NCERT Solutions for Class 11 Maths Chapter 3 – Trigonometric Functions

NCERT Maths 11th 2023 ( Maths Ncert Solutions class 11th )

Pallavi Pathak
Updated on Jul 29, 2025 15:32 IST

By Pallavi Pathak, Assistant Manager Content

Trigonometry Class 11 Solutions deal with ‘measuring the sides of a triangle’. The term was initially developed to solve the geometric problems related to triangles. However, now it is used in many areas such as designing electric circuits, the science of seismology, predicting the heights of tides in the ocean, describing the state of an atom, analysing a musical tone, and in many other fields.
Trigonometry class 11 includes the trigonometric functions, angles, and trigonometric functions of the sum and difference of two angles. Students should go through these concepts thoroughly. It will help them to score high in the school exam, CBSE Board, and other competitive exams like the JEE Main exam.
Here, you can find the chapter-wise important topics and free PDFs of the NCERT solutions of Maths, Physics, Chemistry of Class 11 and Class 12.

Table of content
  • Trigonometry Class 11 NCERT Solutions Key Concepts
  • Class 11 Chapter 3 Trigonometric Functions: Key Topics, Weightage
  • Important Formulas of Trigonometry Class 11
  • Class 11 Chapter 3 Trigonometric Functions NCERT Solution PDF: Free PDF Download
  • Class 11 Chapter 3 Trigonometric Functions Exercise-wise Solution
  • Class 11 Chapter 3 Trigonometric Functions Exercise 3.1 Solution
  • Class 11 Chapter 3 Trigonometric Functions Exercise 3.2 Solution
  • Class 11 Chapter 3 Trigonometric Functions Exercise 3.3 Solution
  • Class 11 Chapter 3 Trigonometric Functions Exercise 3.4 Solution
  • Class 11 Chapter 3 Trigonometric Functions Miscellaneous Exercise Solution
View More
Maths Ncert Solutions class 11th Logo

Trigonometry Class 11 NCERT Solutions Key Concepts

Here is a walkthrough of the Class 11 Trigonometry:

  • In a circle, the radian measure is: π 180 × Degree measure The degree measure is: 180 π × Radian measure cos 2 x + sin 2 x = 1 1 + tan 2 x = sec 2 x 1 + cot 2 x = cosec 2 x
  • cos ( 2 π + x ) = cos x
  • sin ( 2 π + x ) = sin x
  • sin ( - x ) = - sin x
  • cos ( - x ) = cos x
  • cos ( x + y ) = cos x cos y - sin x sin y
  • cos ( x - y ) = cos x cos y + sin x sin y
  • cos ( π 2 - x ) = sin x

 

Maths Ncert Solutions class 11th Logo

Class 11 Chapter 3 Trigonometric Functions: Key Topics, Weightage

In Trigonometry Class 11 Solutions, focus on the properties of triangles, trigonometric equations, and identities. See below the topics covered in this chapter:

Exercise Topics Covered
3.1 Introduction
3.2 Angles
3.3 Trigonometric Functions
3.4 Trigonometric Functions of Sum and Difference of Two Angles

Trigonometry Class 11 Weightage in JEE Main Exam

Exam Number of Questions Weightage
JEE Main 2-3 questions  7% to 10%

 

 

Try these practice questions

Q1:

The statement (pq)(pr) is equivalent to:

Q2:

The domain of the function f(x) = c o s 1 ( x 2 5 x + 6 x 2 9 ) l o g e ( x 2 3 x + 2 ) is :

View Full Question

Q3:

The value of limn6tan{r=1ntan1(1r2+3r+3)} is equal to:

Maths Ncert Solutions class 11th Logo

Important Formulas of Trigonometry Class 11

Trigonometric Functions Important Formulae for CBSE and Competitive Exams

Reciprocal Identities:

csc x = 1 sin x , sec x = 1 cos x , cot x = 1 tan x

Quotient Identities:

tan x = sin x cos x , cot x = cos x sin x

Pythagorean Identities:

sin 2 x + cos 2 x = 1 \sin^2 x + \cos^2 x = 1 1 + tan 2 x = sec 2 x 1 + \tan^2 x = \sec^2 x 1 + cot 2 x = csc 2 x

Trigonometric Functions of Sum and Difference of Angles

  • Sum and Difference Formulas: sin ( A ± B ) = sin A cos B ± cos A sin B \sin(A \pm B) = \sin A \cos B \pm \cos A \sin B cos ( A ± B ) = cos A cos B sin A sin B \cos(A \pm B) = \cos A \cos B \mp \sin A \sin B tan ( A ± B ) = tan A ± tan B 1 tan A tan B

 

More Useful Links

NCERT Notes for Class 11 & 12 NCERT Class 11 Notes

 

Maths Ncert Solutions class 11th Logo

Class 11 Chapter 3 Trigonometric Functions NCERT Solution PDF: Free PDF Download

To prepare well for the school examination, CBSE Board, and other entrance exams, students must study from these NCERT solutions created by Shiksha's experts. They must download the Trigonometry Class 11 NCERT PDF from the link given below.

Class 11 Chapter 3 Trigonometric Functions NCERT Solution PDF: Free PDF Download

To get access to the Class 11th Maths NCERT Solutions curated by our subject experts with important topics and weightage, check here.

Maths Ncert Solutions class 11th Logo

Class 11 Chapter 3 Trigonometric Functions Exercise-wise Solution

Class 11 Chapter 3 Trigonometric Functions NCERT Solution PDF: Free PDF Download

Maths Ncert Solutions class 11th Logo

Class 11 Chapter 3 Trigonometric Functions Exercise 3.1 Solution

NCERT Solutions of ex 3.1 class 11 focuses on the measurement of angles in degrees and radians, using relationship between and  angles in different forms and solve problems related to arc length and sector angles. The Class 11 Math exercise 3.1 also includes application-based problems involving real-life scenarios such as the motion of a wheel, and the properties of a circle’s chord. Students can check complete solution of the Trigonometric function Exercise 3.1 below;

Class 11 Chapter 3 Trigonometric Functions Ex 3.1 NCERT Solution

Q1. Find the radian measures corresponding to the following degree measures:

(i) 25° (ii) – 47°30′ (iii) 240° (iv) 520°

A.1. (i)25°

Solution:We know that 180° = π radian.

Hence, 25° =  π 180  25 radian=  3 6  radians.

(ii).47°30′

Solution: We know that 180° = π radian,

Hence, -47°30′= -47 × 1 2  degree=  4 7 2 × π 180°  radians.

1 7 2  radians

(iii) 240°

Solution:We know that, 180°= radian.

Hence, 240°= 240× π 180  radian.

3  radian.

(iv) 520°

Solution: We know that, 180= radian.

Hence, 520°= 520°× π 180  radian.

2 9  radian.

Q2. Find the degree measures corresponding to the following radian measures  ( U s e π = 2 2 7 ) .

(i) 1 1 1 6 (ii)-4 (iii) 5 π 3  (iv)  7 π 6

A.2. (i)  1 1 1 6

We know that radian= 180°,

Hence,  1 1 1 6  radian=  1 1 1 6 ×
180°
π
 =  1 1 1 6  ×  1 8 0 ° 2 2 / 7  =  1 1 1 6  ×  7 2 2  ×180 °

315 8 0

=39 0  3 ° 8

= 39 ° 3 × 6 0 8  minute (as 1 ° =60)

=39°+22′+  1 2 '

=39°+22′+  60 2 ' '  (as 1′=60”)

=39°+22′+30”.

=39° 22′ 30”.

(ii) -4

We know that radian = 180°.

Hence: -4 radian = -4× 180° π  = 4×  1 8 0 ° 2 2 7  = 4×180°×  7 2 2  .

= -  2520 11 0

=229 0  1 ° 1 1

=229+  1 × 6 0 ' 1 1

=229+5′+  5 11 '  .

=229°+5′+27″

=229° 5′27″

(iii)  3 .  .

Solution: We know that, π radian= 180°.

Here  3  radian =  3  × 180° π

 =300°

(iv)  6

Solution: We know that radian =180° .

Here,  6  radian =  6 × 180° π =210°

Q3. A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?

A.3. Given that a wheel makes 360 revolutions in one minute

Then, number of revolutions in one second =  3 6 0 6 0  =6.

In 1 complete revolution the wheel turns 360°= 2π radian.

So, In 6 revolution, the wheel will turns 6×2π radian = 12π radian.

Hence, in one second the wheel will turn an angle of 12π radian.

Q4. Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm ( U s e π = 2 2 7 ) .

A.4. Here l = 22cm.

r =100cm.

Ø = ?

Hence by r =
1
Ø

= Ø = l r  =  2 2 1 0 0  radian

2 2 1 0 0 × 180°
π

2 2 1 0 0  × 180° ×  7 2 2

63 5 0

=12  3 ° 5  = 12°  3 × 6 0 ' 5 = 1 2 ° 3 6 '

Q5. In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of minor arc of the chord.

