AP EAPCET (EAMCET) 2023 syllabus will be available soon. Candidates should go through the syllabus prior to commencing their preparation. Through the AP EAMCET 2023 syllabus, candidates will be able to know the subject-wise topics and chapters that are important from the examination point of view. The engineering paper will consist of questions from Mathematics, Physics and Chemistry while the agricultural paper will contain questions from Botany, Zoology, Chemistry and Physics.
AP EAMCET 2023 exam will be held for the engineering and agriculture stream in two sessions. The exam will be held online in both English and Telegu language carrying 160 questions in total. The AP EAMCET 2023 syllabus will be updated on this page after it is released by the concerned authority. For now, the candidate can check the AP EAMCET syllabus 2022 below.
Also read: AP EAMCET study plan & time table
AP EAMCET 2022 Syllabus: Physics (For MPC and BiPC)
PHYSICAL WORLD
What is physics? Scope and excitement of physics. Physics, Technology and Society, Fundamental forces in nature. Nature of physical laws.
UNITS AND MEASUREMENTS:
Introduction, The international system of units, Measurement of Length, Measurement of Large Distances, Estimation of Very Small Distances, Size of a Molecule, Range of Lengths, Measurement of Mass, Range of Masses, Measurement of time, Accuracy, precision of instruments and errors in measurement, Systematic errors, random errors, least count error, Absolute Error, Relative Error and Percentage Error, Combination of Errors, Significant figures, Rules for Arithmetic Operations with Significant Figures, Rounding off the Uncertain Digits, Rules for Determining the Uncertainty in the Results of Arithmetic Calculations, Dimensions of Physical Quantities, Dimensional Formulae and dimensional equations, Dimensional Analysis and its Applications, Checking the Dimensional Consistency of Equations, Deducing Relation among the Physical Quantities.
MOTION IN A PLANE
Introduction, Scalars and vectors, position and displacement vectors, equality of vectors, multiplication of vectors by real numbers, addition and subtraction of vectors - graphical method, resolution of vectors, vector addition - analytical method, motion in a plane, position vector and displacement, velocity, acceleration, motion in a plane with constant acceleration, relative velocity in two dimensions, projectile motion, equation of path of a projectile, time of maximum height, maximum height of a projectile, the horizontal range of projectile, uniform circular motion.
MOTION IN A STRAIGHT LINE
Introduction, Position, path length and displacement, average velocity and average speed, instantaneous velocity and speed, acceleration, kinematic equations for uniformly accelerated motion, relative velocity.
LAWS OF MOTION
Introduction, Aristotle’s fallacy, Equilibrium of a particle, Common forces in mechanics, friction, types of friction, static, kinetic and rolling frictions, Circular motion, Motion of a car on a level road, Motion of a car on a banked road, solving problems in mechanics.
WORK, ENERGY AND POWER
Introduction, The Scalar Product, Notions of work and kinetic energy, The work-energy theorem, Work, Kinetic energy, Work done by a variable force, The work-energy theorem for a variable force, The concept of Potential Energy, The conservation of Mechanical Energy, The Potential Energy of a spring, Various forms of energy, Heat, Chemical Energy, Electrical Energy, The Equivalence of Mass and Energy, Nuclear Energy, The Principle of Conservation of Energy, Power, Collisions, Elastic and Inelastic Collisions, Collisions in one dimension, Coefficient of Restitution and its determination, Collisions in Two Dimensions.
OSCILLATIONS
Introduction, Periodic and oscillatory motions, Period and frequency, Displacement, Simple harmonic motion (S.H.M.), Simple harmonic motion and uniform circular motion, Velocity and acceleration in simple harmonic motion, Force law for Simple harmonic Motion, Energy in simple harmonic motion, some systems executing Simple Harmonic Motion, Oscillations due to a spring, The Simple Pendulum, damped simple harmonic motion, Forced oscillations and resonance.
SYSTEM OF PARTICLES AND ROTATIONAL MOTION
Introduction, Rigid body motion, Centre of mass, Centre of Gravity, Motion of centre of mass, Linear momentum of a system of particles, Vector product of two vectors, Angular velocity and its relation with linear velocity, Angular acceleration, Kinematics of rotational motion about a fixed axis, Moment of force (Torque), Angular momentum of a particle, Torque and angular momentum for a system of a particle, conservation of angular momentum, Equilibrium of a rigid body, Principle of moments, Moment of inertia, Dynamics of rotational motion about a fixed axis, Angular momentum in case of rotation about a fixed axis, Rolling motion, Kinetic Energy of Rolling Motion.
GRAVITATION
Introduction, Universal law of gravitation, central forces, the gravitational constant, Acceleration due to gravity of the earth, Acceleration due to gravity below and above the surface of the earth, Gravitational potential energy, Escape speed, Orbital Speed, Earth satellites, Energy of an orbiting satellite, Geostationary and polar satellites, Weightlessness.
MECHANICAL PROPERTIES OF SOLIDS
Introduction, Elastic behaviour of solids, Stress and strain, Hooke’s law, Stress-strain curve, Elastic moduli, Young’s Modulus, Determination of Young’s Modulus of the Material of a Wire, Shear Modulus, Bulk Modulus, Applications of elastic behaviour of materials.
MECHANICAL PROPERTIES OF FLUIDS
Introduction, Pressure, Pascal’s Law, Variation of Pressure with Depth, Atmospheric Pressure and Gauge Pressure, Hydraulic Machines, Archimedes’ Principle, Streamline flow, Bernoulli’s principle, Speed of Efflux, Torricelli’s Law, Venturi- meter, Blood Flow and Heart Attack, Dynamic Lift, Viscosity, Variation of Viscosity of fluids with temperature, Stokes’ Law, Reynolds number, Critical Velocity, Surface tension and Surface Energy, Angle of Contact, Drops and Bubbles, Capillary Rise, Detergents and Surface Tension.
THERMODYNAMICS
Introduction, Thermal equilibrium, Zeroth law of thermodynamics, Heat, Internal Energy and work, First law of thermodynamics, Specific heat capacity, Specific heat capacity of water, Thermodynamic state variables and equation of State, Thermodynamic processes, Quasi-static process, Isothermal Process, Adiabatic Process, Isochoric Process, Isobaric process, Cyclic process, Second law of thermodynamics, Reversible and irreversible processes, Carnot engine, Carnot’s theorem.
