ) 4

7 ! 4 ! ( 7 4 ) !  ×  3 3 x 1 2 2 4 3 4

7′
6′
5′
4 !
4 !   3 !
 ×  x 1 2 2 4 3

7′
6′
5
3′
2′
1
 ×  x 1 2 1 6′  
3

3 5 x 1 2 4 8

Q7. ( x 3 + 9 y ) 1 0 .

A.7. As n = 10 is even the middle term is ( n 2 + 1 ) t h  i.e.  ( 1 0 2 + 1 ) t h  term i.e. 6th term.

So, T6 = T5+1 = 10C5 ( x 3 ) 1 0 5 (9y)5

1 0 ! 5 ! ( 1 0 5 ) !  ×  x 5 3 5 × 35x2y5

1 0′
9′
8′
7′
6′
5 !
5′
4′
3′
2′
1′
5 !
× 35x5y5

= 2 × 9 × 2 × 7 × 243 x5y5

= 61236 x5y5

Q8. In the expansion of (1 + a)m+n,prove that coefficients of anand anare equal.

A.8. The general term of the expansion (1 + a)m+n is

Tr+1 = m+nCrar   [since, 1m+n-r = 1]

At r = m we have,

Tm+1 = m+nCmam

( m + n ) ! m ! ( m + n m ) ! (a)m

( m + n ) ! m !   n ! am --------------- (1)

Similarly at r = n we have,

Tn+1 = m+nCnan

( m + n ) ! n ! ( m + n n ) ! (a)n

( m + n ) ! n !   m ! an --------------- (2)

Hence from (1) & (2),

Co-efficient of am = Co-efficient of an = ( m + n ) ! m ! n !

Q9. The coefficients of the (r – 1)th, rthand (r + 1)thterms in the expansion of (x + 1)n are in the ratio 1 : 3 : 5. Find n and r.

A.9. The general term of the expansion (x +1)n is

Tr+1 = nCrxnr1r

i.e. co-efficient of  ( r + 1 ) t h term = nCr

So, co-efficient of  ( r 1 ) t h term =nC(r–1) – 1 = nCr – 2

Similarly, co-efficient of rth term = nCr – 1

Given that, nCr – 2 :nCr – 1 : nCr = 1 : 3 : 5

We have,

 

 =  1 3

=>  n ! ( r 2 ) ! ( n r + 2 ) !  ×  ( r 1 ) ! ( n r + 1 ) ! n !  =  1 3

=>  ( r 1 ) ( r 2 ) ! ( n r + 1 ) ! ( r 2 ) ! ( n r + 2 ) ( n r + 1 ) !  =  1 3

=>  ( r 1 ) ( n r + 2 )  =  1 3

=> 3r – 3 = n – r + 2

=> 3r + r = n + 2 + 3

=> 4r = n + 5 -------------- (1)

And,

 

 =  3 5

=>  n ! ( r 1 ) ! ( n r + 1 ) !  ×  r ! ( n r ) ! n !  =  3 5

=>  r ( r 1 ) ! ( n r ) ! ( r 1 ) ! ( n r + 1 ) ( n r ) !  =  3 5

=>  r n r + 1  =  3 5

=> 5r = 3n – 3r + 3

=> 5r + 3r = 3n + 3

=> 8r = 3n + 3 ----------------------- (2)

Multiplying equation (1) by 2 and subtracting from equation (2) we get,

8r – 8r = 3n + 3 – (2n + 10)

=> 0 = 3n + 3 – 2n – 10

=> 0 = n – 7

=>n = 7

Putting n = 7 in equation (1) we get,

=> 4r = 7 + 5

=>r =  1 2 4

=>r = 3

Q10. Prove that the coefficient of xnin the expansion of (1 + x)2nis twice the coefficientof xnin the expansion of (1 + x)2n-1.