A.5. Given, diameter of circle = 40 cm

So, radius, r =  4 0 2  cm = 20 cm

Length of chord (AB) = 20cm

In OAB

OA = OB=AB=20 cm

Hence, AOAB is equilateral triangle and end of the angle is 60°

:. Ø =60° = 60 ×
π
180
radian = π 3  radian

Hence, length of minor are of the chord, l=rØ.

l = 20 × π 3  cm

l =  2 3  cm.

Q6. If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.

Q7. Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length

(i) 10 cm (ii) 15 cm (iii) 21 cm

A.7. Here,

r= length of pendulum.

r= 75 cm.

(i)Are of length, l = 10 cm

Ø=  l r  =  1 0 c m 7 5 c m = 2 1 5  radian.

(ii) are of length, l = 15 cm.

So, Ø=  l r  =  1 5 c m 7 5 c m = 1 5  radian.

(iii) are for length, l= 21 cm.

So, Ø=  l r = 2 1 c m 7 5 c m = 7 2 5  radian.

Q&A Icon
Commonly asked questions
Q:  

Find the values of the trigonometric functions in Exercises 13 to 17.

13. sin 765°

A: 

13. sin 765°

We know that value of sun x repeats after an interval of 2π or 360°.

Sin (765°) = sin (2×360°+45°)

= sin 45°

= 1/√2.

Q:  

22. Find the value of:

(i) sin 75°               (ii) tan 15°

Read more
A: 

22.  (i) sin 75°= sin (45°+30°)

Using sin (x + y)= sin x cos y + cos x sin y we can write

sin 75°

= sin 45°cos 30°+ 45° sin 30°

Q:  

29. sin26x – sin24x = sin 2x sin 10x

A: 

29. L.H.S  L.H.S=sin26xsin24x.

= ( s i n 6 x + s i n 4 x ) ( s i n 6 x s i n 4 x ) . [ a 2 b 2 = ( a b ) ( a + b ) ]

So, L.H.S L.H.S.=(2sin(6x+4x2)cos(6x4x2))(2cos(6x+4x2)sin(6x4x2))

= ( 2 s i n 1 0 x 2 c o s 2 x 2 ) ( 2 c o s 1 0 x 2 s i n 2 x 2 )

= 2 s i n 5 x c o s x 2 c o s 5 x s i n x

= 2 s i n 5 x c o s 5 x 2 c s i n x c o s x .

As sin2θ=2sinθcosθ we can write.

L.H.S =sin(2×5x)=sin(2×x)

=sin10xsin2x= R.H.S. R.H.S

Q:  

51. sin x + sin 3x + sin 5x = 0

A: 

51. We have,

sinx + sin 3x + sin 5x = 0.

(sinx + sin 5x) + sin 3x = 0.

Using sin A + sin B = 2 sin A+B2 cos A−B2 .

2 sin  (x+5x2) cos  (x5x2) + sin 3x = 0.

2 sin 6x2 cos-4x2  + sin 3x = 0.

2 sin 3xcos (-2x) + sin 3x = 0.

sin 3x [2 cos 2x + 1] = 0 [ ? cos (-x) = cosx].

sin 3x = 0 or 2 cos 2x + 1 = 0.

3x = nπ, n∈z. or cos 2x = -12 = -cos π3 = cos  π -π3= cos 2π3

x= nπ3 , n∈z or 2x = 2nπ± 2π3 .

x = nπ±π3 , n∈z.

Q:  

41. cos 4x = 1 – 8sin2x cos2x

A: 

41. L.H.S. = cos 4x.

= cos 2 (2x)

= 1 – 2 Sin2 (2x) [ cos 2x = 1 – 2 Sin2x]

= 1 – 2 [2 sin xcosx]2 [ sin 2x = 2 sin xcos x]

= 1 – 2 [4 sin2xcos2x]

= 1 – 8 sin2xcos2x

= R.H.S.

Q:  

42. cos 6x = 32 cos6x – 48cos4x + 18 cos2x – 1

A: 

42. L.H.S. = cos 6x

= cos 3 (2x)

= 4 cos32x – 3 cos 2x                 [Q cos 3A = 4 cos3A – 3cos A]

= 4 [ (2 cos2x – 1)3] – 3 [ (2 cos2x – 1)]                      [Q cos 2x = 2 cos2x – 1]

= 4 [ (2 cos2x)3  + 3 [ (2 cos2x)2 (–1) + 3 (2 cos2x) (–1)2 + (–1)3] – 3 (2 cos2x) + 3

{Q (a + b)3= a3 + b3 + 3a2b + 3ab2}

= 4 [8 cos6x – 12 cos4x + 6cos2x – 1] – 6 cos2x + 3.

= 32 cos6x – 48 cos4x + 24 cos2x – 4 – 6cos2x + 3

= 32 cos6x – 48 cos4x + 18 cos2x – 1

= R.H.S.

Q:  

57. (sin7x+sin5x)+(sin9x+sin3x)(cos7x+cos5x)+(cos9x+cos3x)=tan6x

A: 

57. L.H.S. = (sin7x+sin5x)+ (sin9x+sin3x) (cos7x+cos5x)+ (cos9x+cos3x).

Using sin A + sin B = 2 sin A+B2 cos AB2

cos A + cos B = 2 cos A+B2 cos AB2.

Q:  

48. cos 3x + cos x – cos 2x = 0

A: 

48. We have,

cos 3x + cosx-cos 2x = 0.

(cos 3x + cosx) cos 2x = 0

Using cos A + cos B = 2 cos A+B2 cos A-B2

2 cos  (3x+x2) cos  (3xx2) - cos 2x = 0.

2 cos 4x2 cos 2x2 - cos 2x = 0

2 cos 2xcosx - cos 2x = 0

cos 2x. (2 cosx - 1) = 0.

cos 2x = 0 or 2 cosx -1 = 0.

2x = (2n + 1) π2, n∈z or cosx = 12 = cos π3

x = (2n + 1) π4, n∈z or x = 2nx± π3, n∈z.

Q:  

46. cosec x = – 2

A: 

46. We have cosec x = 2 .i e, cosec x = (-)ve,

So, the principal solution lies in IIInd and IVth quadrent.

Now, cosec x = -2 = -cosec π6 = cosec (π+π6= cosec (2ππ6)

So the principal solution are x =  (π+π6) and (2ππ6)

(6π+π6) and  (12ππ6)

7π6 and 11π6.

As cosec x = cosec 7π6 ⇒sin x = sin 7πc  [? cosecx=1sinx]

The general solution has the form,

x = nπ + (-1)n 7π6 , n∈z.

Q:  

49. sin 2x + cos x = 0

A: 

49. We have,

sin 2x + cosx = 0.

2 sin cosx + cosx = 0 ( ?  sin 2x = 2 sin xcosx)

cosx (2 sin x + 1) = 0.

cosx = 0 or 2 sinx + 1 = 0.

x = (2n + 1) π2, n∈z or sin x = 12 = -sin π6 = sin  π + π6= sin 7π6.

x = (2n + 1) π2, x∈z or x= nπ + (-1)n 7π6,  n∈z.

Q:  

Find the general solution for each of the following equations:

47. cos 4 x = cos 2 x

A: 

47. We have,

cos 4x = cos 2x.

⇒ cos 4x-cos 2x = 0.

⇒ -2 sin (4x+2x2) sin  (4x2x2) = 0.

⇒sin 6x2 sin 2x2 = 0

⇒sin 3x sin x = 0.

∴sin 3x = 0 or sin x = 0

3x = nπ or x = nπ, n∈z,

⇒x = nπ3 or x = nπ, n∈z

Q:  

50. sec22x = 1– tan 2x

A: 

50. We have,

sec2 2x = 1 tan 2x

1 + tan2 2x = 1 tan 2x [ sec2x = 1 + tan2x]

tan2 2x + tan 2x = 0.

tan 2x (tan 2x + 1) = 0.

tan 2x = 0         or         tan 2x + 1 = 0.

2x = nπ, x∈z or tan 2x = -1 = -tan π4 = tan π-π4  = tan 3π4.

x= nπ2 , n∈z or 2x = nπ + 3π4 , n∈z.

x = nπ2+3π8,  n∈z

Q:  

38. cos4x+cos3x+cos2xsin4x+sin3x+sin2x=cot3x

A: 

38. L.H.S=cos4x+cos3x+cos2xsin4x+sin3x+sin2x.

=(cos4x+cos2x)+cos3x(sin4x+sin2x)+sin3x.

=2cos(4x+2x2)cos(4x2x2)+cos3x2sin(4x+2x2)cos(4x2x2)sin3x.