THERMAL PROPERTIES OF MATTER
Introduction, Temperature and heat, Measurement of temperature, Ideal-gas equation and absolute temperature, Thermal expansion, Specific heat capacity, Calorimetry, Change of state, Triple Point, Regelation, Latent Heat, Newton’s law of cooling and its experimental verification.
KINETIC THEORY
Introduction, Molecular nature of matter, Behaviour of gases, Boyle’s Law, Charles’ Law, Kinetic theory of an ideal gas, Pressure of an Ideal Gas, Kinetic interpretation of temperature, Law of equipartition of energy, Specific heat capacity, Monatomic Gases, Diatomic Gases, Polyatomic Gases, Specific Heat Capacity of Solids, Specific Heat Capacity of Water, Mean free-path.
WAVES
Introduction, Transverse and longitudinal waves, displacement relation in a progressive wave, amplitude and phase, wavelength and angular wave number, period, angular frequency and frequency, the speed of a travelling wave, speed of a transverse wave on a stretched string, speed of a longitudinal wave (speed of sound), the principle of superposition of waves, reflection of waves, standing waves and normal modes, beats.
WAVE OPTICS
Introduction, Huygens principle, refraction and reflection of plane waves using Huygens principle, refraction in a rarer medium (at the denser medium boundary), the reflection of a plane wave by a plane surface, the Doppler effect, coherent and incoherent addition of waves, interference of light waves and Young‘s experiment.
RAY OPTICS AND OPTICAL INSTRUMENTS
Introduction, Sign convention, refraction, total internal reflection, total internal reflection in nature and its technological applications, refraction at spherical surfaces and by lenses, power of a lens, combination of thin lenses in contact, refraction through a prism, dispersion by a prism, optical instruments, the eye, the simple and compound microscopes, refracting telescope and Cassegrain reflecting telescope.
ELECTRIC CHARGES AND FIELDS
Introduction, Electric charge, conductors and insulators, charging by induction, basic properties of electric charges, additivity of charges, conservation of charge, quantization of charge, Coulomb’s law, forces between multiple charges, electric field, electric field due to a system of charges, physical significance of electric field, electric field lines, electric flux, electric dipole, the field of an electric dipole for points on the axial line and on the equatorial plane, physical significance of dipoles, dipole in a uniform external field, continuous charge distribution, Gauss’s law.
ELECTROSTATIC POTENTIAL AND CAPACITANCE
Introduction, Electrostatic potential, potential due to a point charge, potential due to an electric dipole, potential due to a system of charges, equipotential surfaces, relation between field and potential, potential energy of a system of charges, potential energy in an external field, potential energy of a single charge, potential energy of a system of two charges in an external field, potential energy of a dipole in an external field, electrostatics of conductors, electrostatic shielding, dielectrics and polarisation, electric displacement, capacitors and capacitance, the parallel plate capacitor, effect of dielectric on capacitance, combination of capacitors, capacitors in series, capacitors in parallel, energy stored in a capacitor, Van de Graaff generator.
CURRENT ELECTRICITY
Introduction, Electric current, electric current in conductors, Ohm’s law, drift of electrons and the origin of resistivity, mobility, limitations of Ohm’s law, Temperature dependence of resistivity, electrical energy, power, Cells, EMF, internal resistance, cells in series and in parallel, Kirchhoff’s rules, Wheatstone Bridge, Meter Bridge, Potentiometer.
MOVING CHARGES AND MAGNETISM
Introduction, Magnetic force, sources and fields, magnetic field, Lorentz force, magnetic force on a current carrying conductor, motion in a magnetic field, helical motion of charged particles, magnetic field due to a current element, Biot – Savart’s law, Magnetic field on the axis of a circular current loop, Ampere’s circuital law, the solenoid and the toroid, force between two parallel current carrying conductors, the ampere (UNIT), torque on current loop, magnetic dipole, torque on a rectangular current loop in a uniform magnetic field, circular current loop as a magnetic dipole, the magnetic dipole moment of a revolving electron, the Moving Coil Galvanometer; conversion into ammeter and voltmeter.
MAGNETISM AND MATTER
Introduction, The bar magnet, the magnetic field lines, the electrostatic analog, Magnetism and Gauss’s Law, The Earth’s magnetism, magnetic declination and dip. 23. ELECTROMAGNETIC INDUCTION: Introduction, The experiments of Faraday and Henry, magnetic flux, Faraday’s Law of induction, Lenz’s law and conservation of energy, motional electromotive force, energy consideration - a quantitative study, Eddy currents, inductance, mutual inductance, self-inductance, AC generator.
ALTERNATING CURRENT
Introduction, AC voltage applied to a resistor, representation of AC current and voltage by rotating vectors - Phasors, AC voltage applied to an inductor, AC voltage applied to a capacitor, AC voltage applied to a series LCR circuit, Phasor – diagram solution, analytical solution, resonance, sharpness of resonance, LC oscillations, transformers.
ELECTROMAGNETIC WAVES
Introduction, electromagnetic waves, sources of electromagnetic waves, nature of electromagnetic waves, electromagnetic spectrum: radio waves, microwaves, infrared waves, visible rays, ultraviolet rays, X-rays, gamma rays.
DUAL NATURE OF RADIATION AND MATTER
Introduction, Electron emission, Photoelectric Effect, Hertz’s observations, Hallwachs and Lenard’s observations, experimental study of photoelectric effect, effect of intensity of light on photocurrent, effect of potential on photoelectric current, effect of frequency of incident radiation on stopping potential, Photoelectric effect and Wave theory of Light, Einstein’s Photoelectric equation, Energy Quantum of Radiation, particle nature of light, the photon, wave nature of matter, photocell.
ATOMS
Introduction, Alpha particle scattering and Rutherford’s nuclear model of atom, alpha particle trajectory, electron orbits, atomic spectra, spectral series, Bohr model of the hydrogen atom, energy levels, Franck – Hertz experiment, the line spectra of the hydrogen atom, deBroglie’s explanation of Bohr’s second postulate of quantization, LASERlight.