A.10. General term of the expansion (1 + x)2n is

Tr+1 = 2nCr (1)2n-r(x)r

So, co-efficient of xn (i.e. r = n) is 2nCn

Similarly general term of the expansion (1 + x)2n–1 is

Tr+1 = 2n-1Cr (1)2n–1–rxr

And co-efficient of xn i.e. when r = n is 2n-1Cn

Therefore,

c o e f f i c i e n t   o f   x n   i n   ( 1 + x ) 2 n c o e f f i c i e n t   o f   x n   i n   ( 1 + x ) 2 n 1

=

2 n ! n ! ( 2 n n ) !  ÷  ( 2 n 1 ) ! n ! ( 2 n 1 n ) !

2 n ! n ! n !  ×  n ! ( n 1 ) ! ( 2 n 1 ) !

2 n′  
( 2 1 ) !
n !′  
n′
( n 1 ) !
 ×  n ! ( n 1 ) ! ( 2 n 1 ) !

2 n n

= 2

Thus, co-efficient of  x n  in  ( 1 + x ) 2 n  = 2x co-efficient of  x n  in  ( 1 + x ) 2 n 1

Q.11. Find a positive value of m for which the coefficient of x2in the expansion (1 + x)m is 6.

A.11. The general term of the expansion  ( 1 + x ) m  is given by,

Tr+1 = mCr 1 m r   x r

= mCrxr

At r = 2,

T2+1 = mC2x2

Given that, co-efficient of x2 = 6

=>mC2 = 6

=>  m ! 2 ! ( m 2 ) !  = 6

=>  m′  
( m 1 )′
( m 2 ) !
2′  
1′
( m 2 ) !
 = 6

=>  m′  
( m 1 )
2
 = 6

=>m2 – m = 12

=>m2 – m – 12 = 0

=>m2 + 3m – 4m – 12 = 0

=>m(m + 3) – 4(m+ 3) = 0

=> (m – 4)(m + 3) = 0

=>m = 4 and m = –3

Since, we need a positive value of m we have,

m = 4

Maths Ncert Solutions class 11th Logo

Chapter 7 Binomial Theorem Miscellaneous Exercise Solutions

Q1. Find a, b and n in the expansion of (a + b)n if the first three terms of the expansion are 729, 7290 and 30375, respectively.

A.1.The general term of the expansion (a + b)n is given by

Tr +1 = nCranrbr

So, T1 = nC0an = an

T2 = nC1an-1b = n ! 1 ! ( n 1 ) ! an-1 b = n × ( n 1 ) ! ( n 1 ) ! an-1b = nan-1b

T3 = nC2an-2b2 = n ! 2 ! ( n 2 ) [ ! an-2b2 = n   × ( n 1 ) × ( n 2 ) ! 2 × 1 × ( n 2 ) ! an-2b2 = n ( n 1 ) 2 an-2b2

Given,

T1 = 729

=>an = 729 ------------------ (1)

T2 = 7290

=>nan–1b = 7290 ------------- (2)

T3 = 30375

=>  n ( n 1 ) 2 an–2b2 = 30375 ------------------- (3)

Dividing equation (2) by (1) we get,

n a n 1 b a n  =  7 2 9 0 7 2 9

=>  n b a  = 10

Similarly dividing equation (3) by (2) we get,

n ( n 1 ) 2 an–2b2 ÷ nan–1b = 3 0 3 7 5 7 2 9 0

=>  n ( n 1 ) 2 an–2b2×  1 n a n 1 b  =  3 0 3 7 5 7 2 9 0

=>  n ( n 1 ) a n 2 b 2  ×  1 n a n 1 b  =  3 0 3 7 5 7 2 9 0  × 2

=>  ( n 1 ) b a  =  2 5′   × 2 6

=>  n b a   b a  =  2 5 3

=> 10 –  b a  =  2 5 3  [since,  n b a  = 10]

=>  b a  = 10 –  2 5 3

3 0 2 5 3

5 3  --------------- (5)

Putting equation (5) in (4) we get,

n×  5 3  = 10

=>n = 10 ×  3 5

=>n = 6

So putting the value of n in equation (1) we get,

a6 = 729

=>a6= 36

=>a = 3

And putting a = 3 in equation (5) we get,

b a  =  5 3

=>b =  5 3  ×a

5 3  × 3

= 5

Q2. Find a if the coefficients of x2and x3in the expansion of (3 + ax)9are equal.