=2cos6x2cos2x2+cos3x2sin6x2cos2x2+sin3x

=2cos3xcosx+cos3x2sin3xcosx+3x

=cos3xsin3x×(2cosx+1)(2cosx+1)

=cot3x=R.H.S

Q:  

34. sin5x+sin3xcos5x+cos3x=tan4x

A: 

34.=sin5x+sin3xcos5x+cos3x.

=2sin (5x+3x2)cos (5x3x2)2cos (5x+3x2)cos (5x3x2)

=sin8x2cos2x2cos8x2cos2x2

=sin4xcos4x=tan4x=R.H.S

Q:  

25. Kindly Consider the following

A: 
25. Kindly go through the solution
Q:  

28.  cos(3π4+x)cos(3π4x)=−√2sinx

A: 

28. L.H.S =  L.H.S =cos(3π4+x)cos(3π4x)

Using cos (A + B) = cos A cos B – sin A sin B

and cos (A – B) = cos A cos B + sin A sin B

L.H.S =[cos3π4cosxsin3π4sinx][cos3π4cosx+sin3π4sinx]

= c o s 3 π 4 c o s x s i n 3 π 4 s i n x c o s 3 π 4 c o s x s i n 3 π 4 s i n x .

= 2 s i n 3 π 4 s i n x .

= 2 s i n ( 4 π π 4 ) s i n x .

Q:  

35. sinxsinycosx+cosy=tanxy2

A: 

35. L.H.S: = L.H. S:=sinxsinycosx+cosy

= 2 c o s x + y 2 s i n x y 2 2 c o s x + y 2 c o s x y 2

= s i n ( x y 2 ) c o s ( x y 2 )

=tan (xy2)=R.H.S. = R.H.S.

Q:  

58. sin 3x + sin 2x – sin x = 4sin x cosx2cos3x2

A: 

58. L.H.S = sin 3x + sin 2x - sin x

= sin 3x - sin x + sin 2x.

= 2 cos 3x+x2 .. sin 3xx2 + sin 2x [?sinAsinB=2cosA+B2sinAB2]

= 2 cos 4x2 sin 2x2 + sin 2x.

= 2 cos 2x sin x + 2 sin xcosx        [ ? sin 2x = 2sin xcosx]

= 2 sin x [cos 2x + cosx]

= 2 sin x [2cos2x+x2cos2xx2] [?cosA+cosB=2cosA+B2cosAB2]

= 2 sin x [2.cos3x2cosx2]

= 4 sin xcos x2 . cos 3x2 = R.H.S.

Q:  

12. tan x = –5/12, x lies in second quadrant.

A: 

12. Kindly go through the solution

Q:  

37. s i n x s i n 3 x s i n 2 x c o s 2 x = 2 s i n x

A: 

37. =sinxsin3xsin2xcos2x

=2cos (x+3x2)sinx3x2 (cos2xsin2x)

=2cos4x2sin (2x2)cos2x [? cos2x=cos2xsin2x]

=2cos2xsinxcos2x [? sin (x)=sinx]

= 2 sin x

= R.H.S.

Q:  

60. cos x = −1/3, x in quadrant III

A: 

60. Kindly go through the solution

Q:  

61. sin x = 1/4 in quadrant II

A: 

61. Kindly go through the solution

Q:  

19. 2Sin2π6+cosec27π6cos2π3=32

A: 
19. 

=12+4.14

=12+1 =32

= R.H.S.

Q:  

36. sinx+sin3xcosx+cos3x=tan2x

A: 

36. =sinx+sin3xcosx+cos3x

=2 (x+3x2)cos (x3x2)2cos (x+3x2)cos (x3x2)

=sin4x2cos4x2

=sin2xcos2x

=tan2x=R.H.S

Q:  

44. Kindly consider the following Secx = 2

A: 

44. Secx = 2.                      .

We have, Secx = 2, | Secx is (+)ve  the principal solution lies in Ist and IVthquadrent.

π3 and 6ππ3

π3 and 3 .

As secx = sec π3 . cosx = cos π3  [secx=1cosx]

The general solution is

x = 2nπ ±π3, n ∈ z.

Q:  

Class 11 Trigonometric Functions Exercise 3.2 Solution

Find the values of other five trigonometric functions in Exercises 8 to 12.

8. cos x = –1/2 , x lies in third quadrant.

Read more
A: 

8. Kindly go through the solution

Q:  

20. c o t 2 π 6 + c o s e c 5 π 6 + 3 t a n 2 π 6 = 6

A: 
20. Kindly go through the solution
Q:  

5. In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of minor arc of the chord.

Read more
A: 
5. Given, diameter of circle = 40 cm

So, radius, r = 402 cm = 20 cm

Length of chord (AB) = 20cm

In OAB

OA = OB=AB=20 cm

Hence, AOAB is equilateral triangle and end of the angle is 60°

:. Ø =60° = 60 ×
π180
radian =π3 radian

Hence, length of minor are of the chord, l=rØ.

l = 20 × π3 cm

l = 23 cm.

Q:  

26. c o s ( 3 π 2 + x ) c o s ( 2 π + x ) [ c o t ( 3 π 2 x ) + c o t ( 2 π + x ) ] = 1

A: 

26. L.H.S L.H.S.=cos(3π2+x)cos(2π+x)[cot(3π2x)+cot(2π+x)]

Here,

c o s ( 3 π 2 + x ) = c o s ( 4 π π 2 + x ) = c o s ( 2 π π 2 + x )

=cos[2π(π2x)];VI quadrant.

cos(π2x);i Ist quadrant. 

= s i n x

cos(2x+x)=cosx,as xlies in Istquadrant.

cot(2π+x)=cotx;asxliesinIstquadrant.

c o t ( 3 π 2 x ) = c o t [ 4 π π 2 x ]

= c o t [ 2 π π 2 x ]

=cot[2x(π2+x)]; VIth quadrant.

=cot(π2+x);IIndquadrat.

= ( t a n x )

= t a n x .

So.L.H.S L.H.S=sinxcosx[tanx+cotx]

= s i n x c o s x [ s i n x c o s x + c o s x s i n x ]

= s i n x c o s x ( s i n 2 x + c o s 2 x ) c o s x s i n x

= s i n 2 x + c o s 2 x

= 1

= R.H.S.

Q:  

31. sin2 x + 2 sin 4x + sin 6x = 4 cos2x sin 4x

A: 

31. L.H.S. = sin 2x + 2 sin 4x + sin 6x

Using sin A + sin B = 2 sin A + B/2 cos A - B/2  we have,

L.H.S. = (sin 2x + sin 6x) + 2 sin 4x

= 2 s i n ( 2 x + 6 x 2 ) c o s ( 2 x 6 x 2 ) + 2 s i n 4 x .

= 2 s i n 8 x 2 c o s ( 4 x 2 ) + 2 s i n 4 x .

= 2 s i n 4 x c o s 2 x + 2 s i n 4 x [ ? c o s ( x ) = x ]

= 2 s i n 4 x [ c o s 2 x + 1 ]

We know that,

cos2x=2cos2x1

cos2x+1=2cos2x

Hence,

L.H.S=2sin4x(2cos2x)

=4cos2xsin4x

= R.H.S

Q:  

33. cos9xcos5xsin17xsin3x=sin2xcos10x

A: 

33.=cos9xcos5xsin17xsin3x

=2sin (9x+5x2)sin (9x5x2)2cos (17x+3x2)sin (17x3x2)

=sin14x2sin4x2cos20x2sin14x2=sin7xsin2xcos10xsin7x=sin2xcos10x

= R.H.S

Q:  

40. tan4x=4tanx(1tan2x)16tan2x+tan4x

A: 

40. L.H.S. = tan 4x

We know that,

tan2=2tan1tan2. , we can write

L.H.S=tan2(2x)=2tan2x1tan22x.

=2(2tanx1tan2x)1(2tanx1tan2x)2

=4tanx(1tan2x)(1tan2x)24tan2x(1tan2x)2

=4tanx×(1tan2x)1+tan4x2tan2x4tan2x

=4tanx(1tan2x)16tan2x+tan4x

= R.H.S.

Q:  

30. cos22x – cos26x = sin 4x sin 8x

A: 

30. L.H.S L.H.S=cos22xcos26x

= ( c o s 2 x + c o s 6 x ) ( c o s 2 x c o s 6 x ) [ ? a 2 b 2 = ( a b ) ( a + b ) ]

L.H.S = L.H.S=[2cos(2x+6x2)cos(2x6x2)][2sin2x+6x2sin(2x6x2)]
= [ 2 c o s 8 x 2 c o s ( 4 x 2 ) ] [ 2 s i n ( 8 x 2 ) s i n ( 4 x 2 ) ]
= 2 c o s 4 x c o s 2 x × 2 s i n 4 x · s i n 2 x [ ? c o s ( x ) = c o s x ; s i n ( x ) = s i n x ]
= 2 s i n 4 x c o s 4 x × 2 s i n 2 x c o s 2 x

As sin 2θ = 2 sinθ cosθ.