NUCLEI
Introduction, Atomic masses and composition of nucleus, discovery of neutron, size of the nucleus, Mass - Energy, Nuclear Force, Nuclear Energy, Fission, Nuclear reactor, nuclear fusion, energy generation in stars, controlled thermonuclear fusion.
SEMICONDUCTOR ELECTRONICS: MATERIALS, DEVICES AND SIMPLE CIRCUITS
Introduction, Classification of metals, conductors, and semiconductors on the basis of conductivity and energy bands, Band theory of solids, Intrinsic semiconductor, Extrinsic semiconductor, p-type semiconductor, n-type semiconductor, Optoelectronic junction devices, Photodiode, light emitting diode, solar cell. Junction transistor, structure and action, Basic transistor circuit configurations and transistor characteristics, transistor as a switch and as an amplifier (CE – Configuration), Feedback amplifier and transistor oscillator, Digital Electronics and Logic gates, NOT, OR, AND, NAND and NOR Gates, Integrated circuits.
COMMUNICATION SYSTEMS
Introduction, Elements of a Communication system, basic terminology used in electronic communication systems, bandwidth of signals, bandwidth of transmission medium, propagation of electromagnetic waves, ground waves, sky waves, space wave, modulation and its necessity, size of the antenna or aerial, effective power radiated by an antenna, mixing up of signals from different transmitters, amplitude modulation, production of amplitude modulated wave, detection of amplitude modulated wave.
AP EAMCET 2022 Syllabus: Chemistry (For MPC and BiPC)
ATOMIC STRUCTURE
Developments to the Bohr’s model of atom; Wave nature of electromagnetic radiation; Particle nature of electromagnetic radiation- Planck’s quantum theory; Bohr’s model for Hydrogen atom; Explanation of line spectrum of hydrogen; Limitations of Bohr’s model; Quantum mechanical considerations of sub atomic particles; Dual behaviour of matter; Heisenberg’s uncertainty principle; Quantum mechanical model of an atom. Important features of Quantum mechanical model of atom; Orbitals and quantum numbers; Shapes of atomic orbitals; Energies of orbitals; Filling of orbitals in atoms. Aufbau Principle, Pauli’s exclusion Principle and Hund’s rule of maximum multiplicity; Electronic configurations of atoms; Stability of half-filled and completely filled orbitals.
CLASSIFICATION OF ELEMENTS AND PERIODICITY IN PROPERTIES
Modern periodic law and present form of the periodic table; Nomenclature of elements with atomic number greater than 100; Electronic configuration of elements and the periodic table; Electronic configuration and types of elements s,p,d. and f blocks; Trends in physical properties:(a) Atomic radius, (b) Ionic radius (c) Variation of size in inner transition elements, (d) Ionization enthalpy,(e) Electron gain enthalpy, (f) Electro negativity; Periodic trends in chemical properties: (a) Valence or Oxidation states, (b) Anomalous properties of second period elements - diagonal relationship; Periodic trends and chemical reactivity.
CHEMICAL BONDING AND MOLECULAR STRUCTURE
Kossel - Lewis approach to chemical bonding, Octet rule, Lewis representation of simple molecules, formal charges, limitations of octet rule; Ionic or electrovalent bond - Factors favourable for the formation of ionic compounds- Crystal structure of sodium chloride, General properties of ionic compounds; Bond Parameters - bond length, bond angle, and bond enthalpy, bond order, resonance-Polarity of bonds dipole moment-Fajan rules; Valence Shell Electron Pair Repulsion (VSEPR) theory; Predicting the geometry of simple molecules; Valence bond theory-Orbital overlap concept-Directional properties of bonds-overlapping of atomic orbitals-types of overlapping and nature of covalent bonds-strength of sigma and pi bonds-Factors favouring the formation of covalent bonds; Hybridisation- different types of hybridization involving s, p and d orbitals- shapes of simple covalent molecules; Coordinate bond - definition with examples; Molecular orbital theory - Formation of molecular orbitals, Linear combination of atomic orbitals (LCAO)-conditions for combination of atomic orbitals - Energy level diagrams for molecular orbitals -Bonding in some homo nuclear diatomic molecules- H2, He2, Li2, B2, C2, N2 and O2; Hydrogen bonding-cause of formation of hydrogen bond - Types of hydrogen bonds-inter and intra molecular- General properties of hydrogen bonds.
STATES OF MATTER: GASES AND LIQUIDS
Intermolecular forces; Thermal Energy; Intermolecular forces Vs Thermal interactions; The Gaseous State; The Gas Laws; Ideal gas equation; Graham’s law of diffusion - Dalton’s Law of partial pressures; Kinetic molecular theory of gases; Kinetic gas equation of an ideal gas (No derivation) deduction of gas laws from Kinetic gas equation;; Behaviour of real gases - Deviation from Ideal gas behaviour - Compressibility factor Vs Pressure diagrams of real gases.
STOICHIOMETRY
Laws of Chemical Combinations - Law of Conservation of Mass, Law of Definite Proportions, Law of Multiple Proportions, Atomic and molecular masses- mole concept and molar mass. Concept of equivalent weight; Percentage composition of compounds and calculations of empirical and molecular formulae of compounds; Stoichiometry and stoichiometric calculations-limiting reagent; Methods of Expressing concentrations of solutions mass percent, mole fraction, molarity, molality and normality; Redox reactions-classical idea of redox reactions, oxidation and reduction reactions-redox reactions in terms of electron transfer; Oxidation number concept; Types of Redox reactions- combination, decomposition, displacement and disproportionation reactions; Balancing of redox reactions - oxidation number
THERMODYNAMICS
Thermodynamic Terms; The system and the surroundings; Types of systems and surroundings; The state of the system; The Internal Energy as a State Function. (a) Work (b) Heat (c) The general case, the first law of Thermodynamics; Applications; Work; Enthalpy, H- a useful new state function; Extensive and intensive properties; The relationship between Cp and Cv; Measurement of ∆U and ∆H: Calorimetry; Enthalpy change, ∆rH of reactions - reaction Enthalpy (a) Standard enthalpy of reactions, (b) Enthalpy changes during transformations, (c) Standard enthalpy of formation, (d) Thermo chemical equations (e) Hess’s law of constant Heat summation; Enthalpies for different types of reactions. (a) Standard enthalpy of combustion (∆cH0 ), (b) Enthalpy of atomization (∆aH0 ), phase transition, sublimation and ionization, (c) Bond Enthalpy (∆bondH0 ), (d) Enthalpy of solution (∆solH0 ) and dilution-lattice enthalpy; Spontaneity. (a) Is decrease in enthalpy a criterion for spontaneity? (b) Entropy and spontaneity, the second law of thermodynamics, (c) Gibbs Energy and spontaneity; Absolute entropy and the third law of thermodynamics.