A.2. The general term of the expansion  ( 3 + a x ) 9  is

Tr+1 = 9Cr 3 ( 9 r )   ( a x ) r

= 9Cr 3 ( 9 r ) a r x r

At r = 2,

T2+1 = 9C2 3 ( 9 2 ) a 2 x 2

9 ! 2 ! ( 9 2 ) ! 37a2x2

9′
8′
7 !
2′
1′
7 !
37a2x2

= 36 ×37a2x2

At r = 3,

T3+1 = 9C3 3 ( 9 3 ) a 3 x 3

9 ! 3 ! ( 9 3 ) ! 36a3x3

9′
8′
7′
6 !
3′  
2′
1′
6 !
36a3x3

= 84 ×36a3x3

Given that,

Co-efficient of  x 2  = co-efficient of  x 3

=> 36 ×  3 7 a 2  = 84 ×  3 6 a 3

=>  a 3 a 2  =  3 6′
3 7
8 4′  
3 6

=>  a  =  3′
3
7

9 7

Q3. Find the coefficient of x5in the product (1 + 2x)6(1 – x)7using binomial theorem.

A.3. We first expand each of the factors of the given product using Binomial theorem. We have,

(1 + 2x)6= 6C0 (1)6  +  6C1 (1)5(2x)  +  6C2 (1)4(2x)2  +  6C3 (1)3(2x)3  +  6C4 (1)2(2x)4  +  6C5 (1)(2x)5  +  6C6(2x)6

[ 6 ! 0 ! ( 6 0 ) ! 1 ]  +  [ 6 ! 1 ! ( 6 1 ) ! 1 ( 2 x ) ]  +  [ 6 ! 2 ! ( 6 2 ) ! 1 4 x 2 ]  +  [ 6 ! 3 ! ( 6 3 ) ! 1 8 x 3 ]  +  [ 6 ! 4 ! ( 6 4 ) ! 1 1 6 x 4 ]  +  [ 6 ! 5 ! ( 6 5 ) ! 1 3 2 x 5 ]  +  [ 6 ! 6 ! ( 6 6 ) ! 6 4 x 6 ]

= [1] +  [ 6′  
5 !
1′  
5 !
( 2 x )
]
 +  [ 6′
5′
4 !
2′
1′
4 !
4 x 2
]
 +  [ 6′
5′
4′
3 !
3′  
2′
1′
3 !
( 8 x 3 )
]
 +  [ 6′
5′
4 !
4 !′  
2 !
1 6 x 4
]
 +  [ 6′
5 !
5 !′  
1 !
( 3 2 x 5 )
]
 + [1 ×64x6]

= 1 + 12  x + 60x2 + 160x3 + 240x4 + 192x5 + 64x6

And,

(1 – x)7= 7C0 (1)7  +  7C1 (1)6(–x) + 7C2 (1)5(–x)2 + 7C3 (1)4(–x)3  +  7C4 (1)3(–x)4  +  7C5 (1)2(–x)5  +  7C6 (1) (–x)6 + 7C7(–x)7

[ 7 ! 0 ! ( 7 0 ) ! 1 ]  +  [ 7 ! 1 ! ( 7 1 ) ! 1 ( x ) ]  +  [ 7 ! 2 ! ( 7 2 ) ! 1 x 2 ]  +  [ 7 ! 3 ! ( 7 3 ) ! 1 ( x ) ]  +  [ 7 ! 4 ! ( 7 4 ) ! 1 x 4 ]  +  [ 7 ! 5 ! ( 7 5 ) ! 1 ( x ) 5 ]  +  [ 7 ! 6 ! ( 7 6 ) ! 1 x 6 ]  + [  [ 7 ! 7 ! ( 7 7 ) ! ( x ) 7 ]

= [1] +  [ 7′  
6 !
1′  
6 !
( x )
]
 +  [ 7′  
6′
5 !
2′
1′
5 !
x 2
]
 +  [ 7′
6′
5′
4 !
3′  
2′
1′
4 !
( x 3 )
]
 +  [ 7′  
  6′
5′
4 !
4 !′  
3 !
x 4
]
 +  [ 7′
6′ 5 !
5 !′  
2 !
( x 5 )
]
 +  [ 7′
6 !
6 !′  
1 !
x 6
]
 + [1 ×(–x)7]