L.H.S. = sin (2*4x) sin(2*2x)

= sin 8x sin 4x

= R.H.S.

Q:  

Find sin x2 , cos x2 and tan x2 in each of the following :

59. tan x = − 43 , x in quadrant II

Read more
A: 

59. We have, tan x= 43 , x in IInd quadrant.

Since, π2<x<π

π4<x2<π2

sin x2 , cos x2 , tan x2 are all positive.

Now, sec2x = 1 + tan2x = 1 + (43)2 = 1 + 169 = 9+169 = 259

secx = ±53

cosx = ±35 .

cosx = 35 as x is in IInd quadrant.

Now, 2 sin2.. = 1 cosx.    [cos 2x = 1 2 sin2x.]

2 sin2 x2 = 1 (35)

2 sin2 x2 =  1 +355+35 = 85 .

sin2 x2 = 82×5 = 45.

Q:  

45. cot x = -√3

A: 

45. We have, cot x = -√3  i.e., cot x is negative

So, the principal solution lies in IInd and IVth quadrant.

So the principal solution are a =  (ππ6) and  (2ππ6)

(6ππ6) and  (12ππ6)

5π6 and 11π6.

As cot x = cot 5π6 tan x = tan 5π6  [? cotx=1tanx]

The general solution has the form.

x = n+ 5π6 , nz

Q:  

Class 11 Chapter 3 Trigonometric Functions Ex 3.1 NCERT Solution

1. Find the radian measures corresponding to the following degree measures:

(i) 25° (ii) – 47°30′ (iii) 240° (iv) 520°

Read more
A: 

1. (i) 25°

Solution:We know that 180° = π radian.

Hence, 25° = π180 25 radian= 36 radians.

(ii) 47°30′

Solution: We know that 180° = π radian,

Hence, -47°30′= -47 × 12 degree= 472 × π180°  radians.

172 radians

(iii) 240°

Solution:We know that, 180°= radian.

Hence, 240°= 240× π180  radian.

3 radian.

(iv) 520°

Solution: We know that, 180= radian.

Hence, 520°= 520°× π180 radian.

29 radian.

Q:  

4. Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm (Useπ=227).

Read more
A: 

4. Here l = 22cm.

r =100cm.

Ø =?

Hence by r = 1Ø

= Ø = lr = 22100 radian

22100 × 180°

= 22100 × 180° × 722

6350

=12 3°5 = 12° 3×60'5=12°36'

Q:  

7. Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length

(i) 10 cm    (ii) 15 cm      (iii) 21 cm

Read more
A: 

7. Here,

r= length of pendulum.

r= 75 cm.

(i) Arc of length, l = 10 cm

Ø= lr = 10cm75cm=215 radian.

(ii) Arc of length, l = 15 cm.

So, Ø= lr = 15cm75cm=15 radian.

(iii) Arc for length, l= 21 cm.

So, Ø= lr=21cm75cm=725 radian.

Q:  

53. (sin 3x + sin x) sin x + (cos 3x – cos x) cos x = 0

A: 

53. L.H.S = (sin 3x + sin x) + sin x + (cos 3x - cosx) cosx.

Using

Sin A + sin B = 2 sin A+B2 cos A−B2

cos A - cos B = -2 sin A+B2 sin A−B2 .

L.H.S. =  (2sin3x+x2cos3xx2) sin x +  (2sin3x+x2sin3xx2) cosx

= 2 sin 4x2 cos 2x2 sin x -2 sin 4x2 sin 2x2 cosx.

= 2 sin 2xcosx sin x -2 sin 2x sin xcosx

= 0 = R.H.S.

Q:  

21. 2 s i n 2 3 π 4 + 2 c o s 2 π 4 + 2 s e c 2 π 3 = 1 0

A: 
21. Kindly go through the solution
Q:  

24. t a n ( π 4 + x ) t a n ( π 4 x ) = ( 1 + t a n x 1 t a n x ) 2

A: 
24. Kindly go through the solution
Q:  

6. If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.

Read more
A: 

6. Let r1 and r2 be the radii of two circles.

Then using relation

Q:  

2. Find the degree measures corresponding to the following radian measures (Useπ=227).

(i)11 16        (ii)-4       (iii) 5π3       (iv) 7π6

Read more
A: 

2. (i) 1116

We know that radian= 180°,

Hence, 1116 radian= 1116 ×
180°π
 = 1116 × 180°22/7 = 1116 × 722 ×180°

31580

=39 0 3°8

= 39°3×608 minute (as 1°=60)

=39°+22′+ 12'

=39°+22′+ 602'' (as 1′=60”)

=39°+22′+30”.

=39° 22′ 30”.

(ii) -4

We know that radian = 180°.

Hence: -4 radian = -4× 180°π = 4× 180°227 = 4×180°× 722 .

= - 2520110

=229 0 1°11

=229+ 1×60'11

=229+5′+ 511' .

=229°+5′+27″

=229° 5′27″

(iii) 3. .

Solution: We know that, π radian= 180°.

Here 3 radian = 3 × 180°π

 =300°

(iv) 6

Solution: We know that radian =180° .

Here, 6 radian = 6 × 180°π=210°

Q:  

16. s i n ( 1 1 π 3 )

A: 

16. Kindly go through the solution

 

Q:  

14. cosec (-1410°)

A: 

14. cosec (- 1410°)

As value of cosec x repeats after interval of 2π or 360°

∴ cosec (-1410°) = cosec (4×360°-1410°)

                             =cosec (1440°-1410°)

                             = cosec 30°

                             = 2.

Q:  

17. c o t ( 1 5 π 4 )

A: 
17. Kindly go through the solution

 

Q:  

Class 11 Chapter 3 Trigonometric Functions Miscellaneous Exercise Solution

52. 2cosπ13cos9π13+cos3π13+cos5π13=0

A: 

52. L.H.S. = 2 cos π13 cos 9π13 + cos 3π13 + cos 5π13 =∂ .

= 2 cos π13 cos 9π13 + 2 cos (3π13+5π13)2¯ cos (3π135π13)2

[?cosA+cosB=2cosA+B2cosAB2]

= 2 cos π13 cos 9π13 + 2. cos (8π/132) cos (2π/132)

= 2 cos π13 cos 9π13 + 2 cos 4π13 cos π13 [ ? cos (x) = cosx].

= 2 cos π13 [cos9π13+cos4π13].

= 2 cos π13[2cos(9π13+4π132)cos(9π134π132)]

= 2 cos π13 [2·cos(13π/132)cos(5π/132)]

= 2 cos π3 × 2 ×cos π2 × cos 5π26 .

= 2 cos π2 2× 0×cos 5π26

= 0

= R.H.S.

Q:  

39. cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1

A: 

39. L.H.S. = cot x cot 2x – cot 2x cot 3x – cot 3x cot x.

= cot x cot 2x – cot 3x (cot 2x + cot x)

= cot x cot 2x – (cot 2x + cot x) [cot (2x + x)]

We know that,

cot (A+B)=cotAcotB1cotA+cotB we can write

L.H.S=cotxcot2x (cot2x+cotx) [cot2x·cotx1cot2x+cotx]

= cot x cot 2x – cot 2x cot x + 1

= R.H.S.

Q:  

32. cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)

A: 

32. L.H.S=cot4x (sin5x+sin3x)

=cot4x [2sin8x2cos2x2]

=cos4x4x×2sin4xcosx

=2·cos4x·cosx

R.H.S=cotx [sin5xsin3x]

=cotx [2cos8x2·sin2x2]

=cosxsinx·2cos4xsinx

=2·cos4x·cosx.

Hence, L.H.S. = R.H.S.

Q:  

Prove the following:

23. c o s ( π 4 x ) c o s ( π 4 y ) s i n ( π 4 x ) s i n ( π 4 y ) = s i n ( x + y )

A: 

23. (i) sin 75°= sin (45°+30°)

Using sin (x + y)= sin x cos y + cos x sin y we can write

Q:  

9. sin x = 3/5, x lies in second quadrant.

 

A: 

9. Kindly go through the solution

Q:  

27. sin (n + 1)xsin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x

A: 

27. L.H.SL.HS=sin (x+1)xsin (x+2)x+cos (x+1)xcos (x+2)x.

= c o s ( x + 1 ) x c o s ( x + 2 ) x + s i n ( x + 1 ) x s i n ( x + 2 ) x .

Let A = (n+1)x and B = (n+2)x

So, L.H.S = cosAcosB + sin Asin B

= c o s ( A B )

Putting values of A and B we get,

L.H.S = L.H.S = cos [ (n+1)x (n+2)x]

= c o s [ n x + x n x 2 x ]

= c o s ( x )

=cosx= R.H.S R.H.S

Q:  

54. (cos x + cos y)2 + (sin x – sin y)= 4 cos2 x+y2

A: 

54. L.H.S. = (cos x + cos y)2 + (sin x- sin y)2

Using,

cos A + cos B = 2 cos A+B2 cos A−B2

sin A - sin B = 2 cos A+B2 sin AB2.