CHEMICAL EQUILIBRIUM AND ACIDS-BASES
Equilibrium in Physical process; Equilibrium in chemical process - Dynamic Equilibrium; Law of chemical Equilibrium - Law of mass action and Equilibrium constant; Homogeneous Equilibria, Equilibrium constant in gaseous systems. Relationship between KP and Kc; Heterogeneous Equilibria; Applications of Equilibrium constant; Relationship between Equilibrium constant K, reaction quotient Q and Gibbs energy G; Factors affecting Equilibria.-Le-chatlier principle application to industrial synthesis of Ammonia and Sulphur trioxide; Ionic Equilibrium in solutions; Acids, bases and salts- Arrhenius, Bronsted-Lowry and Lewis concepts of acids and bases; Ionisation of Acids and Bases - Ionisation constant of water and its ionic product- pH scale-ionisation constants of weak acids-ionisation of weak bases-relation between Ka and Kb-Di and poly basic acids and di and poly acidic Bases-Factors affecting acid strength- Common ion effect in the ionization of acids and bases- Buffer solutions- Solubility Equilibria of sparingly soluble salts. Solubility product constant Common ion effect on solubility of Ionic salts.
HYDROGEN AND ITS COMPOUNDS
Position of hydrogen in the periodic table; Dihydrogen- Occurrence and Isotopes; Hydrides: Ionic, covalent, and non-stoichiometric hydrides; Water: Physical properties; structure of water, ice. Chemical properties of water; hard and soft water, Temporary and permanent hardness of water; Heavy Water; Hydrogen as a fuel.
THE s - BLOCK ELEMENTS (ALKALI AND ALKALINE EARTH METALS)
Group 1 Elements : Alkali metals; Electronic configurations; Atomic and Ionic radii; Ionization enthalpy; Hydration enthalpy; Physical properties; Chemical properties; Uses; General characteristics of the compounds of the alkali metals: Oxides; Halides; Salts of oxo Acids; Anomalous properties of Lithium: Differences and similarities with other alkali metals, Diagonal relationship; similarities between Lithium and Magnesium; Some important compounds of Sodium: Sodium Chloride Group 2 Elements: Alkaline earth elements; Electronic configuration; Ionization enthalpy; Hydration enthalpy; Physical properties, Chemical properties; Uses; General characteristics of compounds of the Alkaline Earth Metals: Oxides, hydroxides, halides, salts of oxoacids (Carbonates; Sulphates and Nitrates); Anomalous behaviour of Beryllium; its diagonal relationship with Aluminium; Some important compounds of calcium: Preparation and uses of Calcium Hydroxide, Plaster of Paris; Cement;
p- BLOCK ELEMENTS GROUP 13 (BORON FAMILY)
General introduction - Electronic configuration, Atomic radii, Ionization enthalpy, Electro negativity; Physical & Chemical properties (Note: Aluminum reactivity towards acids & alkalies is deleted) Important trends and anomalous properties of boron; Uses of boron, aluminium and their compounds.
p-BLOCK ELEMENTS - GROUP 14 (CARBON FAMILY)
General introduction - Electronic configuration, Atomic radii, Ionization enthalpy, Electro negativity; Physical & Chemical properties; Important trends and anomalous properties of carbon; Allotropes of carbon; Uses of carbon;
ORGANIC CHEMISTRY-SOME BASIC PRINCIPLES AND TECHNIQUES AND HYDROCARBONS
General introduction; Tetravalency of Carbon: shapes of organic compounds; Structural representations of organic compounds; Classification of organic compounds; Nomenclature of organic compounds; Isomerism; Fundamental concepts in organic reaction mechanisms; Fission of covalent bond; Nucleophiles and electrophiles; Electron movements in organic reactions; Electron displacement effects in covalent bonds: inductive effect, resonance, resonance effect, electromeric effect, hyperconjugation; Types of Organic reactions; Hydrocarbons: Classification of Hydrocarbons; Alkanes - Nomenclature, isomerism (structural and conformations of ethane only); Preparation of alkanes; Properties - Physical properties and chemical Reactivity, Substitution reactions – Halogenation (free radical mechanism is deleted), Controlled Oxidation, Isomerisation, Aromatization, and reaction with steam; Alkenes- Nomenclature, structure of ethene, Isomerism (structural and geometrical); Methods of preparation; Properties- Physical and chemical reactions: Addition of Hydrogen, halogen, water, sulphuric acid, Hydrogen halides (Mechanism- ionic and peroxide effect, Markovnikov’s, anti-Markovnikov’s or Kharasch effect). Oxidation, Ozonolysis and Polymerization; Alkynes - Nomenclature and isomerism, the structure of acetylene. Methods of preparation of acetylene; Physical properties, Chemical reactions- acidic character of acetylene, addition reactions- of hydrogen, Halogen, Hydrogen halides and water. Polymerization; Aromatic Hydrocarbons: Nomenclature and isomerism, Structure of benzene, Resonance and aromaticity; Preparation of benzene. Physical properties. Chemical properties: Mechanism of electrophilic substitution. Electrophilic substitution reaction, nitration, Sulphonation, Halogenation, Friedel-Craft’s alkylation and acylation; Directive influence of functional groups in mono substituted benzene, Carcinogenicity and toxicity.