= 1 – 7x + 21x2 – 35x3 + 35x4– 21x5 + 7x6x7

Thus,  ( 1 + 2 x ) 6 ( 1 x ) 7

= (1 + 12x + 60x2 + 160x3 + 240x4 + 192x5 + 64x6)( 1 – 7x + 21x2 – 35x3 + 35x4– 21x5 + 7x6x7)

We need to find only the term involving x5 i.e. xrx5 – r

The terms with x5 are

= (1)(–21x5) + (12x)(35x4) + (60x2)(–35x3) + (160x3)(21x2) + (240x4)(–7x) + (192x5)(1)

= –21x5 + 420x5– 2100x5 + 3360x5– 1680x5 + 192x5

= 3972x5– 3801x5

= 171x5

Hence, co-efficient of x5 is 171.

Q4. If a and b are distinct integers, prove that a – b is a factor of anbn, whenever n is a positive integer.

[Hint: write an= (a b + b)n and expand]

A.4. For (a – b) to be a factor of anb nwe need to show (anbn) = (ab)k as k is a natural number.

We have, for positive n

an = ( a b + b ) n  =  [ ( a b ) + b ] n

=>an = nC0(ab)n + nC1(ab)n -1b + nC2(ab)n – 2b2 + ………… +nCn-1  ( a b )   b n 1 + nCnbn

=>an= ( a b ) n + nC1 ( a b ) n 1   b + nC2 ( a b ) n 2   b 2 + …………….…+ nCn-1 ( a b )   b n 1  +  b n [Since, nC0 = 1 and nCn = 1]

=>  a n b n  =  ( a b ) n +nC1  ( a b ) n 1   b + nC2 ( a b ) n 2   b 2 + ……………… + nCn-1 ( a b )   b n 1

=>  a n b n  =  ( a b )  [  ( a b ) n 1 + nC1 ( a b ) n 2   b + nC2 ( a b ) n 3   b 2 +………..…… + nCn-1   b n 1  ]

=>  a n b n  =  ( a b )  k where k = [  ( a b ) n 1 + nC1 ( a b ) n 2   b + nC2 ( a b ) n 3   b 2 +………..…… + nCn-1   b n 1  ] is a natural number.

Therefore (a – b) is a factor of anbnwhere n is positive integer.

Q5. Find an approximation of (0.99)5using the first three terms of its expansion.

A.5. (0.99)5 = (1 – 0.01)5

By binomial theorem expanding upto first three terms, we get

(1 – 0.01)5 = 5C0 (1)5 + 5C1 (1)4(-0.01) + 5C2 (1)3(-0.01)2

( 5 ! 0 ! ( 5 0 ) ! 1 )  +  [ 5 ! 1 ! ( 5 1 ) ! 1 ( 0 . 0 1 ) ]  +  ( 5 ! 2 ! ( 5 2 ) ! 1 0 . 0 0 0 1 )

= (1 × 1) –  ( 5′
4 !
1′
4 !
1 0 . 0 1
)
 +  ( 5′
4′
3 !
2′
1′
3 !
1 0 . 0 0 0 1
)

= 1 – 0.05 + 0.001

= 1.001 – 0.05

= 0.951

Q6. Expand using Binomial Theorem ( 1 + x 2 2 x ) 4 , x 0 .

A.6. ( 1 +   x 2 2 x ) 4

Using binomial theorem we have,

[ ( 1 + x 2 ) 2 x ] 4

= 4C0 ( 1 + x 2 ) 4 + 4C1 ( 1 + x 2 ) 3 ( 2 x ) + 4C2 ( 1 + x 2 ) 2 ( 2 x ) 2 + 4C3 ( 1 + x 2 ) ( 2 x ) 3 + 4C4 ( 2 x ) 4

[ 4 ! 0 ! ( 4 0 ) ! ( 1 + x 2 ) 4 ]  –  [ 4 ! 1 ! ( 4 1 ) ! ( 1 + x 2 ) 3 ( 2 x ) ]  +  [ 4 ! 2 ! ( 4 2 ) ! ( 1 + x 2 ) 2 ( 4 x 2 ) ]  –  [ 4 ! 3 ! ( 4 3 ) ! ( 1 + x 2 ) ( 8 x 3 ) ]  +  [ 4 ! 4 ! ( 4 4 ) !   ( 1 6 x 4 ) ]