L.H.S. = [2cosx+y2cosxy2]2+[2cosx+y2sinxy2]2 .

= 4. cos2 (x+y2) cos2 (xy2) .. + 4 cos2 (x+y2) sin2 (xy2) .

= 4 cos2(x+y2) [cos2(xy2)+sin2(xy2)]

= 4 cos2(x+y2) [ ? cos2θ+ sin2qθ  = 1].

= R.H.S.

Q:  

56. sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x

A: 

56. L.H.S = sin x + sin 3x + sin 5x + sin 7x.

= (sin x + sin 7x) + (sin 3x + sin 5x)

Using,

sin A + sin B = 2 sin A+B2 cos AB2.

L.H.S. = 2. Sin x+7x2 cos x7x2 + 2 sin 3x+5x2 cos 3x5x2

= 2 sin 8x2 cos (6x2) + 2 sin 8x2 cos (2x2)

= 2 sin 4x cos 3x + 2 sin 4x cosx.[ ? cos (-x) = cosx]

= 2 sin 4x[cos 3x + cosx]

Using cos A + cos B = 2 cos A + B2 cos AB2.

So, L.H.S. = 2 sin 4x [2·cos3x+x2cos3xx2].

= 2 sin 4x [2·cos4x2·cos2x2]

= 4 sin 4x. cos 2x cosx = R.H.S.

Q:  

Class 11 Chapter 3 Trigonometric Functions Exercise 3.4 Solution

Find the principal and general solutions of the following equations:

43. tan x = √3

Read more
A: 

43. tanx = √3

We have, tan x = √3

Since tan x is (+) ve the principal solution lies in Ist and IIInd quadrant

Now, tan x = √3 = tan π 3 . = tan ( π + π 3 )

Principal solution are x = π 3  and ( π + π 3 )

        π 3 =  and ( 3 π + π 3 )

        π 3 = and 4 π 3 .

As tan x = tan π 3

The general solution is.

x = np + π 3 , n∈z

Q:  

55. (cos x – cos y)2+ (sin x – sin y)2 = 4 sin2 xy2

A: 

55. L.H.S = (cos x-cos y)2 + (sin x- sin y)2

[2sinx+y2sinxy2]2+ [2cosx+y2sinxy2]2

= 4 sin2 (x+y2) sin2 (xy2) + 4 cos2 (x+y2) sin2 (xy2)

= 4 sin2 (xy2)  [sin2 (x+y2)+cos2 (x+y2)]

= 4 sin2 (xy2) . [ ? sin2∅ + cos2∅= 1]

= R.H.S.

Q:  

Class 11 Math Trigonometric Functions Exercise 3.3 Solution

18. sin2π6+cos2π3tan2π4=12

A: 
18. 

(12)2+ (12)212=14+141=1+1+44=24=12

=R.H.S

Q:  

10. cot x = 3/4, x lies in third quadrant.

A: 

10. Kindly go through the solution

Q:  

11. sec x = 13/5, x lies in fourth quadrant.

A: 

11. Kindly go through the solution

Q:  

3. A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?

A: 

3. Given that a wheel makes 360 revolutions in one minute

Then, number of revolutions in one second = 36060 =6.

In 1 complete revolution the wheel turns 360°= 2π radian.

So, In 6 revolution, the wheel will turns 6×2π radian = 12π radian.

Hence, in one second the wheel will turn an angle of 12π radian.

Maths Ncert Solutions class 11th Logo

Class 11 Chapter 3 Trigonometric Functions Exercise 3.2 Solution

Class 11 Math Exercise 3.2 focuses on the definition of trigonometric functions, understanding their domains and ranges, and solving problems based on their properties. The ex 3.2 class 11 Math covers key topics such as the definition of sine, cosine, tangent, and other trigonometric functions, and the fundamental concept of signs of trigonometric functions in different quadrants, helping students understand the variation of these functions across the coordinate plane. Class 11 Math Exercise 3.2 comprises 9 questions. Students can check the complete solution of the following exercise;

Class 11 Trigonometric Functions Exercise 3.2 Solution

Find the values of other five trigonometric functions in Exercises 1 to 5.

Q1. cos x = –1/2 , x lies in third quadrant.

Q.2. sin x = 3/5, x lies in second quadrant.

Q.3. cot x = 3/4, x lies in third quadrant.

Q4. sec x = 13/5, x lies in fourth quadrant.

Q5. tan x = –5/12, x lies in second quadrant.

Find the values of the trigonometric functions in Exercises 6 to 10.

Q6. sin 765°

A.6. sin 765°

We know that value of sun x repeats after an interval of 2π or 360°.

Sin (765°) = sin (2×360°+45°)

= sin 45°

= 1/√2.

Q7. cosec (-1410°)

A.7. cosec (- 1410°)

As value of cosec x repeats after interval of 2π or 360°

∴ cosec (-1410°) = cosec (4×360°-1410°)

                             =cosec (1440°-1410°)

                             = cosec 30°

                             = 2.

Q8. tan19π/3

= tan ( 3 × 2 π + π 3 )
= tan π 3
= √3
Q9. s i n ( 1 1 π 3 )
Q10. c o t ( 1 5 π 4 )
Maths Ncert Solutions class 11th Logo

Class 11 Chapter 3 Trigonometric Functions Exercise 3.3 Solution

Class 11 Math Ex 3.3 focuses on the fundamental trigonometric identities ( sin 2 x + cos 2 x = 1 \sin^2 x + \cos^2 x = 1 , 1 + tan 2 x = sec 2 x 1 + \tan^2 x = \sec^2 x , and 1 + cot 2 x = csc 2 x ) and properties of trigonometric functions. Trigonometric function Exercise 3.3 also deals with the simplification and transformation of trigonometric expressions using these identities. This Exercise 3.3 class 11 contains 25 questions and their detailed solutions. Students can check the complete solution of the exercise 3.3 below;

Class 11 Math Trigonometric Functions Exercise 3.3 Solution

Q1.  s i n 2 π 6 + c o s 2 π 3 t a n 2 π 4 = 1 2

A.1.

( 1 2 ) 2 + ( 1 2 ) 2 1 2 = 1 4 + 1 4 1 = 1 + 1 + 4 4 = 2 4 = 1 2

=R.H.S

Q2.  2 S i n 2 π 6 + c o s e c 2 7 π 6 c o s 2 π 3 = 3 2

= 1 2 + 4 . 1 4

= 1 2 + 1   = 3 2

= R.H.S.

Q3. c o t 2 π 6 + c o s e c 5 π 6 + 3 t a n 2 π 6 = 6
Q4. 2 s i n 2 3 π 4 + 2 c o s 2 π 4 + 2 s e c 2 π 3 = 1 0

Q5. Find the value of:

(i) sin 75°               (ii) tan 15°

A.5. (i) sin 75°= sin (45°+30°)

Using sin (x + y)= sin x cos y + cos x sin y we can write

sin 75°

= sin 45°cos 30°+ 45° sin 30°

Prove the following:

Q6. c o s ( π 4 x ) c o s ( π 4 y ) s i n ( π 4 x ) s i n ( π 4 y ) = s i n ( x + y )

Q7. t a n ( π 4 + x ) t a n ( π 4 x ) = ( 1 + t a n x 1 t a n x ) 2
Q8.
Q9. c o s ( 3 π 2 + x ) c o s ( 2 π + x ) [ c o t ( 3 π 2 x ) + c o t ( 2 π + x ) ] = 1

A.9. L.H.S L.H.S. = c o s ( 3 π 2 + x ) c o s ( 2 π + x ) [ c o t ( 3 π 2 x ) + c o t ( 2 π + x ) ]

Here,

c o s ( 3 π 2 + x ) = c o s ( 4 π π 2 + x ) = c o s ( 2 π π 2 + x )

= c o s [ 2 π ( π 2 x ) ] ; VI quadrant.

c o s ( π 2 x ) ; i   I st  quadrant. 

= s i n x

c o s ( 2 x + x ) = c o s x , as  x lies in  I st quadrant.

c o t ( 2 π + x ) = c o t x ; as x lies in I st quadrant.

c o t ( 3 π 2 x ) = c o t [ 4 π π 2 x ]

= c o t [ 2 π π 2 x ]

= c o t [ 2 x ( π 2 + x ) ] ; V I th  quadrant.

= c o t ( π 2 + x ) ; I I nd quadrat.

= ( t a n x )

= t a n x .

So.L.H.S L.H.S = s i n x c o s x [ t a n x + c o t x ]

= s i n x c o s x [ s i n x c o s x + c o s x s i n x ]

= s i n x c o s x ( s i n 2 x + c o s 2 x ) c o s x s i n x

= s i n 2 x + c o s 2 x

= 1

= R.H.S.