SOLID STATE
General characteristics of solid state; Amorphous and crystalline solids; Classification of crystalline solids based on different binding forces (molecular, ionic, metallic and covalent solids); Probing the structure of solids: X-ray crystallography; Crystal lattices and unit cells. Bravais lattices primitive and centred unit cells; Number of atoms in a unit cell (primitive, body centred and face centred cubic unit cell); Close packed structures: Close packing in one dimension, in two dimensions and in three dimensions- tetrahedral and octahedral voids- formula of a compound and number of voids filled- locating tetrahedral and octahedral voids; Packing efficiency in simple cubic, bcc and in hcp, ccp lattice; Calculations involving unit cell dimensions-density of the unit cell; Imperfections in solids-types of point defects-stoichiometric and non-stoichiometric defects.
SOLUTIONS
Types of solutions; Expressing concentration of solutions - mass percentage, volume percentage, mass by volume percentage, parts per million, mole fraction, molarity and molality; Solubility: Solubility of a solid in a liquid, solubility of a gas in a liquid, Henry’s law; Vapour pressure of liquid solutions: vapour pressure of liquid-liquid solutions. Raoult’s law as a special case of Henry’s law -vapour pressure of solutions of solids in liquids; Ideal and nonideal solutions; Colligative properties and determination of molar mass-relative lowering of vapour pressure- elevation of boiling point-depression of freezing point-osmosis and osmotic pressure- reverse osmosis and water purification.
ELECTROCHEMISTRY AND CHEMICAL KINETICS
Electrochemistry: Electrochemical cells; Galvanic cells: measurement of electrode potentials; Nernst equation- equilibrium constant from Nernst equation- electrochemical cell and Gibbs energy of the cell reaction; Conductance of electrolytic solutions- measurement of the conductivity of ionic solutions-variation of conductivity and molar conductivity with concentration-strong electrolytes and weak electrolytes-applications of Kohlrausch’s law; Electrolytic cells and electrolysis: Faraday’s laws of electrolysis-products of electrolysis; Hydrogen economy. Chemical Kinetics: Rate of a chemical reaction; Factors influencing the rate of a reaction: dependence of rate on concentration- rate expression and rate constant- order of a reaction, molecularity of a reaction; Integrated rate equations-zero order reactions-first order reactions half-life of a reaction; Pseudo first order reactions; Temperature dependence of the rate of a reaction -effect of catalyst.
SURFACE CHEMISTRY
Adsorption : Distinction between adsorption and absorption mechanism of adsorption-types of adsorption- characteristics of physisorption-characteristics of chemisorption-adsorption isotherms-adsorption from solution phase-applications of adsorption; Colloids; Classification of colloids: Classification based on physical state of dispersed phase and dispersion medium- classification based on nature of the interaction between dispersed phase and dispersion medium- classification based on type of particles of the dispersed phase- multi molecular, macromolecular and associated colloids- cleansing action of soaps- preparation of colloids-purification of colloidal solutions-properties of colloidal solutions: Colligative properties, Tyndal effect, colour, Brownian movement-charge on colloidal particles, electrophoresis; coagulation-precipitation methods-coagulation of lyophilic sols and protection of colloids- Colloids around us- application of colloids.
p-BLOCK ELEMENTS
Group-15 Elements: Occurrence- electronic configuration, atomic and ionic radii, ionisation enthalpy, electronegativity, physical and chemical properties; Dinitrogen-preparation, properties and uses; Compounds of nitrogen-preparation, properties and uses of ammonia; Oxides of nitrogen (note: only structures are deleted); Preparation and properties of nitric acid;
Group-16 Elements: Occurrence- electronic configuration, atomic and ionic radii, ionisation enthalpy, electron gain enthalpy, electronegativity, physical and chemical properties; Dioxygenpreparation, properties and uses; Simple oxides; Ozone-preparation, properties, structure and uses; Sulphur-allotropic forms; Sulphur dioxide-preparation, properties and uses; Oxoacids of sulphur; Sulphuric acid- properties and uses.
Group-17 Elements: Occurrence, electronic configuration, atomic and ionic radii, ionisation enthalpy, electron gain enthalpy, electro negativity, physical and chemical properties; Chlorinepreparation, properties and uses; Hydrogen chloride- preparation, properties and uses; Oxoacids of halogens; Interhalogen compounds- preparation, properties and uses. Group-18 Elements: Occurrence, electronic configuration, ionization enthalpy, atomic radii, electron gain enthalpy, physical and chemical properties(a) Xenon-fluorine compoundsXeF2,XeF4 and XeF6 - preparation, hydrolysis and formation of fluoro anions-structures of XeF2, XeF4 and XeF6 (b) Xenon- oxygen compounds XeO3 and XeOF4 - their formation and structures
d AND f BLOCK ELEMENTS & COORDINATION COMPOUNDS
d and f block elements: Position in the periodic table; Electronic configuration of the d-block elements; General properties of the transition elements (d-block) -physical properties, variation in atomic and ionic sizes of transition series, ionisation enthalpies, oxidation states, trends in the M²+/M and M³+/M²+ standard electrode potentials, trends in stability of higher oxidation states, chemical reactivity and E θ values, magnetic properties, formation of coloured ions, formation of complex compounds, catalytic properties, formation of interstitial compounds, alloy formation;Inner transition elements(f-block)-lanthanoids- electronic configuration-atomic and ionic size oxidation states- Some applications of d and f block elements. Coordination compounds: Werner’s theory of coordination compounds; Definitions of some terms used in coordination compounds; Nomenclature of coordination compounds-IUPAC nomenclature; Bonding in coordination compounds. (a)Valence bond theory - magnetic properties of coordination compound limitations of valence bond theory (b) Crystal field theory (i) Crystal field splitting in octahedral and tetrahedral coordination entities (ii) Colour in coordination compounds- limitations of crystal field theory; Bonding in metal carbonyls; Stability of coordination compounds; applications of coordination compounds.
BIOMOLECULES
Carbohydrates - Classification of carbohydrates- Monosaccharides: preparation of glucose from sucrose and starch- Properties and structure of glucose- D,L configurations and (+), (-) configurations of glucose-Structure of fructose; Disaccharides: Sucrose- preparation, structure; Invert sugar- Structures of maltose and lactose- Polysaccharides: Structures of starch, cellulose and glycogen- Importance of carbohydrates (Note: Sucrose, lactose, maltose, starch, carbohydrates importance is deleted); Proteins: Aminoacids: Natural aminoacids-classification of amino acids - structures and D and L forms-Zwitter ions; ProteinsStructures, classification, fibrous and globular- primary, secondary, tertiary and quaternary structures of proteins- Denaturation of proteins; Vitamins: Explanation-names- classification of vitamins - sources of vitamins-deficiency diseases of different types of vitamins; Nucleic acids: chemical composition of nucleic acids, structures of nucleic acids, DNA fingerprinting biological functions of nucleic acids.