1′
( 1 + x 2 ) 4
 –  [ ( 1 + x 2 ) 3 ( 2 x ) ]  +  [ 4′
3′
2 !
2′
1′
2 !
( 1 + x 2 ) 2 ( 4 x 2 )
]
 –  [ 4 3 ! 3 ! 1 ! ( 1 + x 2 ) ( 8 x 3 ) ]  +  [ 1′
( 1 6 x 4 )
]

( 1 + x 2 ) 4  – 4  [ ( 1 + x 2 ) 3 ( 2 x ) ]  + 6  [ ( 1 + x 2 ) 2 ( 4 x 2 ) ]  – 4  [ ( 1 + x 2 ) ( 8 x 3 ) ]  +  ( 1 6 x 4 )  ----- (1)

Now,

( 1 + x 2 ) 4

= 4C0(1)4 + 4C1 (1)3 ( x 2 ) + 4C2(1)2 ( x 2 ) 2 + 4C3(1) ( x 2 ) 3 + C4 ( x 2 ) 4

( 4 ! 0 ! ( 4 0 ) ! 1 )  +  ( 4 ! 1 ! ( 4 1 ) ! 1′
x 2
)
 +  ( 4 ! 2 ! ( 4 2 ) ! 1′
x 2 4
)
 +  ( 4 ! 3 ! ( 4 3 ) ! 1′
x 3 8
)
 +  ( 4 ! 4 ! ( 4 4 ) ! 1′
x 4 1 6
)

= 1 +  ( 4′
3 !
1′
3 !
x 2
)
 +  ( 4′
3′
2 !
2′
1′
2 !
x 2 4
)
 +  ( 4′
3 !
3 ! 1 !
x 3 8
)
 +  ( 1′
x 4 1 6
)

= 1 + 2x +  3 x 2 2  +  x 3 2  +  x 4 1 6  ------------------- (2)

( 1 + x 2 ) 3

= 3C0(1)3 + 3C1 (1)2 ( x 2 ) +3C2 (1)  ( x 2 ) 2 + 3C3 ( x 2 ) 3

( 3 ! 0 ! ( 3 0 ) ! 1 )  +  ( 3 ! 1 ! ( 3 1 ) ! 1′
x 2
)
 +  ( 3 ! 2 ! ( 3 2 ) ! 1′
x 2 4
)
 +  ( 3 ! 3 ! ( 3 3 ) ! 1′
x 3 8
)

= 1 +  ( 3′
2 !
1′
2 !
x 2
)
 +  ( 3′
2 !
2 ! 1 !
x 2 4
)
 +  ( 1′
x 3 8
)

= 1 +  3 x 2  +  3 x 2 4  +  x 3 8  ------------------------ (3)

And,  ( 1 + x 2 ) 2

= 2C0(1)2 + 2C1 (1) ( x 2 ) + 2C2   ( x 2 ) 2

( 2 ! 0 ! ( 2 0 ) ! 1 )  +  ( 2 ! 1 ! ( 2 1 ) ! 1′
x 2
)
 +  ( 2 ! 2 ! ( 2 2 ) ! x 2 4 )

= 1 +  ( 2′  
1
1′
1 !
1′
x 2
)
 +  x 2 4

= 1 + x +  x 2 4  ---------------------------- (4)

Putting (2), (3) and (4) in (1) we get,

( 1 +   x 2 2 x ) 4

= 1 + 2x +  3 x 2 2  +  x 3 2  +  x 4 1 6  – 4  [ ( 1 + 3 x 2 + 3 x 2 2 + x 3 2 ) ( 2 x ) ]  + 6  [ ( 1 + x + x 2 4 ) ( 4 x 2 ) ]  – 4  [ ( 1 + x 2 ) ( 8 x 3 ) ]  +  ( 1 6 x 4 )

= 1 + 2x +  3 x 2 2  +  x 3 2  +  x 4 1 6  –  8 x – 12 – 6x –x2 2 4 x 2  +  2 4 x  + 6 –  3 2 x 3  –  1 6 x 2  +  1 6 x 4

1 6 x  +  8 x 2  –  3 2 x 3  +  1 6 x 4  – 4x+  x 2 2  +  x 3 2  +  x 4 1 6  – 5

Q7. Find the expansion of (3x2– 2ax + 3a2)3using binomial theorem.