Q10. sin (n + 1)xsin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x

A.10. L.H.S L.HS = s i n ( x + 1 ) x s i n ( x + 2 ) x + c o s ( x + 1 ) x c o s ( x + 2 ) x .

= c o s ( x + 1 ) x c o s ( x + 2 ) x + s i n ( x + 1 ) x s i n ( x + 2 ) x .

Let A = (n+1)x and B = (n+2)x

So, L.H.S = cosAcosB + sin Asin B

= c o s ( A B )

Putting values of A and B we get,

L.H.S = L.H.S =  c o s [ ( n + 1 ) x ( n + 2 ) x ]

= c o s [ n x + x n x 2 x ]

= c o s ( x )

= c o s x =  R.H.S R.H.S

Q11.  c o s ( 3 π 4 + x ) c o s ( 3 π 4 x ) = −√2 s i n x

A.11.  L.H.S =  L.H.S  = c o s ( 3 π 4 + x ) c o s ( 3 π 4 x )

Using cos (A + B) = cos A cos B – sin A sin B

and cos (A – B) = cos A cos B + sin A sin B

L.H.S = [ c o s 3 π 4 c o s x s i n 3 π 4 s i n x ] [ c o s 3 π 4 c o s x + s i n 3 π 4 s i n x ]

= c o s 3 π 4 c o s x s i n 3 π 4 s i n x c o s 3 π 4 c o s x s i n 3 π 4 s i n x .

= 2 s i n 3 π 4 s i n x .

= 2 s i n ( 4 π π 4 ) s i n x .

Q12. sin26x – sin24x = sin 2x sin 10x

A.12. L.H.S  L.H.S = s i n 2 6 x s i n 2 4 x .

= ( s i n 6 x + s i n 4 x ) ( s i n 6 x s i n 4 x ) . [ a 2 b 2 = ( a b ) ( a + b ) ]

So,

L.H.S = L.H.S. = ( 2 s i n ( 6 x + 4 x 2 ) c o s ( 6 x 4 x 2 ) ) ( 2 c o s ( 6 x + 4 x 2 ) s i n ( 6 x 4 x 2 ) )

= ( 2 s i n 1 0 x 2 c o s 2 x 2 ) ( 2 c o s 1 0 x 2 s i n 2 x 2 )

= 2 s i n 5 x c o s x 2 c o s 5 x s i n x

= 2 s i n 5 x c o s 5 x 2 c s i n x c o s x .

As  s i n 2 θ = 2 s i n θ c o s θ  we can write.

L.H.S = s i n ( 2 × 5 x ) = s i n ( 2 × x )

= s i n 1 0 x s i n 2 x =  R.H.S. R.H.S

Q13. cos22x – cos26x = sin 4x sin 8x

A.13. L.H.S L.H.S = c o s 2 2 x c o s 2 6 x

= ( c o s 2 x + c o s 6 x ) ( c o s 2 x c o s 6 x ) [ a 2 b 2 = ( a b ) ( a + b ) ]

L.H.S = L.H.S = [ 2 c o s ( 2 x + 6 x 2 ) c o s ( 2 x 6 x 2 ) ] [ 2 s i n 2 x + 6 x 2 s i n ( 2 x 6 x 2 ) ]
= [ 2 c o s 8 x 2 c o s ( 4 x 2 ) ] [ 2 s i n ( 8 x 2 ) s i n ( 4 x 2 ) ]
= 2 c o s 4 x c o s 2 x × 2 s i n 4 x · s i n 2 x [ c o s ( x ) = c o s x ; s i n ( x ) = s i n x ]
= 2 s i n 4 x c o s 4 x × 2 s i n 2 x c o s 2 x

As sin 2θ = 2 sinθ cosθ.

L.H.S. = sin (2*4x) sin(2*2x)

= sin 8x sin 4x

= R.H.S.

Q14. sin2 x + 2 sin 4x + sin 6x = 4 cos2x sin 4x

A.14. L.H.S. = sin 2x + 2 sin 4x + sin 6x

Using sin A + sin B = 2 sin A + B/2 cos A - B/2  we have,

L.H.S. = (sin 2x + sin 6x) + 2 sin 4x

= 2 s i n ( 2 x + 6 x 2 ) c o s ( 2 x 6 x 2 ) + 2 s i n 4 x .

= 2 s i n 8 x 2 c o s ( 4 x 2 ) + 2 s i n 4 x .

= 2 s i n 4 x c o s 2 x + 2 s i n 4 x [ c o s ( x ) = x ]

= 2 s i n 4 x [ c o s 2 x + 1 ]

We know that,

c o s 2 x = 2 c o s 2 x 1

c o s 2 x + 1 = 2 c o s 2 x

Hence,

L.H.S = 2 s i n 4 x ( 2 c o s 2 x )

= 4 c o s 2 x s i n 4 x

= R.H.S

Q15. cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)

A.15. L.H.S = c o t 4 x ( s i n 5 x + s i n 3 x )

= c o t 4 x [ 2 s i n 8 x 2 c o s 2 x 2 ]

= c o s 4 x 4 x × 2 s i n 4 x c o s x

= 2 · c o s 4 x · c o s x

R.H.S = c o t x [ s i n 5 x s i n 3 x ]

= c o t x [ 2 c o s 8 x 2 · s i n 2 x 2 ]

= c o s x s i n x · 2 c o s 4 x s i n x

= 2 · c o s 4 x · c o s x .

Hence, L.H.S. = R.H.S.

Q16.  c o s 9 x c o s 5 x s i n 1 7 x s i n 3 x = s i n 2 x c o s 1 0 x

A.16.  = c o s 9 x c o s 5 x s i n 1 7 x s i n 3 x

= 2 s i n ( 9 x + 5 x 2 ) s i n ( 9 x 5 x 2 ) 2 c o s ( 1 7 x + 3 x 2 ) s i n ( 1 7 x 3 x 2 )

= s i n 1 4 x 2 s i n 4 x 2 c o s 2 0 x 2 s i n 1 4 x 2 = s i n 7 x s i n 2 x c o s 1 0 x s i n 7 x = s i n 2 x c o s 1 0 x

= R.H.S

Q17.  s i n 5 x + s i n 3 x c o s 5 x + c o s 3 x = t a n 4 x

A.17.  = s i n 5 x + s i n 3 x c o s 5 x + c o s 3 x .

= 2 s i n ( 5 x + 3 x 2 ) c o s ( 5 x 3 x 2 ) 2 c o s ( 5 x + 3 x 2 ) c o s ( 5 x 3 x 2 )

= s i n 8 x 2 c o s 2 x 2 c o s 8 x 2 c o s 2 x 2

= s i n 4 x c o s 4 x = t a n 4 x = R.H.S

Q18.  s i n x s i n y c o s x + c o s y = t a n x y 2

A.18. L.H.S: = L.H. S: = s i n x s i n y c o s x + c o s y

= 2 c o s x + y 2 s i n x y 2 2 c o s x + y 2 c o s x y 2

= s i n ( x y 2 ) c o s ( x y 2 )

= t a n ( x y 2 ) = R.H.S. = R.H.S.

Q19.  s i n x + s i n 3 x c o s x + c o s 3 x = t a n 2 x

A.19.  = s i n x + s i n 3 x c o s x + c o s 3 x

= 2 ( x + 3 x 2 ) c o s ( x 3 x 2 ) 2 c o s ( x + 3 x 2 ) c o s ( x 3 x 2 )

= s i n 4 x 2 c o s 4 x 2

= s i n 2 x c o s 2 x

= t a n 2 x = R.H.S

Q20. s i n x s i n 3 x s i n 2 x c o s 2 x = 2 s i n x

A.20.  = s i n x s i n 3 x s i n 2 x c o s 2 x

= 2 c o s ( x + 3 x 2 ) s i n x 3 x 2 ( c o s 2 x s i n 2 x )

= 2 c o s 4 x 2 s i n ( 2 x 2 ) c o s 2 x [ c o s 2 x = c o s 2 x s i n 2 x ]

= 2 c o s 2 x s i n x c o s 2 x [ s i n ( x ) = s i n x ]

= 2 sin x

= R.H.S.

Q21.  c o s 4 x + c o s 3 x + c o s 2 x s i n 4 x + s i n 3 x + s i n 2 x = c o t 3 x

A.21. L.H.S = c o s 4 x + c o s 3 x + c o s 2 x s i n 4 x + s i n 3 x + s i n 2 x .

= ( c o s 4 x + c o s 2 x ) + c o s 3 x ( s i n 4 x + s i n 2 x ) + s i n 3 x .

= 2 c o s ( 4 x + 2 x 2 ) c o s ( 4 x 2 x 2 ) + c o s 3 x 2 s i n ( 4 x + 2 x 2 ) c o s ( 4 x 2 x 2 ) s i n 3 x .