HALOALKANES AND HALOARENES
Classification and nomenclature; Nature of C-X bond; Methods of preparation: Alkyl halides and aryl halides- from alcohols, from hydrocarbons (a) by free radical halogenation (b) by electrophilic substitution (c) by replacement of diazonium group (Sandmeyer reaction) (d) by the addition of hydrogen halides and halogens to alkenes-by halogen exchange reactions; Physical properties-melting and boiling points, density and solubility; Chemical reactions: Reactions of haloalkanes (i) Nucleophilic substitution reactions (a) SN² mechanism (b)SN¹ mechanism (c) stereochemical aspects of nucleophilic substitution reactions- optical activity (ii) Elimination reactions (iii) Reaction with metals-Reactions of haloarenes: (i) Nucleophilic substitution (ii) Electrophilic substitution and (iii) Reaction with metals;
ORGANIC COMPOUNDS CONTAINING C, H AND O (ALCOHOLS, PHENOLS, ETHERS, ALDEHYDES, KETONES AND CARBOXYLIC ACIDS)
Alcohols, Phenols and Ethers: Alcohols, phenols and ethers -classification; Nomenclature: (a)Alcohols, (b)phenols and (c) ethers; Structures of hydroxy and ether functional groups; Methods of preparation: Alcohols from alkenes and carbonyl compounds, from Grignard reagents; Phenols from haloarenes, benzene sulphonic acid, diazonium salts, cumene; Physical properties of alcohols and phenols; Chemical reactions of alcohols and phenols (i) Reactions involving cleavage of O-H bond in alcohols-Acidity of alcohols and phenols, esterification (ii) Reactions involving cleavage of C- O bond- reactions with HX, PX3, dehydration and oxidation (iii) Reactions of phenols- electrophilic aromatic substitution, Kolbe’s reaction, Reimer - Tiemann reaction, reaction with zinc dust, oxidation; Ethers-Methods of preparation: By dehydration of alcohols, Williamson synthesis- Physical properties-Chemical reactions: Cleavage of C-O bond and electrophilic substitution of aromatic ethers(anisole). Aldehydes and Ketones: Nomenclature and structure of carbonyl group; Preparation of aldehydes and ketones-(1) by oxidation of alcohols (2) by dehydrogenation of alcohols (3) from hydrocarbons - Preparation of aldehydes (1) from acyl chlorides (2) from nitriles and esters(3) from hydrocarbons preparation of ketones(1) from acyl chlorides (2)from nitriles (3)from benzene or substituted benzenes; Physical properties of aldehydes and ketones; Chemical reactions of aldehydes and ketones-nucleophilic addition, reduction, oxidation, reactions due toα-Hydrogen and other reactions (Cannizzaro reaction, electrophilic substitution reaction); Uses of aldehydes and ketones. Carboxylic acids: Nomenclature and structure of carboxylgroup; Methods of preparation of carboxylic acids (1)from primary alcohols and aldehydes (2) from alkylbenzenes(3)from nitriles and amides (4)from Grignard reagents (5) from acyl halides and anhydrides (6) from esters; Physical properties; Chemical reactions: (i) Reactions involving cleavage of O-H bond-acidity, reactions with metals and alkalies (ii) Reactions involving cleavage of C-OH bond- formation of anhydride, reactions with PCl5, PCl3, SOCl2, esterification and reaction with ammonia (iii) Reactions involving- COOH group-reduction, decarboxylation (iv) Substitution reactions in the hydrocarbon part - halogenation and ring substitution; Uses of carboxylicacids.
ORGANIC COMPOUNDS CONTAINING NITROGEN
Amines: Structure of amines; Classification; Nomenclature; Preparation of amines: reduction of nitro compounds, ammonolysis of alkyl halides, reduction of nitriles, reduction of amides, Gabriel phthalimide synthesis and Hoffmann bromamide degradation reaction; Physical properties; Chemical reactions: basic character of amines, alkylation, acylation, carbyl amine reaction, reaction with nitrous acid, reaction with aryl sulphonyl chloride, electrophilic substitution of aromatic amines (aniline)- bromination, nitration and sulphonation. Cyanides and Isocyanides: Structure and nomenclature of cyanides and isocyanides; Preparation, physical properties and chemical reactions of cyanides and isocyanide.
AP EAPCET 2022 Syllabus: Mathematics (For MPC)
ALGEBRA
a) Functions: Types of functions – Definitions - Real valued functions (Domain and Range).
b) Matrices: Types of matrices - Scalar multiple of a matrix and multiplication of matrices - Transpose of a matrix – Determinants (excluding properties of determinants) - Adjoint and Inverse of a matrix - Rank of a matrix - solution of simultaneous linear equations (Excluding Gauss Jordan Method).
c) Complex Numbers: Complex number as an ordered pair of real numbers- fundamental operations - Representation of complex numbers in the form a+ib (excluding Square root of Complex numbers and related problems) - Modulus and amplitude of complex numbers –Illustrations - Geometrical and Polar Representation of complex numbers in Argand plane-Argand diagram.
d) De Moivre’s Theorem: De Moivre’s theorem- Integral and Rational indices - nth roots of unity- Geometrical Interpretations –Illustrations.
e) Quadratic Expressions: Quadratic expressions, equations in one variable - Sign of quadratic expressions – Change in signs – Maximum and minimum values.
f) Theory of Equations: The relation between the roots and coefficients in an equation - Solving the equations when two or more roots of it are connected by certain relation - Equation with real coefficients, occurrence of complex roots in conjugate pairs and its consequences.
g) Permutations and Combinations: Fundamental Principle of counting – linear and circular permutations- Permutations of ‘n’ dissimilar things taken ‘r’ at a time - Permutations when repetitions allowed - Circular permutations - Permutations with constraint repetitions - Combinations-definitions, certain theorems. (Excluding derivation of Formula npr and ncr ).