A.7. [ 3 x 2 2 a x + 3 a 2 ] 3

[ 3 x 2 + a ( 2 x + 3 a ) ] 3

We know that by binomial theorem,

( a + b ) 3  =  a 3 + b 3 + 3 a b ( a + b )

a 3 + b 3 + 3 a 2 b + 3 a b 2

Then,

[ 3 x 2 + a ( 2 x + 3 a ) ] 3

= (3x2)3 + [ a ( 2 x + 3 a ) ] 3  +  [ 3 ( 3 x 2 ) 2   a ( 2 x + 3 a ) ]  +  [   3 ( 3 x 2 ) { a ( 2 x + 3 a ) } 2 ]

= 27x6 + [ a 3 ( 2 x + 3 a ) 3 ]  +  [ 3 ( 9 x 4 ) ( 2 a x + 3 a 2 ) ]  +  [ 3 ( 3 x 2 ) { a 2 ( 3 a 2 x ) 2 } ]

= 27x6 + [ a 3 { 8 x 3 + 2 7 a 3 + 3 ( 4 x 2 ) ( 3 a ) + 3 ( 2 x ) ( 9 a 2 ) } ]  +  [ 5 4 a x 5 + 8 1 a 2 x 4 ]  + [  ( 9 a 2 x 2 )   ( 9 a 2 + 4 x 2 1 2 a x )  ]

= 27x6 + [ 8 a 3 x 3 + 2 7 a 6 + 3 6 a 4 x 2 5 4 a 5 x  ] + [  5 4 a x 5 + 8 1 a 2 x 4  ] + [  ( 8 1 a 4 x 2 + 3 6 a 2 x 4 1 0 8 a 3 x 3  ]

= 27x6   8 a 3 x 3 + 2 7 a 6 + 3 6 a 4 x 2 5 4 a 5 x     5 4 a x 5 + 8 1 a 2 x 4  +  8 1 a 4 x 2 + 3 6 a 2 x 4 1 0 8 a 3 x 3

= 27x6– 54ax5 +   1 1 7 a 2 x 4     1 1 6 a 3 x 3  +  1 1 7 a 4 x 2     5 4 a 5 x   +   2 7 a 6

Read more
Maths Ncert Solutions class 11th Logo

Binomial Theorem - FAQs

The following are the FAQs from the Binomial Theorem Class Maths:

Q&A Icon
Commonly asked questions
Q:  

What is Binomial Theorem in Class 11 Maths?

A: 

An expression with two terms raised to a positive integer power can be expanded in Maths, such as (a + b)? This algebraic rule is known as the Binomial Theorem. 

Q:  

What is the binomial theorem class 11 formula?

A: 

Mathematically, binomial theorem formula is: (a + b)n = nC0 an + nC1 an - 1b + nC2 a n – 2b 2 + . + nCn – 1a.bn - 1 + nCn bn. Here a and b are real numbers and n is a positive integer.

Q:  

What is the total number of exercises in binomial theorem class 11?

A: 

There are a total of 36 questions comprising 14 straightforward formula-based sums, 16 challenging problems, and 6 intermediate.

Q:  

Which is the another name of the binomial model.

A: 

The Binomial model is known as the Lattice Model or Binomial Option Pricing Model.

Q:  

Which are the common mistakes by students in binomial theorem class 11?

A: 

The common mistakes can be - using the formula incorrectly, before applying the formula students not simplify the expression, in Binomial Expansion, sometimes they forget to include the fractional and negative exponents, and using incorrect values for a, b, and n.

Explore exams which ask questions on Maths Ncert Solutions class 11th

Select your preferred stream

qna

Maths Ncert Solutions class 11th Exam

Student Forum

chatAnything you would want to ask experts?
Write here...