= 2 c o s 6 x 2 c o s 2 x 2 + c o s 3 x 2 s i n 6 x 2 c o s 2 x 2 + s i n 3 x

= 2 c o s 3 x c o s x + c o s 3 x 2 s i n 3 x c o s x + 3 x

= c o s 3 x s i n 3 x × ( 2 c o s x + 1 ) ( 2 c o s x + 1 )

= c o t 3 x =R.H.S

Q22. cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1

A.22. L.H.S. = cot x cot 2x – cot 2x cot 3x – cot 3x cot x.

= cot x cot 2x – cot 3x (cot 2x + cot x)

= cot x cot 2x – (cot 2x + cot x)[cot (2x + x)]

We know that,

c o t (A +B ) = c o tA c o tB 1 c o tA + c o tB  we can write

L.H.S= c o t x c o t 2 x ( c o t 2 x + c o t x ) [ c o t 2 x · c o t x 1 c o t 2 x + c o t x ]

= cot x cot 2x – cot 2x cot x + 1

= 1

= R.H.S.

Q23.  t a n 4 x = 4 t a n x ( 1 t a n 2 x ) 1 6 t a n 2 x + t a n 4 x

A.23. L.H.S. = tan 4x

We know that,

t a n 2 = 2 t a n 1 t a n 2 .  , we can write

L.H.S= t a n 2 ( 2 x ) = 2 t a n 2 x 1 t a n 2 2 x .

= 2 ( 2 t a n x 1 t a n 2 x ) 1 ( 2 t a n x 1 t a n 2 x ) 2

= 4 t a n x ( 1 t a n 2 x ) ( 1 t a n 2 x ) 2 4 t a n 2 x ( 1 t a n 2 x ) 2

= 4 t a n x × ( 1 t a n 2 x ) 1 + t a n 4 x 2 t a n 2 x 4 t a n 2 x

= 4 t a n x ( 1 t a n 2 x ) 1 6 t a n 2 x + t a n 4 x

= R.H.S.

Q24. cos 4x = 1 – 8sin2x cos2x

A.24. L.H.S. = cos 4x.

= cos 2(2x)

= 1 – 2 Sin2(2x) [ cos 2x = 1 – 2 Sin2x]

= 1 – 2 [2 sin xcosx]2[ sin 2x = 2 sin xcos x]

= 1 – 2 [4 sin2xcos2x]

= 1 – 8 sin2xcos2x

= R.H.S.

Q25. cos 6x = 32 cos6x – 48cos4x + 18 cos2x – 1

A.25. L.H.S. = cos 6x

= cos 3(2x)

= 4 cos32x – 3 cos 2x                 [Q cos 3A = 4 cos3A – 3cos A]

= 4[(2 cos2x – 1)3] – 3[(2 cos2x – 1)]                      [Q cos 2x = 2 cos2x – 1]

= 4[(2 cos2x)3  + 3[(2 cos2x)2(–1) + 3(2 cos2x)(–1)2 + (–1)3] – 3(2 cos2x) + 3

{Q (a + b)3= a3 + b3 + 3a2b + 3ab2}

= 4[8 cos6x – 12 cos4x + 6cos2x – 1] – 6 cos2x + 3.

= 32 cos6x – 48 cos4x + 24 cos2x – 4 – 6cos2x + 3

= 32 cos6x – 48 cos4x + 18 cos2x – 1

= R.H.S.

Read more
Maths Ncert Solutions class 11th Logo

Class 11 Chapter 3 Trigonometric Functions Exercise 3.4 Solution

Class 11 Math Ex 3.4 focuses on the general solutions of trigonometric equations. Ex 3.4 class 11 Math focuses on solving basic trigonometric equations involving sine, cosine, tangent, and other trigonometric functions. This exercise is crucial in developing a deeper understanding of how trigonometric functions behave and how their equations can be solved systematically.

It covers the general solution of trigonometric equation

Class 11 Chapter 3 Trigonometric Functions Exercise 3.4 Solution

Find the principal and general solutions of the following equations:

Q1. tan x = √3

A.1. tanx = √3

We have, tan x = √3

Since tan x is (+) ve the principal solution lies in Ist and IIInd quadrant

Now, tan x = √3 = tan π 3 . = tan ( π + π 3 )

Principal solution are x = π 3  and ( π + π 3 )

        π 3 =  and ( 3 π + π 3 )

        π 3 = and 4 π 3 .

As tan x = tan π 3

The general solution is.

x = np + π 3 , n∈z

Q2. Secx = 2

A.2. Secx = 2.                      .

We have, Secx = 2, | Secx is (+)ve  the principal solution lies in Ist and IVthquadrent.

π 3  and  6 π π 3

π 3  and  3  .

As secx = sec  π 3  . cosx = cos  π 3   [ s e c x = 1 c o s x ]

The general solution is

x = 2nπ ± π 3 , n ∈ z.

Q3. cot x = -√3

A.3. We have, cot x = -√3  i.e., cot x is negative

So, the principal solution lies in IInd and IVth quadrant.

So the principal solution are a =  ( π π 6 )  and  ( 2 π π 6 )

( 6 π π 6 )  and  ( 1 2 π π 6 )

5 π 6  and  1 1 π 6 .

As cot x = cot  5 π 6  tan x = tan  5 π 6   [ c o t x = 1 t a n x ]

The general solution has the form.

x = n+  5 π 6  , nz

Q4. cosec x = – 2

A.4.We have cosec x = 2 .i e, cosec x = (-)ve,

So, the principal solution lies in IIInd and IVth quadrent.

Now, cosec x = -2 = -cosec π 6  = cosec ( π + π 6 = cosec ( 2 π π 6 )

So the principal solution are x =  ( π + π 6 ) and ( 2 π π 6 )

( 6 π + π 6 )  and  ( 1 2 π π 6 )

7 π 6  and  1 1 π 6 .

As cosec x = cosec  7 π 6 ⇒sin x = sin  7 π c   [ c o s e c x = 1 s i n x ]

The general solution has the form,

x = nπ + (-1)n 7 π 6  , n∈z.

Find the general solution for each of the following equations:

Q5. cos 4 x = cos 2 x

A.5. We have,

cos 4x = cos 2x.

⇒ cos 4x-cos 2x = 0.

⇒ -2 sin ( 4 x + 2 x 2 )  sin  ( 4 x 2 x 2 )  = 0.

⇒sin  6 x 2  sin  2 x 2  = 0

⇒sin 3x sin x = 0.

∴sin 3x = 0 or sin x = 0

3x = nπ or x = nπ, n∈z,

⇒x =  n π 3  or x = nπ, n∈z

Q6. cos 3x + cos x – cos 2x = 0

A.6. We have,

cos 3x + cosx-cos 2x = 0.

(cos 3x + cosx) cos 2x = 0

Using cos A + cos B = 2 cos A+B 2  cos  A-B 2

2 cos  ( 3 x + x 2 )  cos  ( 3 x x 2 ) - cos 2x = 0.

2 cos  4 x 2  cos  2 x 2 - cos 2x = 0

2 cos 2xcosx - cos 2x = 0

cos 2x. (2 cosx - 1) = 0.

cos 2x = 0 or 2 cosx -1 = 0.

2x = (2n + 1)  π 2 , n∈z or cosx =  1 2  = cos  π 3

x = (2n + 1)  π 4 , n∈z or x = 2nx±  π 3 , n∈z.

Q7. sin 2x + cos x = 0

A.7. We have,

sin 2x + cosx = 0.

2 sin cosx + cosx = 0(   sin 2x = 2 sin xcosx)

cosx (2 sin x + 1) = 0.

cosx = 0     or 2 sinx + 1 = 0.

x = (2n + 1)  π 2 , n∈z or sin x = 1 2 = -sin  π 6 = sin  π + π 6 = sin  7 π 6 .

x = (2n + 1)  π 2 , x∈z or x= nπ + (-1)n 7 π 6 ,  n∈z.

Q8. sec22x = 1– tan 2x

A.8. We have,

sec2 2x = 1 tan 2x

1 + tan2 2x = 1 tan 2x[ sec2x = 1 + tan2x]

tan2 2x + tan 2x = 0.

tan 2x (tan 2x + 1) = 0.

tan 2x = 0         or         tan 2x + 1 = 0.

2x = nπ, x∈z or tan 2x = -1 = -tan π 4 = tan π- π 4   = tan  3 π 4 .

x=  n π 2  , n∈z or 2x = nπ + 3 π 4  , n∈z.

x =  n π 2 + 3 π 8 ,  n∈z

Q9. sin x + sin 3x + sin 5x = 0

A.9. We have,

sinx + sin 3x + sin 5x = 0.

(sinx + sin 5x) + sin 3x = 0.

Using sin A + sin B = 2 sin  A+B 2  cos  A−B 2  .

2 sin  ( x + 5 x 2 )  cos  ( x 5 x 2 )  + sin 3x = 0.

2 sin  6 x 2 cos -4 x 2   + sin 3x = 0.