h) Partial fractions: Partial fractions of f(x)/g(x) when g(x) contains non –repeated linear factors - Partial fractions of f(x)/g(x) where both f(x) and g(x) are polynomials and when g(x) contains repeated and/or non-repeated linear factors - Partial fractions of f(x)/g(x) when g(x) contains irreducible factors (excluding conversion of f(x)/g(x) in power series of x)
TRIGONOMETRY
a) Trigonometric Ratios upto Transformations: Graphs and Periodicity of Trigonometric functions - Trigonometric ratios and Compound angles - Trigonometric ratios of multiple and sub- multiple angles - Transformations - Sum and Product rules.
b) Hyperbolic Functions: Definition of Hyperbolic Function – Graphs - Definition of Inverse Hyperbolic Functions – Graphs - Addition formulae of Hyperbolic Functions.
c) Properties of Triangles: Relation between sides and angles of a Triangle - Sine, Cosine, Tangent and Projection rules- Half angle formulae and areas of a triangle–In-circle and Ex-circle of a Triangle (excluding problems related to heights and distances).
MEASURES OF DISPERSION AND PROBABILITY
a) Measures of Dispersion - Range - Mean deviation - Variance and standard deviation of ungrouped/grouped data.
b) Probability: Random experiments and events - Classical definition of probability, Axiomatic approach and addition theorem of probability - Independent and dependent events - conditional probability- multiplication theorem and Baye’s theorem.
c) Random Variables and Probability Distributions: Random Variables - Theoretical discrete distributions – Binomial and Poisson Distributions.
VECTOR ALGEBRA
a) Addition of Vectors: Vectors as a triad of real numbers - Classification of vectors - Addition of vectors - Scalar multiplication - Angle between two non-zero vectors - Linear combination of vectors - Component of a vector in three dimensions - Vector equations of line and plane including their Cartesian equivalent forms.
b) Product of Vectors: Scalar Product - Geometrical Interpretations - orthogonal projections - Properties of dot product - Expression of dot product in i, j, k system - Angle between two vectors - Geometrical Vector methods – Vector equations of plane in normal form-Angle between two planes- Vector product of two vectors and propertiesVector product in i, j, k system - Vector Areas.
COORDINATE GEOMETRY
a) Locus: Definition of locus –Illustrations-To find equations of locus-Problems connected to it.
b) The Straight Line: Revision of fundamental results - Straight line - Normal form – Illustrations - Straight line - Symmetric form - Straight line - Reduction into various forms - Intersection of two Straight Lines - Family of straight lines - Concurrent lines - Condition for Concurrent lines - Angle between two lines - Length of perpendicular from a point to a Line - Distance between two parallel lines - Concurrent lines - properties related to a triangle.
c) Pair of Straight lines: Equations of pair of lines passing through origin - angle between a pair of lines - Condition for perpendicular and coincident lines, bisectors of angles - Pair of bisectors of angles (excluding proofs of all the theorems only) - Pair of lines - second degree general equation - Conditions for parallel lines - distance between them, Point of intersection of pair of lines - Homogenizing a second degree equation with a first degree equation in x and y.
d) Circle : Equation of circle -standard form-centre and radius equation of a circle with a given line segment as diameter & equation of circle through three non collinear points - parametric equations of a circle - Position of a point in the plane of a circle – power of a point-definition of tangent-length of tangent - Position of a straight line in the plane of a circle-conditions for a line to be tangent – chord joining two points on a circle – equation of the tangent at a point on the circle- point of contact-equation of normal - Chord of contact - pole and polar-conjugate points and conjugate lines - equation of chord with given middle point.
e) System of circles: Angle between two intersecting circles - Radical axis of two circles properties- Common chord and common tangent of two circles – radical centre - Intersection of a line and a Circle.
f) Parabola: Conic sections –Parabola- equation of parabola in standard form-different forms of parabola- parametric equations.
g) Ellipse: Equation of ellipse in standard form- Parametric equations
h) Hyperbola: Equation of hyperbola in standard form- Parametric equations - Equations of tangent and normal at a point on the hyperbola (Cartesian and parametric) - conditions for a straight line to be a tangent-Asymptotes.
i) Three Dimensional Coordinates: Coordinates - Section formulae - Centroid of a triangle and tetrahedron.
j) Direction Cosines and Direction Ratios: Direction Cosines – Direction Ratios (Excluding angle between two lines and problems related to it).
k) Plane: Cartesian equation of Plane – Simple Illustrations (Excluding angle between two planes and problems related to it).
CALCULUS
a) Limits and Continuity: Intervals and neighbourhoods – Limits - Standard Limits – Continuity.
b) Differentiation: Derivative of a function - Elementary Properties - Trigonometric, Inverse Trigonometric, Hyperbolic, Inverse Hyperbolic Function – Derivatives - Methods of Differentiation - Second Order Derivatives.
c) Applications of Derivatives: Geometrical Interpretation of a derivative - Equations of tangents and normals - Angles between two curves and condition for orthogonality of curves - Increasing and decreasing functions - Maxima and Minima.
d) Integration: Integration as the inverse process of differentiation- Standard forms - properties of integrals - Method of substitution- integration of Algebraic, exponential, logarithmic, trigonometric and inverse trigonometric functions (excluding the integrals of the form.
News & Updates
Get prep tips, practice papers, exam details and important updates
Explore Other Exams
Apr '23 | HP PAT 2023 registration |
Jul '23 | HP PAT admit card 2023 |
21 Mar '23 - 23 Apr '23 | HPCET 2023 application form |
Apr '23 | HPCET 2023 admit card |
Jan '23 | BVP CET 2023 registration date |
10 Feb '23 | Display of LPUNEST Result |
10 Feb '23 | Online Counselling and Seat Al... |
10 Feb '23 - 31 Mar '23 | OJEE 2023 registrations |
1 Apr '23 - 2 Apr '23 | OJEE 2023: Form Correction Win... |
Comments
P
Are the admissions in Dr. Lankapalli Bullayya college via EAMCET 2023 or direct admission based on 12th marks?
Candidates should have obtained a minimum of 45 percent aggregate score in all subjects combined (40 percent for reserved category candidates).
M
How can an average student crack EAMCET with 100 marks in 1 month?
Cracking EMCET with 100 marks in just one month is a challenging task, but with proper planning and preparation, it is achievable. Here are some tips that can help an average student to crack EMCET:&get;Understand the exam pattern and syllabus: The first step is to understand the exam pattern and...Cracking EMCET with 100 marks in just one month is a challenging task, but with proper planning and preparation, it is achievable. Here are some tips that can help an average student to crack EMCET:
&get;Understand the exam pattern and syllabus: The first step is to understand the exam pattern and syllabus thoroughly. EMCET is an objective type exam consisting of 160 questions, and the duration of the exam is 3 hours. The syllabus includes subjects like Mathematics, Physics and Chemistry. &get;Practice previous year question papers: Practice previous year question papers and try to solve them within the given time. It will help in understanding the exam pattern and types of questions asked in the exam. &get;Take mock tests: Take mock tests regularly to evaluate your preparation level. Analyze your performance and work on the areas where you are weak. &get;Focus on important topics: Identify the important topics from the syllabus and focus on them. Spend more time on these topics as they carry more weightage in the exam. &get;Study in short intervals: Study in short intervals of 1-2 hours and take breaks in between. It will help in retaining the information better. &get;Stay motivated: Stay motivated and confident throughout the preparation. Believe in yourself and your abilities. In conclusion, cracking EMCET with 100 marks in just one month is not an easy task, but with proper planning, hard work, and dedication, it can be achieved. Follow these tips, and you will surely SEE improvement in your performance.
R
Can a BIPIC student get free engineering seat after writing EAMCET?
The eligibility criteria for admission to engineering courses vary from state to state in India, and the rules and regulations are subject to change. Generally, admission to engineering courses is based on the rank obtained by a student in the Engineering, Agriculture and Medical Common Entrance ...The eligibility criteria for admission to engineering courses vary from state to state in India, and the rules and regulations are subject to change. Generally, admission to engineering courses is based on the rank obtained by a student in the Engineering, Agriculture and Medical Common Entrance Test (EAMCET) conducted by the state government. In some states, there may be reservation quotas for students from certain categories, such as Scheduled Castes, Scheduled Tribes, Other Backward Classes, or Economically Weaker Sections. Some states may also offer fee reimbursement or scholarship programs for eligible students. As far as the academic background is concerned, students who have completed their 10+2 education with Mathematics, Physics and Chemistry (MPC) as core subjects are generally eligible to apply for engineering courses. However, students who have completed their education with Biology Physics and Chemistry (BPC) may not be eligible for admission to engineering courses in some states. Therefore, it is advisable to check the eligibility criteria and admission rules of the particular state and college where you are planning to apply for admission to engineering courses. It is also recommended to consult with the college admission department or a qualified education counselor for specific guidance on the matter.
M
Can all state students give Andhra Pradesh EAMCET exam?
No, other state students are not eligible to apply for Andhra Pradesh EAMCET.
s
What AP EAMCET rank is required to get admission in VIT Andhra Pradesh?
The seats for Vellore campus get exhausted quite fast but varies from courses to courses. For getting admission in any other course of VIT Andhra Pradesh, a rank within 25k would get you through first category though the Andhra Pradesh campus is very young and the trend can change from year to ye...The seats for Vellore campus get exhausted quite fast but varies from courses to courses. For getting admission in any other course of VIT Andhra Pradesh, a rank within 25k would get you through first category though the Andhra Pradesh campus is very young and the trend can change from year to year.
P
I have B.Sc Hons community science from PJTSAU. I want to write EAMCET again for B.Sc agriculture. Should I continue and prepare for EAMCET?
L
What is the eligibility criteria for EAMCET?
As per the TS EAMCET 2023 eligibility criteria, aspirants who have passed the 12th class exam will be eligible to apply for TS EAMCET exam.
R
Which college is required for the TS EAMCET exam and what is the cut-off ranks?
The cut off ranks for popular engineering colleges are higher compared to less popular colleges. The cut off ranks for top colleges such as JNTU College of Engineering Hyderabad, Osmania University College of Engineering, and Chaitanya Bharathi Institute of Technology are usually in the range of ...The cut off ranks for popular engineering colleges are higher compared to less popular colleges. The cut off ranks for top colleges such as JNTU College of Engineering Hyderabad, Osmania University College of Engineering, and Chaitanya Bharathi Institute of Technology are usually in the range of 5000 to 10000.
A rank between 1 to 5,000 is considered to be a very good score in TS EAMCET 2023 engineering exam. The qualifying mark for general/ OBC candidates is 40 marks out of 160. However, there are no specified qualifying marks for the SC/ ST candidates. 239 Engineering Colleges accepts TS EAMCET. Colle...A rank between 1 to 5,000 is considered to be a very good score in TS EAMCET 2023 engineering exam. The qualifying mark for general/ OBC candidates is 40 marks out of 160. However, there are no specified qualifying marks for the SC/ ST candidates.
239 Engineering Colleges accepts TS EAMCET. Colleges in Telangana
AITS Hyderabad
ATRI Hyderabad
CJITS Warangal
Deccan College of Engineering
There are no minimum marks for reserved category candidates for inclusion in the rank list. Only candidates who will be included in the rank list will be considered for admission.
k
What rank should I get in AP EAMCET to get a seat in VIT for CSE course?
I think the safe score would be below 5500 rank to get a seat in Vit.
156 Institutes accepting AP EAMCET
- |
- Total Fees: ₹ 6.80 Lakh
- |
- 4 years
- |
- Full Time
- |
- Total Fees: ₹ 1.24 Lakh
- |
- 4 years
- |
- Full Time
Sri Vishnu College Of Pharmacy
Bhimavaram
- Total Fees: ₹ 3.62 Lakh
- |
- 6 years
- |
- Full Time
- Total Fees: ₹ 40,000
- |
- 4 years
- |
- Full Time
H
I have 4k rank in AP EAMCET. What should be my rank in AP EAMCET to get admission in VIT for CSE?
Reply to Harshitha