2 sin 3xcos (-2x) + sin 3x = 0.

sin 3x [2 cos 2x + 1] = 0[  cos (-x) = cosx].

sin 3x = 0 or 2 cos 2x + 1 = 0.

3x = nπ, n∈z. or cos 2x = -1 2 = -cos  π 3 = cos  π - π 3 = cos  2 π 3

x=  n π 3  , n∈z or 2x = 2nπ± 2 π 3  .

x = nπ± π 3  , n∈z.

Read more
Maths Ncert Solutions class 11th Logo

Class 11 Chapter 3 Trigonometric Functions Miscellaneous Exercise Solution

Trigonometric Functions Miscellaneous Exercise covers all the topics learned throughout the chapter such as angle measurement in degrees and radians, unit circle-based trigonometric functions, fundamental identities, and trigonometric equations. It also reinforces concepts such as domain and range of trigonometric functions, periodicity, symmetry, and sign variations across different quadrants. Students can check the complete solution of the Miscellaneous exercise below;

Class 11 Chapter 3 Trigonometric Functions Miscellaneous Exercise Solution

Q1.  2 c o s π 1 3 c o s 9 π 1 3 + c o s 3 π 1 3 + c o s 5 π 1 3 = 0

A.1. L.H.S. = 2 cos π 1 3  cos  9 π 1 3  + cos  3 π 1 3  + cos  5 π 1 3 =∂ .

= 2 cos  π 1 3  cos  9 π 1 3  + 2 cos  ( 3 π 1 3 + 5 π 1 3 ) 2 ¯  cos  ( 3 π 1 3 5 π 1 3 ) 2

[ c o s A + c o s B = 2 c o s A + B 2 c o s A B 2 ]

= 2 cos  π 1 3  cos  9 π 1 3  + 2. cos  ( 8 π / 1 3 2 )  cos  ( 2 π / 1 3 2 )

= 2 cos  π 1 3  cos  9 π 1 3  + 2 cos  4 π 1 3  cos  π 1 3  [   cos (x) = cosx].

= 2 cos  π 1 3   [ c o s 9 π 1 3 + c o s 4 π 1 3 ] .

= 2 cos  π 1 3 [ 2 c o s ( 9 π 1 3 + 4 π 1 3 2 ) c o s ( 9 π 1 3 4 π 1 3 2 ) ]

= 2 cos  π 1 3   [ 2 · c o s ( 1 3 π / 1 3 2 ) c o s ( 5 π / 1 3 2 ) ]

= 2 cos  π 3 × 2 ×cos π 2 × cos 5 π 2 6  .

= 2 cos  π 2  2× 0×cos  5 π 2 6

= 0

= R.H.S.

Q2. (sin 3x + sin x) sin x + (cos 3x – cos x) cos x = 0

A.2. L.H.S = (sin 3x + sin x) + sin x + (cos 3x - cosx) cosx.

Using

Sin A + sin B = 2 sin  A + B 2  cos  A−B 2

cos A - cos B = -2 sin A+B 2  sin  A−B 2  .

L.H.S. =  ( 2 s i n 3 x + x 2 c o s 3 x x 2 )  sin x +  ( 2 s i n 3 x + x 2 s i n 3 x x 2 )  cosx

= 2 sin  4 x 2  cos  2 x 2 sin x -2 sin  4 x 2  sin  2 x 2  cosx.

= 2 sin 2xcosx sin x -2 sin 2x sin xcosx

= 0 = R.H.S.

Q3. (cos x + cos y)2 + (sin x – sin y)= 4 cos2 x + y 2

A.3. L.H.S. = (cos x + cos y)2 + (sin x- sin y)2

Using,

cos A + cos B = 2 cos  A+B 2 cos A−B 2

sin A - sin B = 2 cos A+B 2  sin  A B 2 .

L.H.S. =  [ 2 c o s x + y 2 c o s x y 2 ] 2 + [ 2 c o s x + y 2 s i n x y 2 ] 2  .

= 4. cos2 ( x + y 2 ) cos2 ( x y 2 ) .. + 4 cos2 ( x + y 2 ) sin2 ( x y 2 )  .

= 4 cos2 ( x + y 2 )   [ c o s 2 ( x y 2 ) + s i n 2 ( x y 2 ) ]

= 4 cos2 ( x + y 2 )  [  cos2θ+ sin2qθ  = 1].

= R.H.S.

Q4. (cos x – cos y)2+ (sin x – sin y)2 = 4 sin2 x y 2

A.4. L.H.S = (cos x-cos y)2 + (sin x- sin y)2

[ 2 s i n x + y 2 s i n x y 2 ] 2 + [ 2 c o s x + y 2 s i n x y 2 ] 2

= 4 sin2 ( x + y 2 ) sin2 ( x y 2 ) + 4 cos2 ( x + y 2 ) sin2 ( x y 2 )

= 4 sin2 ( x y 2 )   [ s i n 2 ( x + y 2 ) + c o s 2 ( x + y 2 ) ]

= 4  s i n 2 ( x y 2 )  ..[  sin2∅ + cos2∅= 1]

= R.H.S.

Q5. sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x

A.5. L.H.S = sin x + sin 3x + sin 5x + sin 7x.

= (sin x + sin 7x) + (sin 3x + sin 5x)

Using,

sin A + sin B = 2 sin  A + B 2  cos  A B 2 .

L.H.S. = 2. Sin  x + 7 x 2  cos  x 7 x 2 + 2 sin 3 x + 5 x 2  cos  3 x 5 x 2

= 2 sin  8 x 2  cos  ( 6 x 2 )  + 2 sin  8 x 2  cos  ( 2 x 2 )

= 2 sin 4x cos 3x + 2 sin 4x cosx.[  cos (-x) = cosx]

= 2 sin 4x[cos 3x + cosx]

Using cos A + cos B = 2 cos  A + B 2  cos  A B 2 .

So, L.H.S. = 2 sin 4x  [ 2 · c o s 3 x + x 2 c o s 3 x x 2 ] .

= 2 sin 4x  [ 2 · c o s 4 x 2 · c o s 2 x 2 ]

= 4 sin 4x. cos 2x cosx = R.H.S.

Q6.  ( s i n 7 x + s i n 5 x ) + ( s i n 9 x + s i n 3 x ) ( c o s 7 x + c o s 5 x ) + ( c o s 9 x + c o s 3 x ) = t a n 6 x

A.6. L.H.S. = ( s i n 7 x + s i n 5 x ) + ( s i n 9 x + s i n 3 x ) ( c o s 7 x + c o s 5 x ) + ( c o s 9 x + c o s 3 x ) .

Using sin A + sin B = 2 sin  A + B 2  cos  A B 2

cos A + cos B = 2 cos  A + B 2  cos  A B 2 .

Q7. sin 3x + sin 2x – sin x = 4sin x c o s x 2 c o s 3 x 2

A.7. L.H.S = sin 3x + sin 2x - sin x

= sin 3x - sin x + sin 2x.

= 2 cos  3 x + x 2  .. sin  3 x x 2  + sin 2x  [ s i n A s i n B = 2 c o s A + B 2 s i n A B 2 ]

= 2 cos  4 x 2  sin  2 x 2  + sin 2x.

= 2 cos 2x sin x + 2 sin xcosx        [  sin 2x = 2sin xcosx]

= 2 sin x [cos 2x + cosx]

= 2 sin x  [ 2 c o s 2 x + x 2 c o s 2 x x 2 ]   [ c o s A + c o s B = 2 c o s A + B 2 c o s A B 2 ]

= 2 sin x  [ 2 . c o s 3 x 2 c o s x 2 ]

= 4 sin xcos  x 2  . cos  3 x 2  = R.H.S.

Find sin  x 2  , cos  x 2  and tan  x 2  in each of the following :

Q8. tan x = − 4 3  , x in quadrant II

A.8. We have, tan x= 4 3  , x in IInd quadrant.

Since,  π 2 < x < π

π 4 < x 2 < π 2

sin  x 2  , cos  x 2  , tan  x 2  are all positive.

Now, sec2x = 1 + tan2x = 1 + ( 4 3 ) 2  = 1 +  1 6 9  =  9 + 1 6 9  =  2 5 9

secx = ± 5 3

cosx = ± 3 5  .

cosx =  3 5 as x is in IInd quadrant.

Now, 2 sin2.. = 1 cosx.    [cos 2x = 1 2 sin2x.]

2 sin2 x 2  = 1  ( 3 5 )

2 sin2 x 2 =  1 + 3 5 5 + 3 5  =  8 5  .

sin2 x 2  =  8 2 × 5  =  4 5 .

Q9.cos x = −1/3, x in quadrant III

Q10. sin x = 1/4 in quadrant II

Read more

Explore exams which ask questions on Maths Ncert Solutions class 11th

Select your preferred stream

qna

Maths Ncert Solutions class 11th Exam

Student Forum

chatAnything you would want to ask experts?
Write here...